1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
|
package Math::BigInt::Calc;
use 5.005;
use strict;
# use warnings; # dont use warnings for older Perls
require Exporter;
use vars qw/@ISA $VERSION/;
@ISA = qw(Exporter);
$VERSION = '0.32';
# Package to store unsigned big integers in decimal and do math with them
# Internally the numbers are stored in an array with at least 1 element, no
# leading zero parts (except the first) and in base 1eX where X is determined
# automatically at loading time to be the maximum possible value
# todo:
# - fully remove funky $# stuff (maybe)
# USE_MUL: due to problems on certain os (os390, posix-bc) "* 1e-5" is used
# instead of "/ 1e5" at some places, (marked with USE_MUL). Other platforms
# BS2000, some Crays need USE_DIV instead.
# The BEGIN block is used to determine which of the two variants gives the
# correct result.
##############################################################################
# global constants, flags and accessory
# constants for easier life
my $nan = 'NaN';
my ($MBASE,$BASE,$RBASE,$BASE_LEN,$MAX_VAL,$BASE_LEN2,$BASE_LEN_SMALL);
my ($AND_BITS,$XOR_BITS,$OR_BITS);
my ($AND_MASK,$XOR_MASK,$OR_MASK);
my ($LEN_CONVERT);
sub _base_len
{
# set/get the BASE_LEN and assorted other, connected values
# used only be the testsuite, set is used only by the BEGIN block below
shift;
my $b = shift;
if (defined $b)
{
# find whether we can use mul or div or none in mul()/div()
# (in last case reduce BASE_LEN_SMALL)
$BASE_LEN_SMALL = $b+1;
my $caught = 0;
while (--$BASE_LEN_SMALL > 5)
{
$MBASE = int("1e".$BASE_LEN_SMALL);
$RBASE = abs('1e-'.$BASE_LEN_SMALL); # see USE_MUL
$caught = 0;
$caught += 1 if (int($MBASE * $RBASE) != 1); # should be 1
$caught += 2 if (int($MBASE / $MBASE) != 1); # should be 1
last if $caught != 3;
}
# BASE_LEN is used for anything else than mul()/div()
$BASE_LEN = $BASE_LEN_SMALL;
$BASE_LEN = shift if (defined $_[0]); # one more arg?
$BASE = int("1e".$BASE_LEN);
$BASE_LEN2 = int($BASE_LEN_SMALL / 2); # for mul shortcut
$MBASE = int("1e".$BASE_LEN_SMALL);
$RBASE = abs('1e-'.$BASE_LEN_SMALL); # see USE_MUL
$MAX_VAL = $MBASE-1;
$LEN_CONVERT = 0;
$LEN_CONVERT = 1 if $BASE_LEN_SMALL != $BASE_LEN;
#print "BASE_LEN: $BASE_LEN MAX_VAL: $MAX_VAL BASE: $BASE RBASE: $RBASE ";
#print "BASE_LEN_SMALL: $BASE_LEN_SMALL MBASE: $MBASE\n";
undef &_mul;
undef &_div;
if ($caught & 1 != 0)
{
# must USE_MUL
*{_mul} = \&_mul_use_mul;
*{_div} = \&_div_use_mul;
}
else # $caught must be 2, since it can't be 1 nor 3
{
# can USE_DIV instead
*{_mul} = \&_mul_use_div;
*{_div} = \&_div_use_div;
}
}
return $BASE_LEN unless wantarray;
return ($BASE_LEN, $AND_BITS, $XOR_BITS, $OR_BITS, $BASE_LEN_SMALL, $MAX_VAL);
}
BEGIN
{
# from Daniel Pfeiffer: determine largest group of digits that is precisely
# multipliable with itself plus carry
# Test now changed to expect the proper pattern, not a result off by 1 or 2
my ($e, $num) = 3; # lowest value we will use is 3+1-1 = 3
do
{
$num = ('9' x ++$e) + 0;
$num *= $num + 1.0;
} while ("$num" =~ /9{$e}0{$e}/); # must be a certain pattern
$e--; # last test failed, so retract one step
# the limits below brush the problems with the test above under the rug:
# the test should be able to find the proper $e automatically
$e = 5 if $^O =~ /^uts/; # UTS get's some special treatment
$e = 5 if $^O =~ /^unicos/; # unicos is also problematic (6 seems to work
# there, but we play safe)
$e = 5 if $] < 5.006; # cap, for older Perls
$e = 7 if $e > 7; # cap, for VMS, OS/390 and other 64 bit systems
# 8 fails inside random testsuite, so take 7
# determine how many digits fit into an integer and can be safely added
# together plus carry w/o causing an overflow
# this below detects 15 on a 64 bit system, because after that it becomes
# 1e16 and not 1000000 :/ I can make it detect 18, but then I get a lot of
# test failures. Ugh! (Tomake detect 18: uncomment lines marked with *)
use integer;
my $bi = 5; # approx. 16 bit
$num = int('9' x $bi);
# $num = 99999; # *
# while ( ($num+$num+1) eq '1' . '9' x $bi) # *
while ( int($num+$num+1) eq '1' . '9' x $bi)
{
$bi++; $num = int('9' x $bi);
# $bi++; $num *= 10; $num += 9; # *
}
$bi--; # back off one step
# by setting them equal, we ignore the findings and use the default
# one-size-fits-all approach from former versions
$bi = $e; # XXX, this should work always
__PACKAGE__->_base_len($e,$bi); # set and store
# find out how many bits _and, _or and _xor can take (old default = 16)
# I don't think anybody has yet 128 bit scalars, so let's play safe.
local $^W = 0; # don't warn about 'nonportable number'
$AND_BITS = 15; $XOR_BITS = 15; $OR_BITS = 15;
# find max bits, we will not go higher than numberofbits that fit into $BASE
# to make _and etc simpler (and faster for smaller, slower for large numbers)
my $max = 16;
while (2 ** $max < $BASE) { $max++; }
{
no integer;
$max = 16 if $] < 5.006; # older Perls might not take >16 too well
}
my ($x,$y,$z);
do {
$AND_BITS++;
$x = oct('0b' . '1' x $AND_BITS); $y = $x & $x;
$z = (2 ** $AND_BITS) - 1;
} while ($AND_BITS < $max && $x == $z && $y == $x);
$AND_BITS --; # retreat one step
do {
$XOR_BITS++;
$x = oct('0b' . '1' x $XOR_BITS); $y = $x ^ 0;
$z = (2 ** $XOR_BITS) - 1;
} while ($XOR_BITS < $max && $x == $z && $y == $x);
$XOR_BITS --; # retreat one step
do {
$OR_BITS++;
$x = oct('0b' . '1' x $OR_BITS); $y = $x | $x;
$z = (2 ** $OR_BITS) - 1;
} while ($OR_BITS < $max && $x == $z && $y == $x);
$OR_BITS --; # retreat one step
}
##############################################################################
# convert between the "small" and the "large" representation
sub _to_large
{
# take an array in base $BASE_LEN_SMALL and convert it in-place to $BASE_LEN
my ($c,$x) = @_;
# print "_to_large $BASE_LEN_SMALL => $BASE_LEN\n";
return $x if $LEN_CONVERT == 0 || # nothing to converconvertor
@$x == 1; # only one element => early out
# 12345 67890 12345 67890 contents
# to 3 2 1 0 index
# 123456 7890123 4567890 contents
# # faster variant
# my @d; my $str = '';
# my $z = '0' x $BASE_LEN_SMALL;
# foreach (@$x)
# {
# # ... . 04321 . 000321
# $str = substr($z.$_,-$BASE_LEN_SMALL,$BASE_LEN_SMALL) . $str;
# if (length($str) > $BASE_LEN)
# {
# push @d, substr($str,-$BASE_LEN,$BASE_LEN); # extract one piece
# substr($str,-$BASE_LEN,$BASE_LEN) = ''; # remove it
# }
# }
# push @d, $str if $str !~ /^0*$/; # extract last piece
# @$x = @d;
# $x->[-1] = int($x->[-1]); # strip leading zero
# $x;
my $ret = "";
my $l = scalar @$x; # number of parts
$l --; $ret .= int($x->[$l]); $l--;
my $z = '0' x ($BASE_LEN_SMALL-1);
while ($l >= 0)
{
$ret .= substr($z.$x->[$l],-$BASE_LEN_SMALL);
$l--;
}
my $str = _new($c,\$ret); # make array
@$x = @$str; # clobber contents of $x
$x->[-1] = int($x->[-1]); # strip leading zero
}
sub _to_small
{
# take an array in base $BASE_LEN and convert it in-place to $BASE_LEN_SMALL
my ($c,$x) = @_;
return $x if $LEN_CONVERT == 0; # nothing to do
return $x if @$x == 1 && length(int($x->[0])) <= $BASE_LEN_SMALL;
my $d = _str($c,$x);
my $il = length($$d)-1;
## this leaves '00000' instead of int 0 and will be corrected after any op
# clobber contents of $x
@$x = reverse(unpack("a" . ($il % $BASE_LEN_SMALL+1)
. ("a$BASE_LEN_SMALL" x ($il / $BASE_LEN_SMALL)), $$d));
$x->[-1] = int($x->[-1]); # strip leading zero
}
###############################################################################
sub _new
{
# (ref to string) return ref to num_array
# Convert a number from string format (without sign) to internal base
# 1ex format. Assumes normalized value as input.
my $d = $_[1];
my $il = length($$d)-1;
# this leaves '00000' instead of int 0 and will be corrected after any op
[ reverse(unpack("a" . ($il % $BASE_LEN+1)
. ("a$BASE_LEN" x ($il / $BASE_LEN)), $$d)) ];
}
BEGIN
{
$AND_MASK = __PACKAGE__->_new( \( 2 ** $AND_BITS ));
$XOR_MASK = __PACKAGE__->_new( \( 2 ** $XOR_BITS ));
$OR_MASK = __PACKAGE__->_new( \( 2 ** $OR_BITS ));
}
sub _zero
{
# create a zero
[ 0 ];
}
sub _one
{
# create a one
[ 1 ];
}
sub _two
{
# create a two (used internally for shifting)
[ 2 ];
}
sub _copy
{
[ @{$_[1]} ];
}
# catch and throw away
sub import { }
##############################################################################
# convert back to string and number
sub _str
{
# (ref to BINT) return num_str
# Convert number from internal base 100000 format to string format.
# internal format is always normalized (no leading zeros, "-0" => "+0")
my $ar = $_[1];
my $ret = "";
my $l = scalar @$ar; # number of parts
return $nan if $l < 1; # should not happen
# handle first one different to strip leading zeros from it (there are no
# leading zero parts in internal representation)
$l --; $ret .= int($ar->[$l]); $l--;
# Interestingly, the pre-padd method uses more time
# the old grep variant takes longer (14 to 10 sec)
my $z = '0' x ($BASE_LEN-1);
while ($l >= 0)
{
$ret .= substr($z.$ar->[$l],-$BASE_LEN); # fastest way I could think of
$l--;
}
\$ret;
}
sub _num
{
# Make a number (scalar int/float) from a BigInt object
my $x = $_[1];
return $x->[0] if scalar @$x == 1; # below $BASE
my $fac = 1;
my $num = 0;
foreach (@$x)
{
$num += $fac*$_; $fac *= $BASE;
}
$num;
}
##############################################################################
# actual math code
sub _add
{
# (ref to int_num_array, ref to int_num_array)
# routine to add two base 1eX numbers
# stolen from Knuth Vol 2 Algorithm A pg 231
# there are separate routines to add and sub as per Knuth pg 233
# This routine clobbers up array x, but not y.
my ($c,$x,$y) = @_;
return $x if (@$y == 1) && $y->[0] == 0; # $x + 0 => $x
if ((@$x == 1) && $x->[0] == 0) # 0 + $y => $y->copy
{
# twice as slow as $x = [ @$y ], but necc. to retain $x as ref :(
@$x = @$y; return $x;
}
# for each in Y, add Y to X and carry. If after that, something is left in
# X, foreach in X add carry to X and then return X, carry
# Trades one "$j++" for having to shift arrays, $j could be made integer
# but this would impose a limit to number-length of 2**32.
my $i; my $car = 0; my $j = 0;
for $i (@$y)
{
$x->[$j] -= $BASE if $car = (($x->[$j] += $i + $car) >= $BASE) ? 1 : 0;
$j++;
}
while ($car != 0)
{
$x->[$j] -= $BASE if $car = (($x->[$j] += $car) >= $BASE) ? 1 : 0; $j++;
}
$x;
}
sub _inc
{
# (ref to int_num_array, ref to int_num_array)
# routine to add 1 to a base 1eX numbers
# This routine modifies array x
my ($c,$x) = @_;
for my $i (@$x)
{
return $x if (($i += 1) < $BASE); # early out
$i = 0; # overflow, next
}
push @$x,1 if ($x->[-1] == 0); # last overflowed, so extend
$x;
}
sub _dec
{
# (ref to int_num_array, ref to int_num_array)
# routine to add 1 to a base 1eX numbers
# This routine modifies array x
my ($c,$x) = @_;
my $MAX = $BASE-1; # since MAX_VAL based on MBASE
for my $i (@$x)
{
last if (($i -= 1) >= 0); # early out
$i = $MAX; # overflow, next
}
pop @$x if $x->[-1] == 0 && @$x > 1; # last overflowed (but leave 0)
$x;
}
sub _sub
{
# (ref to int_num_array, ref to int_num_array, swap)
# subtract base 1eX numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
# subtract Y from X by modifying x in place
my ($c,$sx,$sy,$s) = @_;
my $car = 0; my $i; my $j = 0;
if (!$s)
{
#print "case 2\n";
for $i (@$sx)
{
last unless defined $sy->[$j] || $car;
$i += $BASE if $car = (($i -= ($sy->[$j] || 0) + $car) < 0); $j++;
}
# might leave leading zeros, so fix that
return __strip_zeros($sx);
}
#print "case 1 (swap)\n";
for $i (@$sx)
{
# we can't do an early out if $x is < than $y, since we
# need to copy the high chunks from $y. Found by Bob Mathews.
#last unless defined $sy->[$j] || $car;
$sy->[$j] += $BASE
if $car = (($sy->[$j] = $i-($sy->[$j]||0) - $car) < 0);
$j++;
}
# might leave leading zeros, so fix that
__strip_zeros($sy);
}
sub _mul_use_mul
{
# (ref to int_num_array, ref to int_num_array)
# multiply two numbers in internal representation
# modifies first arg, second need not be different from first
my ($c,$xv,$yv) = @_;
# shortcut for two very short numbers (improved by Nathan Zook)
# works also if xv and yv are the same reference
if ((@$xv == 1) && (@$yv == 1))
{
if (($xv->[0] *= $yv->[0]) >= $MBASE)
{
$xv->[0] = $xv->[0] - ($xv->[1] = int($xv->[0] * $RBASE)) * $MBASE;
};
return $xv;
}
# shortcut for result == 0
if ( ((@$xv == 1) && ($xv->[0] == 0)) ||
((@$yv == 1) && ($yv->[0] == 0)) )
{
@$xv = (0);
return $xv;
}
# since multiplying $x with $x fails, make copy in this case
$yv = [@$xv] if $xv == $yv; # same references?
if ($LEN_CONVERT != 0)
{
$c->_to_small($xv); $c->_to_small($yv);
}
my @prod = (); my ($prod,$car,$cty,$xi,$yi);
for $xi (@$xv)
{
$car = 0; $cty = 0;
# slow variant
# for $yi (@$yv)
# {
# $prod = $xi * $yi + ($prod[$cty] || 0) + $car;
# $prod[$cty++] =
# $prod - ($car = int($prod * RBASE)) * $MBASE; # see USE_MUL
# }
# $prod[$cty] += $car if $car; # need really to check for 0?
# $xi = shift @prod;
# faster variant
# looping through this if $xi == 0 is silly - so optimize it away!
$xi = (shift @prod || 0), next if $xi == 0;
for $yi (@$yv)
{
$prod = $xi * $yi + ($prod[$cty] || 0) + $car;
## this is actually a tad slower
## $prod = $prod[$cty]; $prod += ($car + $xi * $yi); # no ||0 here
$prod[$cty++] =
$prod - ($car = int($prod * $RBASE)) * $MBASE; # see USE_MUL
}
$prod[$cty] += $car if $car; # need really to check for 0?
$xi = shift @prod || 0; # || 0 makes v5.005_3 happy
}
push @$xv, @prod;
if ($LEN_CONVERT != 0)
{
$c->_to_large($yv);
$c->_to_large($xv);
}
else
{
__strip_zeros($xv);
}
$xv;
}
sub _mul_use_div
{
# (ref to int_num_array, ref to int_num_array)
# multiply two numbers in internal representation
# modifies first arg, second need not be different from first
my ($c,$xv,$yv) = @_;
# shortcut for two very short numbers (improved by Nathan Zook)
# works also if xv and yv are the same reference
if ((@$xv == 1) && (@$yv == 1))
{
if (($xv->[0] *= $yv->[0]) >= $MBASE)
{
$xv->[0] =
$xv->[0] - ($xv->[1] = int($xv->[0] / $MBASE)) * $MBASE;
};
return $xv;
}
# shortcut for result == 0
if ( ((@$xv == 1) && ($xv->[0] == 0)) ||
((@$yv == 1) && ($yv->[0] == 0)) )
{
@$xv = (0);
return $xv;
}
# since multiplying $x with $x fails, make copy in this case
$yv = [@$xv] if $xv == $yv; # same references?
if ($LEN_CONVERT != 0)
{
$c->_to_small($xv); $c->_to_small($yv);
}
my @prod = (); my ($prod,$car,$cty,$xi,$yi);
for $xi (@$xv)
{
$car = 0; $cty = 0;
# looping through this if $xi == 0 is silly - so optimize it away!
$xi = (shift @prod || 0), next if $xi == 0;
for $yi (@$yv)
{
$prod = $xi * $yi + ($prod[$cty] || 0) + $car;
$prod[$cty++] =
$prod - ($car = int($prod / $MBASE)) * $MBASE;
}
$prod[$cty] += $car if $car; # need really to check for 0?
$xi = shift @prod || 0; # || 0 makes v5.005_3 happy
}
push @$xv, @prod;
if ($LEN_CONVERT != 0)
{
$c->_to_large($yv);
$c->_to_large($xv);
}
else
{
__strip_zeros($xv);
}
$xv;
}
sub _div_use_mul
{
# ref to array, ref to array, modify first array and return remainder if
# in list context
my ($c,$x,$yorg) = @_;
if (@$x == 1 && @$yorg == 1)
{
# shortcut, $yorg and $x are two small numbers
if (wantarray)
{
my $r = [ $x->[0] % $yorg->[0] ];
$x->[0] = int($x->[0] / $yorg->[0]);
return ($x,$r);
}
else
{
$x->[0] = int($x->[0] / $yorg->[0]);
return $x;
}
}
if (@$yorg == 1)
{
my $rem;
$rem = _mod($c,[ @$x ],$yorg) if wantarray;
# shortcut, $y is < $BASE
my $j = scalar @$x; my $r = 0;
my $y = $yorg->[0]; my $b;
while ($j-- > 0)
{
$b = $r * $MBASE + $x->[$j];
$x->[$j] = int($b/$y);
$r = $b % $y;
}
pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
return ($x,$rem) if wantarray;
return $x;
}
my $y = [ @$yorg ]; # always make copy to preserve
if ($LEN_CONVERT != 0)
{
$c->_to_small($x); $c->_to_small($y);
}
my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0);
$car = $bar = $prd = 0;
if (($dd = int($MBASE/($y->[-1]+1))) != 1)
{
for $xi (@$x)
{
$xi = $xi * $dd + $car;
$xi -= ($car = int($xi * $RBASE)) * $MBASE; # see USE_MUL
}
push(@$x, $car); $car = 0;
for $yi (@$y)
{
$yi = $yi * $dd + $car;
$yi -= ($car = int($yi * $RBASE)) * $MBASE; # see USE_MUL
}
}
else
{
push(@$x, 0);
}
@q = (); ($v2,$v1) = @$y[-2,-1];
$v2 = 0 unless $v2;
while ($#$x > $#$y)
{
($u2,$u1,$u0) = @$x[-3..-1];
$u2 = 0 unless $u2;
#warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
# if $v1 == 0;
$q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$MBASE+$u1)/$v1));
--$q while ($v2*$q > ($u0*$MBASE+$u1-$q*$v1)*$MBASE+$u2);
if ($q)
{
($car, $bar) = (0,0);
for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi)
{
$prd = $q * $y->[$yi] + $car;
$prd -= ($car = int($prd * $RBASE)) * $MBASE; # see USE_MUL
$x->[$xi] += $MBASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
}
if ($x->[-1] < $car + $bar)
{
$car = 0; --$q;
for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi)
{
$x->[$xi] -= $MBASE
if ($car = (($x->[$xi] += $y->[$yi] + $car) > $MBASE));
}
}
}
pop(@$x); unshift(@q, $q);
}
if (wantarray)
{
@d = ();
if ($dd != 1)
{
$car = 0;
for $xi (reverse @$x)
{
$prd = $car * $MBASE + $xi;
$car = $prd - ($tmp = int($prd / $dd)) * $dd; # see USE_MUL
unshift(@d, $tmp);
}
}
else
{
@d = @$x;
}
@$x = @q;
my $d = \@d;
if ($LEN_CONVERT != 0)
{
$c->_to_large($x); $c->_to_large($d);
}
else
{
__strip_zeros($x);
__strip_zeros($d);
}
return ($x,$d);
}
@$x = @q;
if ($LEN_CONVERT != 0)
{
$c->_to_large($x);
}
else
{
__strip_zeros($x);
}
$x;
}
sub _div_use_div
{
# ref to array, ref to array, modify first array and return remainder if
# in list context
my ($c,$x,$yorg) = @_;
if (@$x == 1 && @$yorg == 1)
{
# shortcut, $yorg and $x are two small numbers
if (wantarray)
{
my $r = [ $x->[0] % $yorg->[0] ];
$x->[0] = int($x->[0] / $yorg->[0]);
return ($x,$r);
}
else
{
$x->[0] = int($x->[0] / $yorg->[0]);
return $x;
}
}
if (@$yorg == 1)
{
my $rem;
$rem = _mod($c,[ @$x ],$yorg) if wantarray;
# shortcut, $y is < $BASE
my $j = scalar @$x; my $r = 0;
my $y = $yorg->[0]; my $b;
while ($j-- > 0)
{
$b = $r * $MBASE + $x->[$j];
$x->[$j] = int($b/$y);
$r = $b % $y;
}
pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
return ($x,$rem) if wantarray;
return $x;
}
my $y = [ @$yorg ]; # always make copy to preserve
if ($LEN_CONVERT != 0)
{
$c->_to_small($x); $c->_to_small($y);
}
my ($car,$bar,$prd,$dd,$xi,$yi,@q,$v2,$v1,@d,$tmp,$q,$u2,$u1,$u0);
$car = $bar = $prd = 0;
if (($dd = int($MBASE/($y->[-1]+1))) != 1)
{
for $xi (@$x)
{
$xi = $xi * $dd + $car;
$xi -= ($car = int($xi / $MBASE)) * $MBASE;
}
push(@$x, $car); $car = 0;
for $yi (@$y)
{
$yi = $yi * $dd + $car;
$yi -= ($car = int($yi / $MBASE)) * $MBASE;
}
}
else
{
push(@$x, 0);
}
@q = (); ($v2,$v1) = @$y[-2,-1];
$v2 = 0 unless $v2;
while ($#$x > $#$y)
{
($u2,$u1,$u0) = @$x[-3..-1];
$u2 = 0 unless $u2;
#warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
# if $v1 == 0;
$q = (($u0 == $v1) ? $MAX_VAL : int(($u0*$MBASE+$u1)/$v1));
--$q while ($v2*$q > ($u0*$MBASE+$u1-$q*$v1)*$MBASE+$u2);
if ($q)
{
($car, $bar) = (0,0);
for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi)
{
$prd = $q * $y->[$yi] + $car;
$prd -= ($car = int($prd / $MBASE)) * $MBASE;
$x->[$xi] += $MBASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
}
if ($x->[-1] < $car + $bar)
{
$car = 0; --$q;
for ($yi = 0, $xi = $#$x-$#$y-1; $yi <= $#$y; ++$yi,++$xi)
{
$x->[$xi] -= $MBASE
if ($car = (($x->[$xi] += $y->[$yi] + $car) > $MBASE));
}
}
}
pop(@$x); unshift(@q, $q);
}
if (wantarray)
{
@d = ();
if ($dd != 1)
{
$car = 0;
for $xi (reverse @$x)
{
$prd = $car * $MBASE + $xi;
$car = $prd - ($tmp = int($prd / $dd)) * $dd;
unshift(@d, $tmp);
}
}
else
{
@d = @$x;
}
@$x = @q;
my $d = \@d;
if ($LEN_CONVERT != 0)
{
$c->_to_large($x); $c->_to_large($d);
}
else
{
__strip_zeros($x);
__strip_zeros($d);
}
return ($x,$d);
}
@$x = @q;
if ($LEN_CONVERT != 0)
{
$c->_to_large($x);
}
else
{
__strip_zeros($x);
}
$x;
}
##############################################################################
# testing
sub _acmp
{
# internal absolute post-normalized compare (ignore signs)
# ref to array, ref to array, return <0, 0, >0
# arrays must have at least one entry; this is not checked for
my ($c,$cx,$cy) = @_;
# fast comp based on number of array elements (aka pseudo-length)
my $lxy = scalar @$cx - scalar @$cy;
return -1 if $lxy < 0; # already differs, ret
return 1 if $lxy > 0; # ditto
# now calculate length based on digits, not parts
# we need only the length of the last element, since both array have the
# same number of parts
$lxy = length(int($cx->[-1])) - length(int($cy->[-1]));
return -1 if $lxy < 0;
return 1 if $lxy > 0;
# hm, same lengths, but same contents? So we need to check all parts:
my $a; my $j = scalar @$cx - 1;
# manual way (abort if unequal, good for early ne)
while ($j >= 0)
{
last if ($a = $cx->[$j] - $cy->[$j]); $j--;
}
return 1 if $a > 0;
return -1 if $a < 0;
0; # numbers are equal
}
sub _len
{
# compute number of digits
# int() because add/sub sometimes leaves strings (like '00005') instead of
# '5' in this place, thus causing length() to report wrong length
my $cx = $_[1];
(@$cx-1)*$BASE_LEN+length(int($cx->[-1]));
}
sub _digit
{
# return the nth digit, negative values count backward
# zero is rightmost, so _digit(123,0) will give 3
my ($c,$x,$n) = @_;
my $len = _len('',$x);
$n = $len+$n if $n < 0; # -1 last, -2 second-to-last
$n = abs($n); # if negative was too big
$len--; $n = $len if $n > $len; # n to big?
my $elem = int($n / $BASE_LEN); # which array element
my $digit = $n % $BASE_LEN; # which digit in this element
$elem = '0000'.@$x[$elem]; # get element padded with 0's
substr($elem,-$digit-1,1);
}
sub _zeros
{
# return amount of trailing zeros in decimal
# check each array elem in _m for having 0 at end as long as elem == 0
# Upon finding a elem != 0, stop
my $x = $_[1];
my $zeros = 0; my $elem;
foreach my $e (@$x)
{
if ($e != 0)
{
$elem = "$e"; # preserve x
$elem =~ s/.*?(0*$)/$1/; # strip anything not zero
$zeros *= $BASE_LEN; # elems * 5
$zeros += length($elem); # count trailing zeros
last; # early out
}
$zeros ++; # real else branch: 50% slower!
}
$zeros;
}
##############################################################################
# _is_* routines
sub _is_zero
{
# return true if arg (BINT or num_str) is zero (array '+', '0')
my $x = $_[1];
(((scalar @$x == 1) && ($x->[0] == 0))) <=> 0;
}
sub _is_even
{
# return true if arg (BINT or num_str) is even
my $x = $_[1];
(!($x->[0] & 1)) <=> 0;
}
sub _is_odd
{
# return true if arg (BINT or num_str) is even
my $x = $_[1];
(($x->[0] & 1)) <=> 0;
}
sub _is_one
{
# return true if arg (BINT or num_str) is one (array '+', '1')
my $x = $_[1];
(scalar @$x == 1) && ($x->[0] == 1) <=> 0;
}
sub __strip_zeros
{
# internal normalization function that strips leading zeros from the array
# args: ref to array
my $s = shift;
my $cnt = scalar @$s; # get count of parts
my $i = $cnt-1;
push @$s,0 if $i < 0; # div might return empty results, so fix it
return $s if @$s == 1; # early out
#print "strip: cnt $cnt i $i\n";
# '0', '3', '4', '0', '0',
# 0 1 2 3 4
# cnt = 5, i = 4
# i = 4
# i = 3
# => fcnt = cnt - i (5-2 => 3, cnt => 5-1 = 4, throw away from 4th pos)
# >= 1: skip first part (this can be zero)
while ($i > 0) { last if $s->[$i] != 0; $i--; }
$i++; splice @$s,$i if ($i < $cnt); # $i cant be 0
$s;
}
###############################################################################
# check routine to test internal state of corruptions
sub _check
{
# used by the test suite
my $x = $_[1];
return "$x is not a reference" if !ref($x);
# are all parts are valid?
my $i = 0; my $j = scalar @$x; my ($e,$try);
while ($i < $j)
{
$e = $x->[$i]; $e = 'undef' unless defined $e;
$try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e)";
last if $e !~ /^[+]?[0-9]+$/;
$try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e) (stringify)";
last if "$e" !~ /^[+]?[0-9]+$/;
$try = '=~ /^[\+]?[0-9]+\$/; '."($x, $e) (cat-stringify)";
last if '' . "$e" !~ /^[+]?[0-9]+$/;
$try = ' < 0 || >= $BASE; '."($x, $e)";
last if $e <0 || $e >= $BASE;
# this test is disabled, since new/bnorm and certain ops (like early out
# in add/sub) are allowed/expected to leave '00000' in some elements
#$try = '=~ /^00+/; '."($x, $e)";
#last if $e =~ /^00+/;
$i++;
}
return "Illegal part '$e' at pos $i (tested: $try)" if $i < $j;
return 0;
}
###############################################################################
###############################################################################
# some optional routines to make BigInt faster
sub _mod
{
# if possible, use mod shortcut
my ($c,$x,$yo) = @_;
# slow way since $y to big
if (scalar @$yo > 1)
{
my ($xo,$rem) = _div($c,$x,$yo);
return $rem;
}
my $y = $yo->[0];
# both are single element arrays
if (scalar @$x == 1)
{
$x->[0] %= $y;
return $x;
}
# @y is single element, but @x has more than one
my $b = $BASE % $y;
if ($b == 0)
{
# when BASE % Y == 0 then (B * BASE) % Y == 0
# (B * BASE) % $y + A % Y => A % Y
# so need to consider only last element: O(1)
$x->[0] %= $y;
}
elsif ($b == 1)
{
# else need to go trough all elements: O(N), but loop is a bit simplified
my $r = 0;
foreach (@$x)
{
$r = ($r + $_) % $y; # not much faster, but heh...
#$r += $_ % $y; $r %= $y;
}
$r = 0 if $r == $y;
$x->[0] = $r;
}
else
{
# else need to go trough all elements: O(N)
my $r = 0; my $bm = 1;
foreach (@$x)
{
$r = ($_ * $bm + $r) % $y;
$bm = ($bm * $b) % $y;
#$r += ($_ % $y) * $bm;
#$bm *= $b;
#$bm %= $y;
#$r %= $y;
}
$r = 0 if $r == $y;
$x->[0] = $r;
}
splice (@$x,1);
$x;
}
##############################################################################
# shifts
sub _rsft
{
my ($c,$x,$y,$n) = @_;
if ($n != 10)
{
$n = _new($c,\$n); return _div($c,$x, _pow($c,$n,$y));
}
# shortcut (faster) for shifting by 10)
# multiples of $BASE_LEN
my $dst = 0; # destination
my $src = _num($c,$y); # as normal int
my $xlen = (@$x-1)*$BASE_LEN+length(int($x->[-1])); # len of x in digits
if ($src > $xlen)
{
# 12345 67890 shifted right by more than 10 digits => 0
splice (@$x,1); # leave only one element
$x->[0] = 0; # set to zero
return $x;
}
my $rem = $src % $BASE_LEN; # remainder to shift
$src = int($src / $BASE_LEN); # source
if ($rem == 0)
{
splice (@$x,0,$src); # even faster, 38.4 => 39.3
}
else
{
my $len = scalar @$x - $src; # elems to go
my $vd; my $z = '0'x $BASE_LEN;
$x->[scalar @$x] = 0; # avoid || 0 test inside loop
while ($dst < $len)
{
$vd = $z.$x->[$src];
$vd = substr($vd,-$BASE_LEN,$BASE_LEN-$rem);
$src++;
$vd = substr($z.$x->[$src],-$rem,$rem) . $vd;
$vd = substr($vd,-$BASE_LEN,$BASE_LEN) if length($vd) > $BASE_LEN;
$x->[$dst] = int($vd);
$dst++;
}
splice (@$x,$dst) if $dst > 0; # kill left-over array elems
pop @$x if $x->[-1] == 0 && @$x > 1; # kill last element if 0
} # else rem == 0
$x;
}
sub _lsft
{
my ($c,$x,$y,$n) = @_;
if ($n != 10)
{
$n = _new($c,\$n); return _mul($c,$x, _pow($c,$n,$y));
}
# shortcut (faster) for shifting by 10) since we are in base 10eX
# multiples of $BASE_LEN:
my $src = scalar @$x; # source
my $len = _num($c,$y); # shift-len as normal int
my $rem = $len % $BASE_LEN; # remainder to shift
my $dst = $src + int($len/$BASE_LEN); # destination
my $vd; # further speedup
$x->[$src] = 0; # avoid first ||0 for speed
my $z = '0' x $BASE_LEN;
while ($src >= 0)
{
$vd = $x->[$src]; $vd = $z.$vd;
$vd = substr($vd,-$BASE_LEN+$rem,$BASE_LEN-$rem);
$vd .= $src > 0 ? substr($z.$x->[$src-1],-$BASE_LEN,$rem) : '0' x $rem;
$vd = substr($vd,-$BASE_LEN,$BASE_LEN) if length($vd) > $BASE_LEN;
$x->[$dst] = int($vd);
$dst--; $src--;
}
# set lowest parts to 0
while ($dst >= 0) { $x->[$dst--] = 0; }
# fix spurios last zero element
splice @$x,-1 if $x->[-1] == 0;
$x;
}
sub _pow
{
# power of $x to $y
# ref to array, ref to array, return ref to array
my ($c,$cx,$cy) = @_;
my $pow2 = _one();
my $y_bin = ${_as_bin($c,$cy)}; $y_bin =~ s/^0b//;
my $len = length($y_bin);
while (--$len > 0)
{
_mul($c,$pow2,$cx) if substr($y_bin,$len,1) eq '1'; # is odd?
_mul($c,$cx,$cx);
}
_mul($c,$cx,$pow2);
$cx;
}
sub _fac
{
# factorial of $x
# ref to array, return ref to array
my ($c,$cx) = @_;
if ((@$cx == 1) && ($cx->[0] <= 2))
{
$cx->[0] = 1 * ($cx->[0]||1); # 0,1 => 1, 2 => 2
return $cx;
}
# go forward until $base is exceeded
# limit is either $x or $base (x == 100 means as result too high)
my $steps = 100; $steps = $cx->[0] if @$cx == 1;
my $r = 2; my $cf = 3; my $step = 1; my $last = $r;
while ($r < $BASE && $step < $steps)
{
$last = $r; $r *= $cf++; $step++;
}
if ((@$cx == 1) && ($step == $cx->[0]))
{
# completely done
$cx = [$last];
return $cx;
}
my $n = _copy($c,$cx);
$cx = [$last];
while (!(@$n == 1 && $n->[0] == $step))
{
_mul($c,$cx,$n); _dec($c,$n);
}
$cx;
}
# for debugging:
use constant DEBUG => 0;
my $steps = 0;
sub steps { $steps };
sub _sqrt
{
# square-root of $x in place
# Compute a guess of the result (rule of thumb), then improve it via
# Newton's method.
my ($c,$x) = @_;
if (scalar @$x == 1)
{
# fit's into one Perl scalar, so result can be computed directly
$x->[0] = int(sqrt($x->[0]));
return $x;
}
my $y = _copy($c,$x);
# hopefully _len/2 is < $BASE, the -1 is to always undershot the guess
# since our guess will "grow"
my $l = int((_len($c,$x)-1) / 2);
my $lastelem = $x->[-1]; # for guess
my $elems = scalar @$x - 1;
# not enough digits, but could have more?
if ((length($lastelem) <= 3) && ($elems > 1))
{
# right-align with zero pad
my $len = length($lastelem) & 1;
print "$lastelem => " if DEBUG;
$lastelem .= substr($x->[-2] . '0' x $BASE_LEN,0,$BASE_LEN);
# former odd => make odd again, or former even to even again
$lastelem = $lastelem / 10 if (length($lastelem) & 1) != $len;
print "$lastelem\n" if DEBUG;
}
# construct $x (instead of _lsft($c,$x,$l,10)
my $r = $l % $BASE_LEN; # 10000 00000 00000 00000 ($BASE_LEN=5)
$l = int($l / $BASE_LEN);
print "l = $l " if DEBUG;
splice @$x,$l; # keep ref($x), but modify it
# we make the first part of the guess not '1000...0' but int(sqrt($lastelem))
# that gives us:
# 14400 00000 => sqrt(14400) => guess first digits to be 120
# 144000 000000 => sqrt(144000) => guess 379
print "$lastelem (elems $elems) => " if DEBUG;
$lastelem = $lastelem / 10 if ($elems & 1 == 1); # odd or even?
my $g = sqrt($lastelem); $g =~ s/\.//; # 2.345 => 2345
$r -= 1 if $elems & 1 == 0; # 70 => 7
# padd with zeros if result is too short
$x->[$l--] = int(substr($g . '0' x $r,0,$r+1));
print "now ",$x->[-1] if DEBUG;
print " would have been ", int('1' . '0' x $r),"\n" if DEBUG;
# If @$x > 1, we could compute the second elem of the guess, too, to create
# an even better guess. Not implemented yet. Does it improve performance?
$x->[$l--] = 0 while ($l >= 0); # all other digits of guess are zero
print "start x= ",${_str($c,$x)},"\n" if DEBUG;
my $two = _two();
my $last = _zero();
my $lastlast = _zero();
$steps = 0 if DEBUG;
while (_acmp($c,$last,$x) != 0 && _acmp($c,$lastlast,$x) != 0)
{
$steps++ if DEBUG;
$lastlast = _copy($c,$last);
$last = _copy($c,$x);
_add($c,$x, _div($c,_copy($c,$y),$x));
_div($c,$x, $two );
print " x= ",${_str($c,$x)},"\n" if DEBUG;
}
print "\nsteps in sqrt: $steps, " if DEBUG;
_dec($c,$x) if _acmp($c,$y,_mul($c,_copy($c,$x),$x)) < 0; # overshot?
print " final ",$x->[-1],"\n" if DEBUG;
$x;
}
##############################################################################
# binary stuff
sub _and
{
my ($c,$x,$y) = @_;
# the shortcut makes equal, large numbers _really_ fast, and makes only a
# very small performance drop for small numbers (e.g. something with less
# than 32 bit) Since we optimize for large numbers, this is enabled.
return $x if _acmp($c,$x,$y) == 0; # shortcut
my $m = _one(); my ($xr,$yr);
my $mask = $AND_MASK;
my $x1 = $x;
my $y1 = _copy($c,$y); # make copy
$x = _zero();
my ($b,$xrr,$yrr);
use integer;
while (!_is_zero($c,$x1) && !_is_zero($c,$y1))
{
($x1, $xr) = _div($c,$x1,$mask);
($y1, $yr) = _div($c,$y1,$mask);
# make ints() from $xr, $yr
# this is when the AND_BITS are greater tahn $BASE and is slower for
# small (<256 bits) numbers, but faster for large numbers. Disabled
# due to KISS principle
# $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
# $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
# _add($c,$x, _mul($c, _new( $c, \($xrr & $yrr) ), $m) );
# 0+ due to '&' doesn't work in strings
_add($c,$x, _mul($c, [ 0+$xr->[0] & 0+$yr->[0] ], $m) );
_mul($c,$m,$mask);
}
$x;
}
sub _xor
{
my ($c,$x,$y) = @_;
return _zero() if _acmp($c,$x,$y) == 0; # shortcut (see -and)
my $m = _one(); my ($xr,$yr);
my $mask = $XOR_MASK;
my $x1 = $x;
my $y1 = _copy($c,$y); # make copy
$x = _zero();
my ($b,$xrr,$yrr);
use integer;
while (!_is_zero($c,$x1) && !_is_zero($c,$y1))
{
($x1, $xr) = _div($c,$x1,$mask);
($y1, $yr) = _div($c,$y1,$mask);
# make ints() from $xr, $yr (see _and())
#$b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
#$b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
#_add($c,$x, _mul($c, _new( $c, \($xrr ^ $yrr) ), $m) );
# 0+ due to '^' doesn't work in strings
_add($c,$x, _mul($c, [ 0+$xr->[0] ^ 0+$yr->[0] ], $m) );
_mul($c,$m,$mask);
}
# the loop stops when the shorter of the two numbers is exhausted
# the remainder of the longer one will survive bit-by-bit, so we simple
# multiply-add it in
_add($c,$x, _mul($c, $x1, $m) ) if !_is_zero($c,$x1);
_add($c,$x, _mul($c, $y1, $m) ) if !_is_zero($c,$y1);
$x;
}
sub _or
{
my ($c,$x,$y) = @_;
return $x if _acmp($c,$x,$y) == 0; # shortcut (see _and)
my $m = _one(); my ($xr,$yr);
my $mask = $OR_MASK;
my $x1 = $x;
my $y1 = _copy($c,$y); # make copy
$x = _zero();
my ($b,$xrr,$yrr);
use integer;
while (!_is_zero($c,$x1) && !_is_zero($c,$y1))
{
($x1, $xr) = _div($c,$x1,$mask);
($y1, $yr) = _div($c,$y1,$mask);
# make ints() from $xr, $yr (see _and())
# $b = 1; $xrr = 0; foreach (@$xr) { $xrr += $_ * $b; $b *= $BASE; }
# $b = 1; $yrr = 0; foreach (@$yr) { $yrr += $_ * $b; $b *= $BASE; }
# _add($c,$x, _mul($c, _new( $c, \($xrr | $yrr) ), $m) );
# 0+ due to '|' doesn't work in strings
_add($c,$x, _mul($c, [ 0+$xr->[0] | 0+$yr->[0] ], $m) );
_mul($c,$m,$mask);
}
# the loop stops when the shorter of the two numbers is exhausted
# the remainder of the longer one will survive bit-by-bit, so we simple
# multiply-add it in
_add($c,$x, _mul($c, $x1, $m) ) if !_is_zero($c,$x1);
_add($c,$x, _mul($c, $y1, $m) ) if !_is_zero($c,$y1);
$x;
}
sub _as_hex
{
# convert a decimal number to hex (ref to array, return ref to string)
my ($c,$x) = @_;
my $x1 = _copy($c,$x);
my $es = '';
my ($xr, $h, $x10000);
if ($] >= 5.006)
{
$x10000 = [ 0x10000 ]; $h = 'h4';
}
else
{
$x10000 = [ 0x1000 ]; $h = 'h3';
}
while (! _is_zero($c,$x1))
{
($x1, $xr) = _div($c,$x1,$x10000);
$es .= unpack($h,pack('v',$xr->[0]));
}
$es = reverse $es;
$es =~ s/^[0]+//; # strip leading zeros
$es = '0x' . $es;
\$es;
}
sub _as_bin
{
# convert a decimal number to bin (ref to array, return ref to string)
my ($c,$x) = @_;
my $x1 = _copy($c,$x);
my $es = '';
my ($xr, $b, $x10000);
if ($] >= 5.006)
{
$x10000 = [ 0x10000 ]; $b = 'b16';
}
else
{
$x10000 = [ 0x1000 ]; $b = 'b12';
}
while (! _is_zero($c,$x1))
{
($x1, $xr) = _div($c,$x1,$x10000);
$es .= unpack($b,pack('v',$xr->[0]));
}
$es = reverse $es;
$es =~ s/^[0]+//; # strip leading zeros
$es = '0b' . $es;
\$es;
}
sub _from_hex
{
# convert a hex number to decimal (ref to string, return ref to array)
my ($c,$hs) = @_;
my $mul = _one();
my $m = [ 0x10000 ]; # 16 bit at a time
my $x = _zero();
my $len = length($$hs)-2;
$len = int($len/4); # 4-digit parts, w/o '0x'
my $val; my $i = -4;
while ($len >= 0)
{
$val = substr($$hs,$i,4);
$val =~ s/^[+-]?0x// if $len == 0; # for last part only because
$val = hex($val); # hex does not like wrong chars
$i -= 4; $len --;
_add ($c, $x, _mul ($c, [ $val ], $mul ) ) if $val != 0;
_mul ($c, $mul, $m ) if $len >= 0; # skip last mul
}
$x;
}
sub _from_bin
{
# convert a hex number to decimal (ref to string, return ref to array)
my ($c,$bs) = @_;
# instead of converting 8 bit at a time, it is faster to convert the
# number to hex, and then call _from_hex.
my $hs = $$bs;
$hs =~ s/^[+-]?0b//; # remove sign and 0b
my $l = length($hs); # bits
$hs = '0' x (8-($l % 8)) . $hs if ($l % 8) != 0; # padd left side w/ 0
my $h = unpack('H*', pack ('B*', $hs)); # repack as hex
return $c->_from_hex(\('0x'.$h));
my $mul = _one();
my $m = [ 0x100 ]; # 8 bit at a time
my $x = _zero();
my $len = length($$bs)-2;
$len = int($len/8); # 4-digit parts, w/o '0x'
my $val; my $i = -8;
while ($len >= 0)
{
$val = substr($$bs,$i,8);
$val =~ s/^[+-]?0b// if $len == 0; # for last part only
$val = ord(pack('B8',substr('00000000'.$val,-8,8)));
$i -= 8; $len --;
_add ($c, $x, _mul ($c, [ $val ], $mul ) ) if $val != 0;
_mul ($c, $mul, $m ) if $len >= 0; # skip last mul
}
$x;
}
##############################################################################
# special modulus functions
sub _modinv
{
# modular inverse
my ($c,$x,$y) = @_;
my $u = _zero($c); my $u1 = _one($c);
my $a = _copy($c,$y); my $b = _copy($c,$x);
# Euclid's Algorithm for bgcd(), only that we calc bgcd() ($a) and the
# result ($u) at the same time. See comments in BigInt for why this works.
my $q;
($a, $q, $b) = ($b, _div($c,$a,$b)); # step 1
my $sign = 1;
while (!_is_zero($c,$b))
{
my $t = _add($c, # step 2:
_mul($c,_copy($c,$u1), $q) , # t = u1 * q
$u ); # + u
$u = $u1; # u = u1, u1 = t
$u1 = $t;
$sign = -$sign;
($a, $q, $b) = ($b, _div($c,$a,$b)); # step 1
}
# if the gcd is not 1, then return NaN
return (undef,undef) unless _is_one($c,$a);
$sign = $sign == 1 ? '+' : '-';
($u1,$sign);
}
sub _modpow
{
# modulus of power ($x ** $y) % $z
my ($c,$num,$exp,$mod) = @_;
# in the trivial case,
if (_is_one($c,$mod))
{
splice @$num,0,1; $num->[0] = 0;
return $num;
}
if ((scalar @$num == 1) && (($num->[0] == 0) || ($num->[0] == 1)))
{
$num->[0] = 1;
return $num;
}
# $num = _mod($c,$num,$mod); # this does not make it faster
my $acc = _copy($c,$num); my $t = _one();
my $expbin = ${_as_bin($c,$exp)}; $expbin =~ s/^0b//;
my $len = length($expbin);
while (--$len >= 0)
{
if ( substr($expbin,$len,1) eq '1') # is_odd
{
_mul($c,$t,$acc);
$t = _mod($c,$t,$mod);
}
_mul($c,$acc,$acc);
$acc = _mod($c,$acc,$mod);
}
@$num = @$t;
$num;
}
##############################################################################
##############################################################################
1;
__END__
=head1 NAME
Math::BigInt::Calc - Pure Perl module to support Math::BigInt
=head1 SYNOPSIS
Provides support for big integer calculations. Not intended to be used by other
modules (except Math::BigInt::Cached). Other modules which sport the same
functions can also be used to support Math::Bigint, like Math::BigInt::Pari.
=head1 DESCRIPTION
In order to allow for multiple big integer libraries, Math::BigInt was
rewritten to use library modules for core math routines. Any module which
follows the same API as this can be used instead by using the following:
use Math::BigInt lib => 'libname';
'libname' is either the long name ('Math::BigInt::Pari'), or only the short
version like 'Pari'.
=head1 EXPORT
The following functions MUST be defined in order to support the use by
Math::BigInt:
_new(string) return ref to new object from ref to decimal string
_zero() return a new object with value 0
_one() return a new object with value 1
_str(obj) return ref to a string representing the object
_num(obj) returns a Perl integer/floating point number
NOTE: because of Perl numeric notation defaults,
the _num'ified obj may lose accuracy due to
machine-dependend floating point size limitations
_add(obj,obj) Simple addition of two objects
_mul(obj,obj) Multiplication of two objects
_div(obj,obj) Division of the 1st object by the 2nd
In list context, returns (result,remainder).
NOTE: this is integer math, so no
fractional part will be returned.
_sub(obj,obj) Simple subtraction of 1 object from another
a third, optional parameter indicates that the params
are swapped. In this case, the first param needs to
be preserved, while you can destroy the second.
sub (x,y,1) => return x - y and keep x intact!
_dec(obj) decrement object by one (input is garant. to be > 0)
_inc(obj) increment object by one
_acmp(obj,obj) <=> operator for objects (return -1, 0 or 1)
_len(obj) returns count of the decimal digits of the object
_digit(obj,n) returns the n'th decimal digit of object
_is_one(obj) return true if argument is +1
_is_zero(obj) return true if argument is 0
_is_even(obj) return true if argument is even (0,2,4,6..)
_is_odd(obj) return true if argument is odd (1,3,5,7..)
_copy return a ref to a true copy of the object
_check(obj) check whether internal representation is still intact
return 0 for ok, otherwise error message as string
The following functions are optional, and can be defined if the underlying lib
has a fast way to do them. If undefined, Math::BigInt will use pure Perl (hence
slow) fallback routines to emulate these:
_from_hex(str) return ref to new object from ref to hexadecimal string
_from_bin(str) return ref to new object from ref to binary string
_as_hex(str) return ref to scalar string containing the value as
unsigned hex string, with the '0x' prepended.
Leading zeros must be stripped.
_as_bin(str) Like as_hex, only as binary string containing only
zeros and ones. Leading zeros must be stripped and a
'0b' must be prepended.
_rsft(obj,N,B) shift object in base B by N 'digits' right
For unsupported bases B, return undef to signal failure
_lsft(obj,N,B) shift object in base B by N 'digits' left
For unsupported bases B, return undef to signal failure
_xor(obj1,obj2) XOR (bit-wise) object 1 with object 2
Note: XOR, AND and OR pad with zeros if size mismatches
_and(obj1,obj2) AND (bit-wise) object 1 with object 2
_or(obj1,obj2) OR (bit-wise) object 1 with object 2
_mod(obj,obj) Return remainder of div of the 1st by the 2nd object
_sqrt(obj) return the square root of object (truncate to int)
_fac(obj) return factorial of object 1 (1*2*3*4..)
_pow(obj,obj) return object 1 to the power of object 2
_gcd(obj,obj) return Greatest Common Divisor of two objects
_zeros(obj) return number of trailing decimal zeros
_modinv return inverse modulus
_modpow return modulus of power ($x ** $y) % $z
Input strings come in as unsigned but with prefix (i.e. as '123', '0xabc'
or '0b1101').
Testing of input parameter validity is done by the caller, so you need not
worry about underflow (f.i. in C<_sub()>, C<_dec()>) nor about division by
zero or similar cases.
The first parameter can be modified, that includes the possibility that you
return a reference to a completely different object instead. Although keeping
the reference and just changing it's contents is prefered over creating and
returning a different reference.
Return values are always references to objects or strings. Exceptions are
C<_lsft()> and C<_rsft()>, which return undef if they can not shift the
argument. This is used to delegate shifting of bases different than the one
you can support back to Math::BigInt, which will use some generic code to
calculate the result.
=head1 WRAP YOUR OWN
If you want to port your own favourite c-lib for big numbers to the
Math::BigInt interface, you can take any of the already existing modules as
a rough guideline. You should really wrap up the latest BigInt and BigFloat
testsuites with your module, and replace in them any of the following:
use Math::BigInt;
by this:
use Math::BigInt lib => 'yourlib';
This way you ensure that your library really works 100% within Math::BigInt.
=head1 LICENSE
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
=head1 AUTHORS
Original math code by Mark Biggar, rewritten by Tels L<http://bloodgate.com/>
in late 2000, 2001.
Seperated from BigInt and shaped API with the help of John Peacock.
=head1 SEE ALSO
L<Math::BigInt>, L<Math::BigFloat>, L<Math::BigInt::BitVect>,
L<Math::BigInt::GMP>, L<Math::BigInt::Cached> and L<Math::BigInt::Pari>.
=cut
|