1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
#include <epoxy/gl.h>
#include <assert.h>
#include <math.h>
#include <algorithm>
#include "blur_effect.h"
#include "effect_chain.h"
#include "effect_util.h"
#include "init.h"
#include "util.h"
using namespace std;
namespace movit {
BlurEffect::BlurEffect()
: num_taps(16),
radius(3.0f),
input_width(1280),
input_height(720)
{
// The first blur pass will forward resolution information to us.
hpass = new SingleBlurPassEffect(this);
CHECK(hpass->set_int("direction", SingleBlurPassEffect::HORIZONTAL));
vpass = new SingleBlurPassEffect(nullptr);
CHECK(vpass->set_int("direction", SingleBlurPassEffect::VERTICAL));
update_radius();
}
void BlurEffect::rewrite_graph(EffectChain *graph, Node *self)
{
Node *hpass_node = graph->add_node(hpass);
Node *vpass_node = graph->add_node(vpass);
graph->connect_nodes(hpass_node, vpass_node);
graph->replace_receiver(self, hpass_node);
graph->replace_sender(self, vpass_node);
self->disabled = true;
}
// We get this information forwarded from the first blur pass,
// since we are not part of the chain ourselves.
void BlurEffect::inform_input_size(unsigned input_num, unsigned width, unsigned height)
{
assert(input_num == 0);
assert(width != 0);
assert(height != 0);
input_width = width;
input_height = height;
update_radius();
}
void BlurEffect::update_radius()
{
// We only have 16 taps to work with on each side, and we want that to
// reach out to about 2.5*sigma. Bump up the mipmap levels (giving us
// box blurs) until we have what we need.
unsigned mipmap_width = input_width, mipmap_height = input_height;
float adjusted_radius = radius;
while ((mipmap_width > 1 || mipmap_height > 1) && adjusted_radius * 1.5f > num_taps / 2) {
// Find the next mipmap size (round down, minimum 1 pixel).
mipmap_width = max(mipmap_width / 2, 1u);
mipmap_height = max(mipmap_height / 2, 1u);
// Approximate when mipmap sizes are odd, but good enough.
adjusted_radius = radius * float(mipmap_width) / float(input_width);
}
bool ok = hpass->set_float("radius", adjusted_radius);
ok |= hpass->set_int("width", mipmap_width);
ok |= hpass->set_int("height", mipmap_height);
ok |= hpass->set_int("virtual_width", mipmap_width);
ok |= hpass->set_int("virtual_height", mipmap_height);
ok |= hpass->set_int("num_taps", num_taps);
ok |= vpass->set_float("radius", adjusted_radius);
ok |= vpass->set_int("width", mipmap_width);
ok |= vpass->set_int("height", mipmap_height);
ok |= vpass->set_int("virtual_width", input_width);
ok |= vpass->set_int("virtual_height", input_height);
ok |= vpass->set_int("num_taps", num_taps);
assert(ok);
}
bool BlurEffect::set_float(const string &key, float value) {
if (key == "radius") {
radius = value;
update_radius();
return true;
}
return false;
}
bool BlurEffect::set_int(const string &key, int value) {
if (key == "num_taps") {
if (value < 2 || value % 2 != 0) {
return false;
}
num_taps = value;
update_radius();
return true;
}
return false;
}
SingleBlurPassEffect::SingleBlurPassEffect(BlurEffect *parent)
: parent(parent),
num_taps(16),
radius(3.0f),
direction(HORIZONTAL),
width(1280),
height(720),
uniform_samples(nullptr)
{
register_float("radius", &radius);
register_int("direction", (int *)&direction);
register_int("width", &width);
register_int("height", &height);
register_int("virtual_width", &virtual_width);
register_int("virtual_height", &virtual_height);
register_int("num_taps", &num_taps);
}
SingleBlurPassEffect::~SingleBlurPassEffect()
{
delete[] uniform_samples;
}
string SingleBlurPassEffect::output_fragment_shader()
{
char buf[256];
sprintf(buf, "#define DIRECTION_VERTICAL %d\n#define NUM_TAPS %d\n",
(direction == VERTICAL), num_taps);
uniform_samples = new float[2 * (num_taps / 2 + 1)];
register_uniform_vec2_array("samples", uniform_samples, num_taps / 2 + 1);
return buf + read_file("blur_effect.frag");
}
void SingleBlurPassEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
{
Effect::set_gl_state(glsl_program_num, prefix, sampler_num);
// Compute the weights; they will be symmetrical, so we only compute
// the right side.
float* weight = new float[num_taps + 1];
if (radius < 1e-3) {
weight[0] = 1.0f;
for (int i = 1; i < num_taps + 1; ++i) {
weight[i] = 0.0f;
}
} else {
float sum = 0.0f;
for (int i = 0; i < num_taps + 1; ++i) {
// Gaussian blur is a common, but maybe not the prettiest choice;
// it can feel a bit too blurry in the fine detail and too little
// long-tail. This is a simple logistic distribution, which has
// a narrower peak but longer tails.
//
// We interpret the radius as sigma, similar to Gaussian blur.
// Wikipedia says that sigma² = pi² s² / 3, which yields:
const float s = (sqrt(3.0) / M_PI) * radius;
float z = i / (2.0 * s);
weight[i] = 1.0f / (cosh(z) * cosh(z));
if (i == 0) {
sum += weight[i];
} else {
sum += 2.0f * weight[i];
}
}
for (int i = 0; i < num_taps + 1; ++i) {
weight[i] /= sum;
}
}
// Since the GPU gives us bilinear sampling for free, we can get two
// samples for the price of one (for every but the center sample,
// in which case this trick doesn't buy us anything). Simply sample
// between the two pixel centers, and we can do with fewer weights.
// (This is right even in the vertical pass where we don't actually
// sample between the pixels, because we have linear interpolation
// there too.)
//
// We pack the parameters into a float4: The relative sample coordinates
// in (x,y), and the weight in z. w is unused.
// Center sample.
uniform_samples[2 * 0 + 0] = 0.0f;
uniform_samples[2 * 0 + 1] = weight[0];
int size;
if (direction == HORIZONTAL) {
size = width;
} else if (direction == VERTICAL) {
size = height;
} else {
assert(false);
}
float num_subtexels = size / movit_texel_subpixel_precision;
float inv_num_subtexels = movit_texel_subpixel_precision / size;
// All other samples.
for (int i = 1; i < num_taps / 2 + 1; ++i) {
unsigned base_pos = i * 2 - 1;
float w1 = weight[base_pos];
float w2 = weight[base_pos + 1];
float pos1 = base_pos / (float)size;
float pos, total_weight;
combine_two_samples(w1, w2, pos1, 1.0 / (float)size, size, num_subtexels, inv_num_subtexels, &pos, &total_weight, nullptr);
uniform_samples[2 * i + 0] = pos;
uniform_samples[2 * i + 1] = total_weight;
}
delete[] weight;
}
void SingleBlurPassEffect::clear_gl_state()
{
}
} // namespace movit
|