1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
/*
* pcacommand.cpp
* mothur
*
* Created by westcott on 1/7/11.
* Copyright 2011 Schloss Lab. All rights reserved.
*
*/
#include "pcacommand.h"
#include "inputdata.h"
//**********************************************************************************************************************
vector<string> PCACommand::setParameters(){
try {
CommandParameter pshared("shared", "InputTypes", "", "", "LRSS", "LRSS", "none","pca-loadings",false,false,true); parameters.push_back(pshared);
CommandParameter prelabund("relabund", "InputTypes", "", "", "LRSS", "LRSS", "none","pca-loadings",false,false,true); parameters.push_back(prelabund);
CommandParameter pgroups("groups", "String", "", "", "", "", "","",false,false); parameters.push_back(pgroups);
CommandParameter pmetric("metric", "Boolean", "", "T", "", "", "","",false,false); parameters.push_back(pmetric);
CommandParameter plabel("label", "String", "", "", "", "", "","",false,false); parameters.push_back(plabel);
CommandParameter pseed("seed", "Number", "", "0", "", "", "","",false,false); parameters.push_back(pseed);
CommandParameter pinputdir("inputdir", "String", "", "", "", "", "","",false,false); parameters.push_back(pinputdir);
CommandParameter poutputdir("outputdir", "String", "", "", "", "", "","",false,false); parameters.push_back(poutputdir);
abort = false; calledHelp = false;
vector<string> tempOutNames;
outputTypes["pca"] = tempOutNames;
outputTypes["loadings"] = tempOutNames;
vector<string> myArray;
for (int i = 0; i < parameters.size(); i++) { myArray.push_back(parameters[i].name); }
return myArray;
}
catch(exception& e) {
m->errorOut(e, "PCACommand", "setParameters");
exit(1);
}
}
//**********************************************************************************************************************
string PCACommand::getHelpString(){
try {
string helpString = "";
helpString += "The pca command parameters are shared, relabund, label, groups and metric. shared or relabund is required unless you have a valid current file.";
helpString += "The label parameter is used to analyze specific labels in your input. Default is the first label in your shared or relabund file. Multiple labels may be separated by dashes.\n";
helpString += "The groups parameter allows you to specify which groups you would like analyzed. Groupnames are separated by dashes.\n";
helpString += "The metric parameter allows you to indicate if would like the pearson correlation coefficient calculated. Default=True";
helpString += "Example pca(groups=yourGroups).\n";
helpString += "Example pca(groups=A-B-C).\n";
return helpString;
}
catch(exception& e) {
m->errorOut(e, "PCACommand", "getHelpString");
exit(1);
}
}
//**********************************************************************************************************************
string PCACommand::getOutputPattern(string type) {
try {
string pattern = "";
if (type == "pca") { pattern = "[filename],[distance],pca.axes"; }
else if (type == "loadings") { pattern = "[filename],[distance],pca.loadings"; }
else { m->mothurOut("[ERROR]: No definition for type " + type + " output pattern.\n"); m->setControl_pressed(true); }
return pattern;
}
catch(exception& e) {
m->errorOut(e, "PCACommand", "getOutputPattern");
exit(1);
}
}
//**********************************************************************************************************************
PCACommand::PCACommand(string option) : Command() {
try {
if(option == "help") { help(); abort = true; calledHelp = true; }
else if(option == "citation") { citation(); abort = true; calledHelp = true;}
else if(option == "category") { abort = true; calledHelp = true; }
else {
OptionParser parser(option, setParameters());
map<string, string> parameters = parser. getParameters();
ValidParameters validParameter;
sharedfile = validParameter.validFile(parameters, "shared");
if (sharedfile == "not open") { sharedfile = ""; abort = true; }
else if (sharedfile == "not found") { sharedfile = ""; }
else { mode = "sharedfile"; inputFile = sharedfile; current->setSharedFile(sharedfile); }
relabundfile = validParameter.validFile(parameters, "relabund");
if (relabundfile == "not open") { relabundfile = ""; abort = true; }
else if (relabundfile == "not found") { relabundfile = ""; }
else { mode = "relabund"; inputFile = relabundfile; current->setRelAbundFile(relabundfile); }
if ((sharedfile == "") && (relabundfile == "")) {
//is there are current file available for any of these?
//give priority to shared, then list, then rabund, then sabund
//if there is a current shared file, use it
sharedfile = current->getSharedFile();
if (sharedfile != "") { inputFile = sharedfile; mode = "sharedfile"; m->mothurOut("Using " + sharedfile + " as input file for the shared parameter.\n"); }
else {
relabundfile = current->getRelAbundFile();
if (relabundfile != "") { inputFile = relabundfile; mode = "relabund"; m->mothurOut("Using " + relabundfile + " as input file for the relabund parameter.\n"); }
else {
m->mothurOut("No valid current files. You must provide a relabund or shared file.\n");
abort = true;
}
}
}
if (outputdir == ""){ outputdir += util.hasPath(inputFile); }
string temp = validParameter.valid(parameters, "metric"); if (temp == "not found"){ temp = "T"; }
metric = util.isTrue(temp);
label = validParameter.valid(parameters, "label");
if (label == "not found") { label = ""; if(labels.size() == 0) { m->mothurOut("You did not provide a label, I will use the first label in your inputfile.\n"); } }
else { util.splitAtDash(label, labels); }
groups = validParameter.valid(parameters, "groups");
if (groups == "not found") { groups = ""; }
else { util.splitAtDash(groups, Groups); if (Groups.size() != 0) { if (Groups[0]== "all") { Groups.clear(); } } }
}
}
catch(exception& e) {
m->errorOut(e, "PCACommand", "PCACommand");
exit(1);
}
}
//**********************************************************************************************************************
int PCACommand::execute(){
try {
if (abort) { if (calledHelp) { return 0; } return 2; }
cout.setf(ios::fixed, ios::floatfield);
cout.setf(ios::showpoint);
cerr.setf(ios::fixed, ios::floatfield);
cerr.setf(ios::showpoint);
//get first line of shared file
vector< vector<double> > matrix;
InputData* input;
if (mode == "sharedfile") {
input = new InputData(inputFile, "sharedfile", Groups);
}else if (mode == "relabund") {
input = new InputData(inputFile, "relabund", Groups);
}else { m->mothurOut("[ERROR]: filetype not recognized.\n"); return 0; }
SharedRAbundFloatVectors* lookupFloat = input->getSharedRAbundFloatVectors();
string lastLabel = lookupFloat->getLabel();
Groups = lookupFloat->getNamesGroups();
set<string> processedLabels;
set<string> userLabels = labels;
//if the user gave no labels, then use the first one read
if (labels.size() == 0) {
label = lastLabel;
process(lookupFloat);
}
//as long as you are not at the end of the file or done wih the lines you want
while((lookupFloat != nullptr) && (userLabels.size() != 0)) {
if (m->getControl_pressed()) { for (int i = 0; i < outputNames.size(); i++) { util.mothurRemove(outputNames[i]); } delete input; delete lookupFloat; return 0; }
if(labels.count(lookupFloat->getLabel()) == 1){
processedLabels.insert(lookupFloat->getLabel());
userLabels.erase(lookupFloat->getLabel());
process(lookupFloat);
}
if ((util.anyLabelsToProcess(lookupFloat->getLabel(), userLabels, "") ) && (processedLabels.count(lastLabel) != 1)) {
string saveLabel = lookupFloat->getLabel();
delete lookupFloat;
lookupFloat = input->getSharedRAbundFloatVectors(lastLabel);
process(lookupFloat);
processedLabels.insert(lookupFloat->getLabel());
userLabels.erase(lookupFloat->getLabel());
//restore real lastlabel to save below
lookupFloat->setLabels(saveLabel);
}
lastLabel = lookupFloat->getLabel();
//get next line to process
//prevent memory leak
delete lookupFloat;
lookupFloat = input->getSharedRAbundFloatVectors();
}
if (m->getControl_pressed()) { for (int i = 0; i < outputNames.size(); i++) { util.mothurRemove(outputNames[i]); } delete input; delete lookupFloat; return 0; }
//output error messages about any remaining user labels
bool needToRun = false;
for (set<string>::iterator it = userLabels.begin(); it != userLabels.end(); it++) {
m->mothurOut("Your file does not include the label " + *it);
if (processedLabels.count(lastLabel) != 1) { m->mothurOut(". I will use " + lastLabel + ".\n"); needToRun = true; }
else { m->mothurOut(". Please refer to " + lastLabel + ".\n"); }
}
//run last label if you need to
if (needToRun ) {
delete lookupFloat;
lookupFloat = input->getSharedRAbundFloatVectors(lastLabel);
process(lookupFloat);
delete lookupFloat;
}
delete input;
if (m->getControl_pressed()) { for (int i = 0; i < outputNames.size(); i++) { util.mothurRemove(outputNames[i]); } return 0; }
m->mothurOut("\nOutput File Names: \n");
for (int i = 0; i < outputNames.size(); i++) { m->mothurOut(outputNames[i] +"\n"); } m->mothurOutEndLine();
return 0;
}
catch(exception& e) {
m->errorOut(e, "PCACommand", "execute");
exit(1);
}
}
/**********************************************************************************************************************
vector< vector<double> > PCACommand::createMatrix(vector<SharedRAbundFloatVector*> lookupFloat){
try {
vector< vector<double> > matrix; matrix.resize(lookupFloat.size());
//fill matrix with shared files relative abundances
for (int i = 0; i < lookupFloat.size(); i++) {
for (int j = 0; j < lookupFloat[i]->getNumBins(); j++) {
matrix[i].push_back(lookupFloat[i]->getAbundance(j));
}
}
vector< vector<double> > transposeMatrix; transposeMatrix.resize(matrix[0].size());
for (int i = 0; i < transposeMatrix.size(); i++) {
for (int j = 0; j < matrix.size(); j++) {
transposeMatrix[i].push_back(matrix[j][i]);
}
}
matrix = linearCalc.matrix_mult(matrix, transposeMatrix);
return matrix;
}
catch(exception& e) {
m->errorOut(e, "PCACommand", "createMatrix");
exit(1);
}
}*/
//**********************************************************************************************************************
int PCACommand::process(SharedRAbundFloatVectors*& lookupFloat){
try {
m->mothurOut("\nProcessing " + lookupFloat->getLabel()); m->mothurOutEndLine();
int numOTUs = lookupFloat->getNumBins();
int numSamples = lookupFloat->getNumGroups();
vector< vector<double> > matrix(numSamples);
vector<double> colMeans(numOTUs);
//fill matrix with shared relative abundances, re-center
vector<SharedRAbundFloatVector*> data = lookupFloat->getSharedRAbundFloatVectors();
for (int i = 0; i < numSamples; i++) {
matrix[i].resize(numOTUs, 0);
for (int j = 0; j < numOTUs; j++) {
matrix[i][j] = data[i]->get(j);
colMeans[j] += matrix[i][j];
}
delete data[i];
}
data.clear();
for(int j=0;j<numOTUs;j++){
colMeans[j] = colMeans[j] / (double)numSamples;
}
vector<vector<double> > centered = matrix;
for(int i=0;i<numSamples;i++){
for(int j=0;j<numOTUs;j++){
centered[i][j] = centered[i][j] - colMeans[j];
}
}
vector< vector<double> > transpose(numOTUs);
for (int i = 0; i < numOTUs; i++) {
transpose[i].resize(numSamples, 0);
for (int j = 0; j < numSamples; j++) {
transpose[i][j] = centered[j][i];
}
}
vector<vector<double> > crossProduct = linearCalc.matrix_mult(transpose, centered);
vector<double> d;
vector<double> e;
linearCalc.tred2(crossProduct, d, e); if (m->getControl_pressed()) { return 0; }
linearCalc.qtli(d, e, crossProduct); if (m->getControl_pressed()) { return 0; }
vector<vector<double> > X = linearCalc.matrix_mult(centered, crossProduct);
if (m->getControl_pressed()) { return 0; }
string fbase = outputdir + util.getRootName(util.getSimpleName(inputFile));
//string outputFileName = fbase + lookupFloat[0]->getLabel();
output(fbase, lookupFloat->getLabel(), Groups, X, d);
if (metric) {
vector<vector<double> > observedEuclideanDistance = linearCalc.getObservedEuclideanDistance(centered);
for (int i = 1; i < 4; i++) {
vector< vector<double> > PCAEuclidDists = linearCalc.calculateEuclidianDistance(X, i); //G is the pca file
if (m->getControl_pressed()) { for (int i = 0; i < outputNames.size(); i++) { util.mothurRemove(outputNames[i]); } return 0; }
double corr = linearCalc.calcPearson(PCAEuclidDists, observedEuclideanDistance);
m->mothurOut("Rsq " + toString(i) + " axis: " + toString(corr * corr)); m->mothurOutEndLine();
if (m->getControl_pressed()) { for (int i = 0; i < outputNames.size(); i++) { util.mothurRemove(outputNames[i]); } return 0; }
}
}
return 0;
}
catch(exception& e) {
m->errorOut(e, "PCACommand", "process");
exit(1);
}
}
/*********************************************************************************************************************************/
void PCACommand::output(string fbase, string label, vector<string> name_list, vector<vector<double> >& G, vector<double> d) {
try {
int numEigenValues = d.size();
double dsum = 0.0000;
for(int i=0;i<numEigenValues;i++){
dsum += d[i];
}
ofstream pcaData;
map<string, string> variables;
variables["[filename]"] = fbase;
variables["[distance]"] = label;
string pcaFileName = getOutputFileName("pca",variables);
util.openOutputFile(pcaFileName, pcaData);
pcaData.setf(ios::fixed, ios::floatfield);
pcaData.setf(ios::showpoint);
outputNames.push_back(pcaFileName);
outputTypes["pca"].push_back(pcaFileName);
ofstream pcaLoadings;
string loadingsFilename = getOutputFileName("loadings",variables);
util.openOutputFile(loadingsFilename, pcaLoadings);
pcaLoadings.setf(ios::fixed, ios::floatfield);
pcaLoadings.setf(ios::showpoint);
outputNames.push_back(loadingsFilename);
outputTypes["loadings"].push_back(loadingsFilename);
pcaLoadings << "axis\tloading\n";
for(int i=0;i<numEigenValues;i++){
pcaLoadings << i+1 << '\t' << d[i] * 100.0 / dsum << endl;
}
pcaData << "group";
for(int i=0;i<numEigenValues;i++){
pcaData << '\t' << "axis" << i+1;
}
pcaData << endl;
for(int i=0;i<name_list.size();i++){
pcaData << name_list[i];
for(int j=0;j<numEigenValues;j++){ pcaData << '\t' << G[i][j]; }
pcaData << endl;
}
}
catch(exception& e) {
m->errorOut(e, "PCACommand", "output");
exit(1);
}
}
/*********************************************************************************************************************************/
|