1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
#include <epoxy/gl.h>
#include "deinterlace_effect.h"
#include "effect_chain.h"
#include "init.h"
#include "util.h"
using namespace std;
namespace movit {
DeinterlaceEffect::DeinterlaceEffect()
: enable_spatial_interlacing_check(true),
current_field_position(TOP),
num_lines(1080)
{
if (movit_compute_shaders_supported) {
compute_effect_owner.reset(new DeinterlaceComputeEffect);
compute_effect = compute_effect_owner.get();
} else {
register_int("enable_spatial_interlacing_check", (int *)&enable_spatial_interlacing_check);
register_int("current_field_position", (int *)¤t_field_position);
register_uniform_float("num_lines", &num_lines);
register_uniform_float("inv_width", &inv_width);
register_uniform_float("self_offset", &self_offset);
register_uniform_float_array("current_offset", current_offset, 2);
register_uniform_float_array("other_offset", other_offset, 3);
}
}
string DeinterlaceEffect::output_fragment_shader()
{
char buf[256];
snprintf(buf, sizeof(buf), "#define YADIF_ENABLE_SPATIAL_INTERLACING_CHECK %d\n",
enable_spatial_interlacing_check);
string frag_shader = buf;
frag_shader += read_file("deinterlace_effect.frag");
return frag_shader;
}
void DeinterlaceEffect::rewrite_graph(EffectChain *graph, Node *self)
{
if (compute_effect != nullptr) {
Node *compute_node = graph->add_node(compute_effect_owner.release());
graph->replace_receiver(self, compute_node);
graph->replace_sender(self, compute_node);
self->disabled = true;
}
}
bool DeinterlaceEffect::set_int(const std::string &key, int value)
{
if (compute_effect != nullptr) {
return compute_effect->set_int(key, value);
} else {
return Effect::set_int(key, value);
}
}
void DeinterlaceEffect::inform_input_size(unsigned input_num, unsigned width, unsigned height)
{
assert(input_num >= 0 && input_num < 5);
widths[input_num] = width;
heights[input_num] = height;
num_lines = height * 2;
}
void DeinterlaceEffect::get_output_size(unsigned *width, unsigned *height,
unsigned *virtual_width, unsigned *virtual_height) const
{
assert(widths[0] == widths[1]);
assert(widths[1] == widths[2]);
assert(widths[2] == widths[3]);
assert(widths[3] == widths[4]);
assert(heights[0] == heights[1]);
assert(heights[1] == heights[2]);
assert(heights[2] == heights[3]);
assert(heights[3] == heights[4]);
*width = *virtual_width = widths[0];
*height = *virtual_height = heights[0] * 2;
}
void DeinterlaceEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
{
Effect::set_gl_state(glsl_program_num, prefix, sampler_num);
inv_width = 1.0 / widths[0];
// Texel centers: t = output texel center for top field, b = for bottom field,
// x = the input texel. (The same area is two pixels for output, one for input;
// thus the stippled line in the middle.)
//
// +---------+
// | |
// | t |
// | |
// | - -x- - |
// | |
// | b |
// | |
// +---------+
//
// Note as usual OpenGL's bottom-left convention.
if (current_field_position == 0) {
// Top.
self_offset = -0.5 / num_lines;
} else {
// Bottom.
assert(current_field_position == 1);
self_offset = 0.5 / num_lines;
}
// Having now established where the texels lie for the uninterpolated samples,
// we can use that to figure out where to sample for the interpolation. Drawing
// the fields as what lines they represent, here for three-pixel high fields
// with current_field_position == 0 (plus an “o” to mark the pixel we're trying
// to interpolate, and “c” for corresponding texel in the other field):
//
// Prev Cur Next
// x
// x x
// x
// c o c
// x
// x x
//
// Obviously, for sampling in the current field, we are one half-texel off
// compared to <self_offset>, so sampling in the current field is easy:
current_offset[0] = self_offset - 0.5 / heights[0];
current_offset[1] = self_offset + 0.5 / heights[0];
// Now to find the texel in the other fields corresponding to the pixel
// we're trying to interpolate, let's realign the diagram above:
//
// Prev Cur Next
// x x x
//
// c x c
// o
// x x x
//
// So obviously for this case, we need to center on the same place as
// current_offset[1] (the texel directly above the o; note again the
// bottom-left convention). For the case of current_field_position == 1,
// the shift in the alignment goes the other way, and what we want
// is current_offset[0] (the texel directly below the o).
float center_offset = current_offset[1 - current_field_position];
other_offset[0] = center_offset - 1.0 / heights[0];
other_offset[1] = center_offset;
other_offset[2] = center_offset + 1.0 / heights[0];
}
// Implementation of DeinterlaceComputeEffect.
DeinterlaceComputeEffect::DeinterlaceComputeEffect()
: enable_spatial_interlacing_check(true),
current_field_position(TOP)
{
register_int("enable_spatial_interlacing_check", (int *)&enable_spatial_interlacing_check);
register_int("current_field_position", (int *)¤t_field_position);
register_uniform_float("inv_width", &inv_width);
register_uniform_float("inv_height", &inv_height);
register_uniform_float("current_field_vertical_offset", ¤t_field_vertical_offset);
}
string DeinterlaceComputeEffect::output_fragment_shader()
{
char buf[256];
snprintf(buf, sizeof(buf), "#define YADIF_ENABLE_SPATIAL_INTERLACING_CHECK %d\n",
enable_spatial_interlacing_check);
string frag_shader = buf;
frag_shader += read_file("deinterlace_effect.comp");
return frag_shader;
}
void DeinterlaceComputeEffect::inform_input_size(unsigned input_num, unsigned width, unsigned height)
{
assert(input_num >= 0 && input_num < 5);
widths[input_num] = width;
heights[input_num] = height;
}
void DeinterlaceComputeEffect::get_output_size(unsigned *width, unsigned *height,
unsigned *virtual_width, unsigned *virtual_height) const
{
assert(widths[0] == widths[1]);
assert(widths[1] == widths[2]);
assert(widths[2] == widths[3]);
assert(widths[3] == widths[4]);
assert(heights[0] == heights[1]);
assert(heights[1] == heights[2]);
assert(heights[2] == heights[3]);
assert(heights[3] == heights[4]);
*width = *virtual_width = widths[0];
*height = *virtual_height = heights[0] * 2;
}
void DeinterlaceComputeEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
{
Effect::set_gl_state(glsl_program_num, prefix, sampler_num);
inv_width = 1.0 / widths[0];
inv_height = 1.0 / heights[0];
// For the compute shader, we need to load a block of pixels. Marking off the
// ones we are supposed to interpolate (looking only at one column):
//
// field_pos==0 field_pos==1
//
// 6 x ↑ 6 . ↑
// 6 . | 6 x |
// 5 x | 5 . |
// 5 . | 5 x |
// 4 x | 4 . |
// 4 . | 4 x |
// 3 x | y 3 o | y
// 3 o | 3 x |
// 2 x | 2 o |
// 2 o | 2 x |
// 1 x | 1 . |
// 1 . | 1 x |
// 0 x | 0 . |
// 0 . | 0 x |
//
// So if we are to compute e.g. output samples [2,4), we load input samples
// [1,3] for TFF and samples [2,4] for BFF.
if (current_field_position == 0) {
current_field_vertical_offset = -1.0 / heights[0];
} else {
current_field_vertical_offset = 0.0 / heights[0];
}
}
void DeinterlaceComputeEffect::get_compute_dimensions(unsigned output_width, unsigned output_height,
unsigned *x, unsigned *y, unsigned *z) const
{
// Each workgroup outputs 8x32 pixels (see GROUP_W and GROUP_H in the shader),
// so figure out the number of groups by simply rounding up.
*x = (output_width + 7) / 8;
*y = (output_height + 31) / 32;
*z = 1;
}
} // namespace movit
|