File: mothurmetastats.cpp

package info (click to toggle)
mothur 1.48.5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,676 kB
  • sloc: cpp: 161,854; makefile: 119; sh: 31
file content (452 lines) | stat: -rwxr-xr-x 20,002 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/*
 *  mothurmetastats.cpp
 *  Mothur
 *
 *  Created by westcott on 7/6/11.
 *  Copyright 2011 Schloss Lab. All rights reserved.
 *
 */

#include "mothurmetastats.h"
#include "mothurfisher.h"
#include "utils.hpp"

/***********************************************************/
MothurMetastats::MothurMetastats(double t, int n) {
	try {
		m = MothurOut::getInstance(); 
		threshold = t;
		numPermutations = n;
		
	}catch(exception& e) {
		m->errorOut(e, "MothurMetastats", "MothurMetastats");
		exit(1);
	}	
}
/***********************************************************/
MothurMetastats::~MothurMetastats() = default;
/***********************************************************/
 //main metastats function
int MothurMetastats::runMetastats(string outputFileName, vector< vector<double> >& data, int secGroupingStart, vector<string> currentLabels, bool fillProps) {
    try {
         
        numOTUs = data.size();		 //numBins
		numSamples = data[0].size(); //numGroups in subset
        secondGroupingStart = secGroupingStart; //g number of samples in group 1
         
        vector< vector<double> > Pmatrix; Pmatrix.resize(numOTUs);
        for (int i = 0; i < numOTUs; i++) { Pmatrix[i].resize(numSamples, 0.0);  } // the relative proportion matrix
        vector< vector<double> > C1; C1.resize(numOTUs);
        for (int i = 0; i < numOTUs; i++) { C1[i].resize(3, 0.0);  } // statistic profiles for class1 and class 2
        vector< vector<double> > C2; C2.resize(numOTUs);            // mean[1], variance[2], standard error[3]
        for (int i = 0; i < numOTUs; i++) { C2[i].resize(3, 0.0);  }
        vector<double> T_statistics; T_statistics.resize(numOTUs, 1); // a place to store the true t-statistics
        vector<double> pvalues; pvalues.resize(numOTUs, 1); // place to store pvalues
       
        //*************************************
        //      convert to proportions
        //      generate Pmatrix
        //*************************************
        vector<double> totals; totals.resize(numSamples, 0); // sum of numSampless / samples -> numSeqs for each sample
        //total[i] = total abundance for group[i]
		for (int i = 0; i < numSamples; i++) { //each sample
			for (int j = 0; j < numOTUs; j++) { //each otu
				totals[i] += data[j][i];
			}
        }
        
        for (int i = 0; i < numSamples; i++) {  //sample
			for (int j = 0; j < numOTUs; j++) { //otu
                if (fillProps) {  Pmatrix[j][i] = data[j][i]/totals[i]; }
                else           {  Pmatrix[j][i] = data[j][i];           }
			}
        }
        
        //#********************************************************************************
        //# ************************** STATISTICAL TESTING ********************************
        //#********************************************************************************
        
        if (numSamples == 2){  //# then we have a two sample comparison
            //#************************************************************
            //#  generate p values fisher's exact test
            //#************************************************************
            double total1, total2; total1 = 0; total2 = 0;
			//total for first grouping
            for (int i = 0; i < secondGroupingStart; i++) { total1 += totals[i]; }
            
            //total for second grouping
            for (int i = secondGroupingStart; i < numSamples; i++) { total2 += totals[i]; }
            
            vector<double> fish;	fish.resize(numOTUs, 0.0);
			vector<double> fish2;	fish2.resize(numOTUs, 0.0);
            //vector<string> currentLabels = m->getCurrentSharedBinLabels();
			for(int i = 0; i < numOTUs; i++){ //numBins
				
				for(int j = 0; j < secondGroupingStart; j++)		{ fish[i] += data[i][j];	}
				for(int j = secondGroupingStart; j < numSamples; j++)	{ fish2[i] += data[i][j];	}
				
				double f11, f12, f21, f22;
                f11 = fish[i];
                f12 = fish2[i];
                f21 = total1 - fish[i];
                f22 = total2 - fish2[i];
                if (fillProps) {   f11 = floor(f11);  f12 = floor(f12); f21 = floor(f21); f22 = floor(f22); }
				
				MothurFisher fisher;
				double pre = fisher.fexact(f11, f12, f21, f22, currentLabels[i]);
				if (pre > 0.999999999)	{ pre = 1.0; }
                
				if (m->getControl_pressed()) { return 1; }
				
				pvalues[i] = pre;
			}
            
        }else { //we have multiple subjects per population
            
            //#*************************************
            //#  generate statistics mean, var, stderr    
            //#*************************************
            for(int i = 0; i < numOTUs; i++){ // for each taxa
                //# find the mean of each group
                double g1Total = 0.0; double g2Total = 0.0;
                for (int j = 0; j < secondGroupingStart; j++)       {     g1Total += Pmatrix[i][j]; }
                C1[i][0] = g1Total/(double)(secondGroupingStart);
                for (int j = secondGroupingStart; j < numSamples; j++)  {     g2Total += Pmatrix[i][j]; }
                C2[i][0] = g2Total/(double)(numSamples-secondGroupingStart);
                
                 //# find the variance of each group
                double g1Var = 0.0; double g2Var = 0.0;
                for (int j = 0; j < secondGroupingStart; j++)       {     g1Var += pow((Pmatrix[i][j]-C1[i][0]), 2);  }
                C1[i][1] = g1Var/(double)(secondGroupingStart-1);
                for (int j = secondGroupingStart; j < numSamples; j++)  {     g2Var += pow((Pmatrix[i][j]-C2[i][0]), 2);  }
                C2[i][1] = g2Var/(double)(numSamples-secondGroupingStart-1);
                
                //# find the std error of each group -std err^2 (will change to std err at end)
                C1[i][2] = C1[i][1]/(double)(secondGroupingStart);    
                C2[i][2] = C2[i][1]/(double)(numSamples-secondGroupingStart);
            }
            
            //#*************************************
            //#  two sample t-statistics
            //#*************************************
            for(int i = 0; i < numOTUs; i++){                  // # for each taxa
                double xbar_diff = C1[i][0] - C2[i][0]; 
                double denom = sqrt(C1[i][2] + C2[i][2]);
                T_statistics[i] = xbar_diff/denom;  // calculate two sample t-statistic
            }
            
            if (m->getDebug()) {
                for (int i = 0; i < numOTUs; i++) {
                    for (int j = 0; j < 3; j++) {
                        cout << "C1[" << i+1 << "," << j+1 << "]=" << C1[i][j] << ";" << endl;
                        cout << "C2[" << i+1 << "," << j+1 << "]=" << C2[i][j] << ";" << endl;
                    }
                    cout << "T_statistics[" << i+1 << "]=" << T_statistics[i] << ";" << endl;
                }
                
                for (int i = 0; i < numOTUs; i++) {
                    for (int j = 0; j < numSamples; j++) {
                        cout << "Fmatrix[" << i+1 << "," << j+1 << "]=" << data[i][j] << ";" << endl;
                    }
                }
            }
            //#*************************************
            //# generate initial permuted p-values
            //#*************************************
            pvalues = permuted_pvalues(Pmatrix, T_statistics, data);
            
            if (m->getDebug()) {   for (int i = 0; i < numOTUs; i++) { m->mothurOut("[DEBUG]: " + currentLabels[i] + " pvalue = " + toString(pvalues[i]) + "\n"); } }
            
            //#*************************************
            //#  generate p values for sparse data 
            //#  using fisher's exact test
            //#*************************************
            double total1, total2; total1 = 0; total2 = 0;
			//total for first grouping
            for (int i = 0; i < secondGroupingStart; i++) { total1 += totals[i];  } //total all seqs in first set
            
            //total for second grouping
            for (int i = secondGroupingStart; i < numSamples; i++) { total2 += totals[i];  } //total all seqs in second set
            
            vector<double> fish;	fish.resize(numOTUs, 0.0);
			vector<double> fish2;	fish2.resize(numOTUs, 0.0);
            
			for(int i = 0; i < numOTUs; i++){ //numBins
				
				for(int j = 0; j < secondGroupingStart; j++)		{ fish[i] += data[i][j];	}
				for(int j = secondGroupingStart; j < numSamples; j++)	{ fish2[i] += data[i][j];	}
                
                if ((fish[i] < secondGroupingStart) && (fish2[i] < (numSamples-secondGroupingStart))) {
    
                    double f11, f12, f21, f22;
                    f11 = fish[i];  if (f11 < 0) { f11 *= -1.0; } f11 = floor(f11);
                    f12 = fish2[i]; if (f12 < 0) { f12 *= -1.0; } f12 = floor(f11);
                    f21 = total1 - fish[i]; if (f21 < 0) { f21 *= -1.0; } f21 = floor(f21);
                    f22 = total2 - fish2[i]; if (f22 < 0) { f22 *= -1.0; } f22 = floor(f22);
                    if (fillProps) {   f11 = floor(f11);  f12 = floor(f12); f21 = floor(f21); f22 = floor(f22); }
                    
                    MothurFisher fisher;
                    if (m->getDebug()) {    m->mothurOut("[DEBUG]: about to run fisher for Otu " + currentLabels[i] + " F11, F12, F21, F22 = " + toString(f11) + " " + toString(f12) + " " + toString(f21) + " " + toString(f22) + " " + "\n"); }
                    
                    double pre = fisher.fexact(f11, f12, f21, f22, currentLabels[i]);
                    if (m->getDebug()) {  m->mothurOut("[DEBUG]: about to completed fisher for Otu " + currentLabels[i] + " pre = " + toString(pre) + "\n"); }
                    
                    if (pre > 0.999999999)	{ pre = 1.0; }
                
                    if (m->getControl_pressed()) { return 1; }
				
                    pvalues[i] = pre;
                }
			}
            
            //#*************************************
            //#  convert stderr^2 to std error
            //#*************************************
            for(int i = 0; i < numOTUs; i++){
                C1[i][2] = sqrt(C1[i][2]);
                C2[i][2] = sqrt(C2[i][2]);
            }
        }
        
        // And now we write the files to a text file.
		struct tm *local;
		time_t t; t = time(nullptr);
		local = localtime(&t);
		
		ofstream out;
        Utils util; util.openOutputFile(outputFileName, out);
		out.setf(ios::fixed, ios::floatfield); out.setf(ios::showpoint);
        
		out << "Local time and date of test: " << asctime(local) << endl;
		out << "# numOTUss = " << numOTUs << ", # col = " << numSamples << ", g = " << secondGroupingStart << endl << endl;
		out << numPermutations << " permutations" << endl << endl;	
		
		//output numSamples headings - not really sure... documentation labels 9 numSampless, there are 10 in the output file
		//storage 0 = meanGroup1 - line 529, 1 = varGroup1 - line 532, 2 = err rate1 - line 534, 3 = mean of counts group1?? - line 291, 4 = meanGroup2 - line 536, 5 = varGroup2 - line 539, 6 = err rate2 - line 541, 7 = mean of counts group2?? - line 292, 8 = pvalues - line 293
		out << "OTU\tmean(group1)\tvariance(group1)\tstderr(group1)\tmean(group2)\tvariance(group2)\tstderr(group2)\tp-value\n";
		for(int i = 0; i < numOTUs; i++){
			if (m->getControl_pressed()) { out.close(); return 0; }
			
            //if there are binlabels use them otherwise count.
			if (i < currentLabels.size()) { out << currentLabels[i] << '\t'; }
            else { out << (i+1) << '\t'; }
            
            out << C1[i][0] << '\t' << C1[i][1] << '\t' << C1[i][2] << '\t' << C2[i][0] << '\t' << C2[i][1] << '\t' << C2[i][2] << '\t' << pvalues[i] <<  endl;
            
            //if (pvalues[i] < 0.05) { cout << currentLabels[i] << endl; }
		}  
		
		out << endl << endl; out.close();
		
        return 0;
        
    }catch(exception& e) {
        m->errorOut(e, "MothurMetastats", "runMetastats");
        exit(1);
    }	
}
/***********************************************************/
vector<double> MothurMetastats::permuted_pvalues(vector< vector<double> >& Imatrix, vector<double>& tstats, vector< vector<double> >& Fmatrix) {
	try {
        //# matrix stores tstats for each taxa(numOTUs) for each permuted trial(numSamples)
        vector<double> ps;  ps.resize(numOTUs, 0.0); //# to store the pvalues
        vector< vector<double> > permuted_ttests; permuted_ttests.resize(numPermutations);            
        for (int i = 0; i < numPermutations; i++) { permuted_ttests[i].resize(numOTUs, 0.0);  }
 
        //# calculate null version of tstats using B permutations.
        for (int i = 0; i < numPermutations; i++) {   
            permuted_ttests[i] = permute_and_calc_ts(Imatrix);
        }
        
        //# calculate each pvalue using the null ts
        if ((secondGroupingStart) < 8 || (numSamples-secondGroupingStart) < 8){
            vector< vector<double> > cleanedpermuted_ttests; cleanedpermuted_ttests.resize(numPermutations);  //# the array pooling just the frequently observed ts
            //# then pool the t's together!
            //# count how many high freq taxa there are
            int hfc = 1;
            for (int i = 0; i < numOTUs; i++) {                 // # for each taxa
                double group1Total = 0.0; double group2Total = 0.0;
                for(int j = 0; j < secondGroupingStart; j++)		{ group1Total += Fmatrix[i][j];	}
				for(int j = secondGroupingStart; j < numSamples; j++)	{ group2Total += Fmatrix[i][j];	}
                
                if (group1Total >= secondGroupingStart || group2Total >= (numSamples-secondGroupingStart)){
                    hfc++;
                    for (int j = 0; j < numPermutations; j++) {   cleanedpermuted_ttests[j].push_back(permuted_ttests[j][i]); }
                }
            }
            
            //#now for each taxa
            for (int i = 0; i < numOTUs; i++) {
                //number of cleanedpermuted_ttests greater than tstat[i]
                int numGreater = 0;
                for (int j = 0; j < numPermutations; j++) {
                    for (int k = 0; k < cleanedpermuted_ttests[j].size(); k++) {
                        if (cleanedpermuted_ttests[j][k] > abs(tstats[i])) { numGreater++; }
                    }
                }
                
                ps[i] = (1/(double)(numPermutations*hfc))*numGreater;
            }
        }else{
            for (int i = 0; i < numOTUs; i++) {
                //number of permuted_ttests[i] greater than tstat[i] //(sum(permuted_ttests[i,] > abs(tstats[i]))+1)
                int numGreater = 1;
                for (int j = 0; j < numPermutations; j++) { if (permuted_ttests[j][i] > abs(tstats[i])) { numGreater++; }   }
                ps[i] = (1/(double)(numPermutations+1))*numGreater;
            }
        }
        
        return ps;
        
    }catch(exception& e) {
        m->errorOut(e, "MothurMetastats", "permuted_pvalues");
        exit(1);
    }	
}
/***********************************************************/
vector<double> MothurMetastats::permute_and_calc_ts(vector< vector<double> >& Imatrix) {
	try {
        vector< vector<double> > permutedMatrix = Imatrix;
        
        //randomize numSampless, ie group abundances.
        map<int, int> randomMap;
        vector<int> randoms;
        for (int i = 0; i < numSamples; i++) { randoms.push_back(i); }
        util.mothurRandomShuffle(randoms);
        for (int i = 0; i < randoms.size(); i++) {   randomMap[i] = randoms[i];   }
        
        //calc ts
        vector< vector<double> > C1; C1.resize(numOTUs);
        for (int i = 0; i < numOTUs; i++) { C1[i].resize(3, 0.0);  } // statistic profiles for class1 and class 2
        vector< vector<double> > C2; C2.resize(numOTUs);            // mean[1], variance[2], standard error[3]
        for (int i = 0; i < numOTUs; i++) { C2[i].resize(3, 0.0);  }
        vector<double> Ts; Ts.resize(numOTUs, 0.0); // a place to store the true t-statistics

        //#*************************************
        //#  generate statistics mean, var, stderr    
        //#*************************************
        for(int i = 0; i < numOTUs; i++){ // for each taxa
            //# find the mean of each group
            double g1Total = 0.0; double g2Total = 0.0;
            for (int j = 0; j < secondGroupingStart; j++)       {     g1Total += permutedMatrix[i][randomMap[j]]; }
            C1[i][0] = g1Total/(double)(secondGroupingStart);
            for (int j = secondGroupingStart; j < numSamples; j++)  {     g2Total += permutedMatrix[i][randomMap[j]]; }
            C2[i][0] = g2Total/(double)(numSamples-secondGroupingStart);
            
            //# find the variance of each group
            double g1Var = 0.0; double g2Var = 0.0;
            for (int j = 0; j < secondGroupingStart; j++)       {     g1Var += pow((permutedMatrix[i][randomMap[j]]-C1[i][0]), 2);  }
            C1[i][1] = g1Var/(double)(secondGroupingStart-1);
            for (int j = secondGroupingStart; j < numSamples; j++)  {     g2Var += pow((permutedMatrix[i][randomMap[j]]-C2[i][0]), 2);  }
            C2[i][1] = g2Var/(double)(numSamples-secondGroupingStart-1);
            
            //# find the std error of each group -std err^2 (will change to std err at end)
            C1[i][2] = C1[i][1]/(double)(secondGroupingStart);    
            C2[i][2] = C2[i][1]/(double)(numSamples-secondGroupingStart);
        }
        
        

        //#*************************************
        //#  two sample t-statistics
        //#*************************************
        for(int i = 0; i < numOTUs; i++){                  // # for each taxa
            double xbar_diff = C1[i][0] - C2[i][0]; 
            double denom = sqrt(C1[i][2] + C2[i][2]);
            Ts[i] = abs(xbar_diff/denom);  // calculate two sample t-statistic
        }

        return Ts;

        
    }catch(exception& e) {
        m->errorOut(e, "MothurMetastats", "permuted_ttests");
        exit(1);
    }	
}
/***********************************************************/
int MothurMetastats::OrderPValues(int low, int high, vector<double>& p, vector<int>& order) {
	try {
		
		if (low < high) {
			int i = low+1;
			int j = high;
			int pivot = (low+high) / 2;
			
			swapElements(low, pivot, p, order);  //puts pivot in final spot
			
			/* compare value */
			double key = p[low];
			
			/* partition */
			while(i <= j) {
				/* find member above ... */
				while((i <= high) && (p[i] <= key))	{  i++;  }  
				
				/* find element below ... */
				while((j >= low) && (p[j] > key))	{  j--;  } 
				
				if(i < j) {
					swapElements(i, j, p, order);
				}
			} 
			
			swapElements(low, j, p, order);
			
			/* recurse */
			OrderPValues(low, j-1, p, order);
			OrderPValues(j+1, high, p, order); 
		}		
		
		return 0;
		
	}catch(exception& e) {
		m->errorOut(e, "MothurMetastats", "OrderPValues");
		exit(1);
	}
}
/***********************************************************/
int MothurMetastats::swapElements(int i, int j, vector<double>& p, vector<int>& order) {
	try {
		
		double z = p[i];
		p[i] = p[j];
		p[j] = z;
		
		int temp = order[i];
		order[i] = order[j];
		order[j] = temp;
		
		return 0;
		
	}catch(exception& e) {
		m->errorOut(e, "MothurMetastats", "swapElements");
		exit(1);
	}
}

/***********************************************************/
vector<int> MothurMetastats::getSequence(int start, int end, int length) {
	try {
		vector<int> sequence;
		double increment = (end-start) / (double) (length-1);
		
		sequence.push_back(start);
		for (int i = 1; i < length-1; i++) {
			sequence.push_back(int(i*increment));
		}
		sequence.push_back(end);
		
		return sequence;
		
	}catch(exception& e) {
		m->errorOut(e, "MothurMetastats", "getSequence");
		exit(1);
	}
}	
/***********************************************************/