File: effect_chain.cpp

package info (click to toggle)
movit 1.7.2-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 3,248 kB
  • sloc: cpp: 16,677; sh: 3,940; makefile: 167
file content (2416 lines) | stat: -rw-r--r-- 84,194 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
#include <epoxy/gl.h>
#include <assert.h>
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <set>
#include <stack>
#include <utility>
#include <vector>
#include <Eigen/Core>

#include "alpha_division_effect.h"
#include "alpha_multiplication_effect.h"
#include "colorspace_conversion_effect.h"
#include "dither_effect.h"
#include "effect.h"
#include "effect_chain.h"
#include "effect_util.h"
#include "gamma_compression_effect.h"
#include "gamma_expansion_effect.h"
#include "init.h"
#include "input.h"
#include "resource_pool.h"
#include "util.h"
#include "ycbcr_conversion_effect.h"

using namespace Eigen;
using namespace std;

namespace movit {

namespace {

// An effect whose only purpose is to sit in a phase on its own and take the
// texture output from a compute shader and display it to the normal backbuffer
// (or any FBO). That phase can be skipped when rendering using render_to_textures().
class ComputeShaderOutputDisplayEffect : public Effect {
public:
	ComputeShaderOutputDisplayEffect() {}
	string effect_type_id() const override { return "ComputeShaderOutputDisplayEffect"; }
	string output_fragment_shader() override { return read_file("identity.frag"); }
	bool needs_texture_bounce() const override { return true; }
};

}  // namespace

EffectChain::EffectChain(float aspect_nom, float aspect_denom, ResourcePool *resource_pool)
	: aspect_nom(aspect_nom),
	  aspect_denom(aspect_denom),
	  output_color_rgba(false),
	  num_output_color_ycbcr(0),
	  dither_effect(nullptr),
	  ycbcr_conversion_effect_node(nullptr),
	  intermediate_format(GL_RGBA16F),
	  intermediate_transformation(NO_FRAMEBUFFER_TRANSFORMATION),
	  num_dither_bits(0),
	  output_origin(OUTPUT_ORIGIN_BOTTOM_LEFT),
	  finalized(false),
	  resource_pool(resource_pool),
	  do_phase_timing(false) {
	if (resource_pool == nullptr) {
		this->resource_pool = new ResourcePool();
		owns_resource_pool = true;
	} else {
		owns_resource_pool = false;
	}

	// Generate a VBO with some data in (shared position and texture coordinate data).
	float vertices[] = {
		0.0f, 2.0f,
		0.0f, 0.0f,
		2.0f, 0.0f
	};
	vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
}

EffectChain::~EffectChain()
{
	for (unsigned i = 0; i < nodes.size(); ++i) {
		delete nodes[i]->effect;
		delete nodes[i];
	}
	for (unsigned i = 0; i < phases.size(); ++i) {
		resource_pool->release_glsl_program(phases[i]->glsl_program_num);
		delete phases[i];
	}
	if (owns_resource_pool) {
		delete resource_pool;
	}
	glDeleteBuffers(1, &vbo);
	check_error();
}

Input *EffectChain::add_input(Input *input)
{
	assert(!finalized);
	inputs.push_back(input);
	add_node(input);
	return input;
}

void EffectChain::add_output(const ImageFormat &format, OutputAlphaFormat alpha_format)
{
	assert(!finalized);
	assert(!output_color_rgba);
	output_format = format;
	output_alpha_format = alpha_format;
	output_color_rgba = true;
}

void EffectChain::add_ycbcr_output(const ImageFormat &format, OutputAlphaFormat alpha_format,
                                   const YCbCrFormat &ycbcr_format, YCbCrOutputSplitting output_splitting,
                                   GLenum output_type)
{
	assert(!finalized);
	assert(num_output_color_ycbcr < 2);
	output_format = format;
	output_alpha_format = alpha_format;

	if (num_output_color_ycbcr == 1) {
		// Check that the format is the same.
		assert(output_ycbcr_format.luma_coefficients == ycbcr_format.luma_coefficients);
		assert(output_ycbcr_format.full_range == ycbcr_format.full_range);
		assert(output_ycbcr_format.num_levels == ycbcr_format.num_levels);
		assert(output_ycbcr_format.chroma_subsampling_x == 1);
		assert(output_ycbcr_format.chroma_subsampling_y == 1);
		assert(output_ycbcr_type == output_type);
	} else {
		output_ycbcr_format = ycbcr_format;
		output_ycbcr_type = output_type;
	}
	output_ycbcr_splitting[num_output_color_ycbcr++] = output_splitting;

	assert(ycbcr_format.chroma_subsampling_x == 1);
	assert(ycbcr_format.chroma_subsampling_y == 1);
}

void EffectChain::change_ycbcr_output_format(const YCbCrFormat &ycbcr_format)
{
	assert(num_output_color_ycbcr > 0);
	assert(output_ycbcr_format.chroma_subsampling_x == 1);
	assert(output_ycbcr_format.chroma_subsampling_y == 1);

	output_ycbcr_format = ycbcr_format;
	if (finalized) {
		YCbCrConversionEffect *effect = (YCbCrConversionEffect *)(ycbcr_conversion_effect_node->effect);
		effect->change_output_format(ycbcr_format);
	}
}

Node *EffectChain::add_node(Effect *effect)
{
	for (unsigned i = 0; i < nodes.size(); ++i) {
		assert(nodes[i]->effect != effect);
	}

	Node *node = new Node;
	node->effect = effect;
	node->disabled = false;
	node->output_color_space = COLORSPACE_INVALID;
	node->output_gamma_curve = GAMMA_INVALID;
	node->output_alpha_type = ALPHA_INVALID;
	node->needs_mipmaps = Effect::DOES_NOT_NEED_MIPMAPS;
	node->one_to_one_sampling = false;
	node->strong_one_to_one_sampling = false;

	nodes.push_back(node);
	node_map[effect] = node;
	effect->inform_added(this);
	return node;
}

void EffectChain::connect_nodes(Node *sender, Node *receiver)
{
	sender->outgoing_links.push_back(receiver);
	receiver->incoming_links.push_back(sender);
}

void EffectChain::replace_receiver(Node *old_receiver, Node *new_receiver)
{
	new_receiver->incoming_links = old_receiver->incoming_links;
	old_receiver->incoming_links.clear();
	
	for (unsigned i = 0; i < new_receiver->incoming_links.size(); ++i) {
		Node *sender = new_receiver->incoming_links[i];
		for (unsigned j = 0; j < sender->outgoing_links.size(); ++j) {
			if (sender->outgoing_links[j] == old_receiver) {
				sender->outgoing_links[j] = new_receiver;
			}
		}
	}	
}

void EffectChain::replace_sender(Node *old_sender, Node *new_sender)
{
	new_sender->outgoing_links = old_sender->outgoing_links;
	old_sender->outgoing_links.clear();
	
	for (unsigned i = 0; i < new_sender->outgoing_links.size(); ++i) {
		Node *receiver = new_sender->outgoing_links[i];
		for (unsigned j = 0; j < receiver->incoming_links.size(); ++j) {
			if (receiver->incoming_links[j] == old_sender) {
				receiver->incoming_links[j] = new_sender;
			}
		}
	}	
}

void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver)
{
	for (unsigned i = 0; i < sender->outgoing_links.size(); ++i) {
		if (sender->outgoing_links[i] == receiver) {
			sender->outgoing_links[i] = middle;
			middle->incoming_links.push_back(sender);
		}
	}
	for (unsigned i = 0; i < receiver->incoming_links.size(); ++i) {
		if (receiver->incoming_links[i] == sender) {
			receiver->incoming_links[i] = middle;
			middle->outgoing_links.push_back(receiver);
		}
	}

	assert(middle->incoming_links.size() == middle->effect->num_inputs());
}

GLenum EffectChain::get_input_sampler(Node *node, unsigned input_num) const
{
	assert(node->effect->needs_texture_bounce());
	assert(input_num < node->incoming_links.size());
	assert(node->incoming_links[input_num]->bound_sampler_num >= 0);
	assert(node->incoming_links[input_num]->bound_sampler_num < 8);
	return GL_TEXTURE0 + node->incoming_links[input_num]->bound_sampler_num;
}

GLenum EffectChain::has_input_sampler(Node *node, unsigned input_num) const
{
	assert(input_num < node->incoming_links.size());
	return node->incoming_links[input_num]->bound_sampler_num >= 0 &&
		node->incoming_links[input_num]->bound_sampler_num < 8;
}

void EffectChain::find_all_nonlinear_inputs(Node *node, vector<Node *> *nonlinear_inputs)
{
	if (node->output_gamma_curve == GAMMA_LINEAR &&
	    node->effect->effect_type_id() != "GammaCompressionEffect") {
		return;
	}
	if (node->effect->num_inputs() == 0) {
		nonlinear_inputs->push_back(node);
	} else {
		assert(node->effect->num_inputs() == node->incoming_links.size());
		for (unsigned i = 0; i < node->incoming_links.size(); ++i) {
			find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs);
		}
	}
}

Effect *EffectChain::add_effect(Effect *effect, const vector<Effect *> &inputs)
{
	assert(!finalized);
	assert(inputs.size() == effect->num_inputs());
	Node *node = add_node(effect);
	for (unsigned i = 0; i < inputs.size(); ++i) {
		assert(node_map.count(inputs[i]) != 0);
		connect_nodes(node_map[inputs[i]], node);
	}
	return effect;
}

// ESSL doesn't support token pasting. Replace PREFIX(x) with <effect_id>_x.
string replace_prefix(const string &text, const string &prefix)
{
	string output;
	size_t start = 0;

	while (start < text.size()) {
		size_t pos = text.find("PREFIX(", start);
		if (pos == string::npos) {
			output.append(text.substr(start, string::npos));
			break;
		}

		output.append(text.substr(start, pos - start));
		output.append(prefix);
		output.append("_");

		pos += strlen("PREFIX(");
	
		// Output stuff until we find the matching ), which we then eat.
		int depth = 1;
		size_t end_arg_pos = pos;
		while (end_arg_pos < text.size()) {
			if (text[end_arg_pos] == '(') {
				++depth;
			} else if (text[end_arg_pos] == ')') {
				--depth;
				if (depth == 0) {
					break;
				}
			}
			++end_arg_pos;
		}
		output.append(text.substr(pos, end_arg_pos - pos));
		++end_arg_pos;
		assert(depth == 0);
		start = end_arg_pos;
	}
	return output;
}

namespace {

template<class T>
void extract_uniform_declarations(const vector<Uniform<T>> &effect_uniforms,
                                  const string &type_specifier,
                                  const string &effect_id,
                                  vector<Uniform<T>> *phase_uniforms,
                                  string *glsl_string)
{
	for (unsigned i = 0; i < effect_uniforms.size(); ++i) {
		phase_uniforms->push_back(effect_uniforms[i]);
		phase_uniforms->back().prefix = effect_id;

		*glsl_string += string("uniform ") + type_specifier + " " + effect_id
			+ "_" + effect_uniforms[i].name + ";\n";
	}
}

template<class T>
void extract_uniform_array_declarations(const vector<Uniform<T>> &effect_uniforms,
                                        const string &type_specifier,
                                        const string &effect_id,
                                        vector<Uniform<T>> *phase_uniforms,
                                        string *glsl_string)
{
	for (unsigned i = 0; i < effect_uniforms.size(); ++i) {
		phase_uniforms->push_back(effect_uniforms[i]);
		phase_uniforms->back().prefix = effect_id;

		char buf[256];
		snprintf(buf, sizeof(buf), "uniform %s %s_%s[%d];\n",
			type_specifier.c_str(), effect_id.c_str(),
			effect_uniforms[i].name.c_str(),
			int(effect_uniforms[i].num_values));
		*glsl_string += buf;
	}
}

template<class T>
void collect_uniform_locations(GLuint glsl_program_num, vector<Uniform<T>> *phase_uniforms)
{
	for (unsigned i = 0; i < phase_uniforms->size(); ++i) {
		Uniform<T> &uniform = (*phase_uniforms)[i];
		uniform.location = get_uniform_location(glsl_program_num, uniform.prefix, uniform.name);
	}
}

}  // namespace

void EffectChain::compile_glsl_program(Phase *phase)
{
	string frag_shader_header;
	if (phase->is_compute_shader) {
		frag_shader_header = read_file("header.comp");
	} else {
		frag_shader_header = read_version_dependent_file("header", "frag");
	}
	string frag_shader = "";

	// Create functions and uniforms for all the texture inputs that we need.
	for (unsigned i = 0; i < phase->inputs.size(); ++i) {
		Node *input = phase->inputs[i]->output_node;
		char effect_id[256];
		sprintf(effect_id, "in%u", i);
		phase->effect_ids.insert(make_pair(make_pair(input, IN_ANOTHER_PHASE), effect_id));
	
		frag_shader += string("uniform sampler2D tex_") + effect_id + ";\n";
		frag_shader += string("vec4 ") + effect_id + "(vec2 tc) {\n";
		frag_shader += "\tvec4 tmp = tex2D(tex_" + string(effect_id) + ", tc);\n";

		if (intermediate_transformation == SQUARE_ROOT_FRAMEBUFFER_TRANSFORMATION &&
		    phase->inputs[i]->output_node->output_gamma_curve == GAMMA_LINEAR) {
			frag_shader += "\ttmp.rgb *= tmp.rgb;\n";
		}

		frag_shader += "\treturn tmp;\n";
		frag_shader += "}\n";
		frag_shader += "\n";

		Uniform<int> uniform;
		uniform.name = effect_id;
		uniform.value = &phase->input_samplers[i];
		uniform.prefix = "tex";
		uniform.num_values = 1;
		uniform.location = -1;
		phase->uniforms_sampler2d.push_back(uniform);
	}

	// Give each effect in the phase its own ID.
	for (unsigned i = 0; i < phase->effects.size(); ++i) {
		Node *node = phase->effects[i];
		char effect_id[256];
		sprintf(effect_id, "eff%u", i);
		bool inserted = phase->effect_ids.insert(make_pair(make_pair(node, IN_SAME_PHASE), effect_id)).second;
		assert(inserted);
	}

	for (unsigned i = 0; i < phase->effects.size(); ++i) {
		Node *node = phase->effects[i];
		const string effect_id = phase->effect_ids[make_pair(node, IN_SAME_PHASE)];
		for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
			if (node->incoming_links.size() == 1) {
				frag_shader += "#define INPUT";
			} else {
				char buf[256];
				sprintf(buf, "#define INPUT%d", j + 1);
				frag_shader += buf;
			}

			Node *input = node->incoming_links[j];
			NodeLinkType link_type = node->incoming_link_type[j];
			if (i != 0 &&
			    input->effect->is_compute_shader() &&
			    node->incoming_link_type[j] == IN_SAME_PHASE) {
				// First effect after the compute shader reads the value
				// that cs_output() wrote to a global variable,
				// ignoring the tc (since all such effects have to be
				// strong one-to-one).
				frag_shader += "(tc) CS_OUTPUT_VAL\n";
			} else {
				assert(phase->effect_ids.count(make_pair(input, link_type)));
				frag_shader += string(" ") + phase->effect_ids[make_pair(input, link_type)] + "\n";
			}
		}
	
		frag_shader += "\n";
		frag_shader += string("#define FUNCNAME ") + effect_id + "\n";
		if (node->effect->is_compute_shader()) {
			frag_shader += string("#define NORMALIZE_TEXTURE_COORDS(tc) ((tc) * ") + effect_id + "_inv_output_size + " + effect_id + "_output_texcoord_adjust)\n";
		}
		frag_shader += replace_prefix(node->effect->output_fragment_shader(), effect_id);
		frag_shader += "#undef FUNCNAME\n";
		if (node->incoming_links.size() == 1) {
			frag_shader += "#undef INPUT\n";
		} else {
			for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
				char buf[256];
				sprintf(buf, "#undef INPUT%d\n", j + 1);
				frag_shader += buf;
			}
		}
		frag_shader += "\n";
	}
	if (phase->is_compute_shader) {
		assert(phase->effect_ids.count(make_pair(phase->compute_shader_node, IN_SAME_PHASE)));
		frag_shader += string("#define INPUT ") + phase->effect_ids[make_pair(phase->compute_shader_node, IN_SAME_PHASE)] + "\n";
		if (phase->compute_shader_node == phase->effects.back()) {
			// No postprocessing.
			frag_shader += "#define CS_POSTPROC(tc) CS_OUTPUT_VAL\n";
		} else {
			frag_shader += string("#define CS_POSTPROC ") + phase->effect_ids[make_pair(phase->effects.back(), IN_SAME_PHASE)] + "\n";
		}
	} else {
		assert(phase->effect_ids.count(make_pair(phase->effects.back(), IN_SAME_PHASE)));
		frag_shader += string("#define INPUT ") + phase->effect_ids[make_pair(phase->effects.back(), IN_SAME_PHASE)] + "\n";
	}

	// If we're the last phase, add the right #defines for Y'CbCr multi-output as needed.
	vector<string> frag_shader_outputs;  // In order.
	if (phase->output_node->outgoing_links.empty() && num_output_color_ycbcr > 0) {
		switch (output_ycbcr_splitting[0]) {
		case YCBCR_OUTPUT_INTERLEAVED:
			// No #defines set.
			frag_shader_outputs.push_back("FragColor");
			break;
		case YCBCR_OUTPUT_SPLIT_Y_AND_CBCR:
			frag_shader += "#define YCBCR_OUTPUT_SPLIT_Y_AND_CBCR 1\n";
			frag_shader_outputs.push_back("Y");
			frag_shader_outputs.push_back("Chroma");
			break;
		case YCBCR_OUTPUT_PLANAR:
			frag_shader += "#define YCBCR_OUTPUT_PLANAR 1\n";
			frag_shader_outputs.push_back("Y");
			frag_shader_outputs.push_back("Cb");
			frag_shader_outputs.push_back("Cr");
			break;
		default:
			assert(false);
		}

		if (num_output_color_ycbcr > 1) {
			switch (output_ycbcr_splitting[1]) {
			case YCBCR_OUTPUT_INTERLEAVED:
				frag_shader += "#define SECOND_YCBCR_OUTPUT_INTERLEAVED 1\n";
				frag_shader_outputs.push_back("YCbCr2");
				break;
			case YCBCR_OUTPUT_SPLIT_Y_AND_CBCR:
				frag_shader += "#define SECOND_YCBCR_OUTPUT_SPLIT_Y_AND_CBCR 1\n";
				frag_shader_outputs.push_back("Y2");
				frag_shader_outputs.push_back("Chroma2");
				break;
			case YCBCR_OUTPUT_PLANAR:
				frag_shader += "#define SECOND_YCBCR_OUTPUT_PLANAR 1\n";
				frag_shader_outputs.push_back("Y2");
				frag_shader_outputs.push_back("Cb2");
				frag_shader_outputs.push_back("Cr2");
				break;
			default:
				assert(false);
			}
		}

		if (output_color_rgba) {
			// Note: Needs to come in the header, because not only the
			// output needs to see it (YCbCrConversionEffect and DitherEffect
			// do, too).
			frag_shader_header += "#define YCBCR_ALSO_OUTPUT_RGBA 1\n";
			frag_shader_outputs.push_back("RGBA");
		}
	}

	// If we're bouncing to a temporary texture, signal transformation if desired.
	if (!phase->output_node->outgoing_links.empty()) {
		if (intermediate_transformation == SQUARE_ROOT_FRAMEBUFFER_TRANSFORMATION &&
		    phase->output_node->output_gamma_curve == GAMMA_LINEAR) {
			frag_shader += "#define SQUARE_ROOT_TRANSFORMATION 1\n";
		}
	}

	if (phase->is_compute_shader) {
		frag_shader.append(read_file("footer.comp"));
		phase->compute_shader_node->effect->register_uniform_ivec2("output_size", phase->uniform_output_size);
		phase->compute_shader_node->effect->register_uniform_vec2("inv_output_size", (float *)&phase->inv_output_size);
		phase->compute_shader_node->effect->register_uniform_vec2("output_texcoord_adjust", (float *)&phase->output_texcoord_adjust);
	} else {
		frag_shader.append(read_file("footer.frag"));
	}

	// Collect uniforms from all effects and output them. Note that this needs
	// to happen after output_fragment_shader(), even though the uniforms come
	// before in the output source, since output_fragment_shader() is allowed
	// to register new uniforms (e.g. arrays that are of unknown length until
	// finalization time).
	// TODO: Make a uniform block for platforms that support it.
	string frag_shader_uniforms = "";
	for (unsigned i = 0; i < phase->effects.size(); ++i) {
		Node *node = phase->effects[i];
		Effect *effect = node->effect;
		const string effect_id = phase->effect_ids[make_pair(node, IN_SAME_PHASE)];
		extract_uniform_declarations(effect->uniforms_image2d, "image2D", effect_id, &phase->uniforms_image2d, &frag_shader_uniforms);
		extract_uniform_declarations(effect->uniforms_sampler2d, "sampler2D", effect_id, &phase->uniforms_sampler2d, &frag_shader_uniforms);
		extract_uniform_declarations(effect->uniforms_bool, "bool", effect_id, &phase->uniforms_bool, &frag_shader_uniforms);
		extract_uniform_declarations(effect->uniforms_int, "int", effect_id, &phase->uniforms_int, &frag_shader_uniforms);
		extract_uniform_declarations(effect->uniforms_ivec2, "ivec2", effect_id, &phase->uniforms_ivec2, &frag_shader_uniforms);
		extract_uniform_declarations(effect->uniforms_float, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms);
		extract_uniform_declarations(effect->uniforms_vec2, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms);
		extract_uniform_declarations(effect->uniforms_vec3, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms);
		extract_uniform_declarations(effect->uniforms_vec4, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms);
		extract_uniform_array_declarations(effect->uniforms_float_array, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms);
		extract_uniform_array_declarations(effect->uniforms_vec2_array, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms);
		extract_uniform_array_declarations(effect->uniforms_vec3_array, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms);
		extract_uniform_array_declarations(effect->uniforms_vec4_array, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms);
		extract_uniform_declarations(effect->uniforms_mat3, "mat3", effect_id, &phase->uniforms_mat3, &frag_shader_uniforms);
	}

	string vert_shader = read_version_dependent_file("vs", "vert");

	// If we're the last phase and need to flip the picture to compensate for
	// the origin, tell the vertex or compute shader so.
	bool is_last_phase;
	if (has_dummy_effect) {
		is_last_phase = (phase->output_node->outgoing_links.size() == 1 &&
			phase->output_node->outgoing_links[0]->effect->effect_type_id() == "ComputeShaderOutputDisplayEffect");
	} else {
		is_last_phase = phase->output_node->outgoing_links.empty();
	}
	if (is_last_phase && output_origin == OUTPUT_ORIGIN_TOP_LEFT) {
		if (phase->is_compute_shader) {
			frag_shader_header += "#define FLIP_ORIGIN 1\n";
		} else {
			const string needle = "#define FLIP_ORIGIN 0";
			size_t pos = vert_shader.find(needle);
			assert(pos != string::npos);

			vert_shader[pos + needle.size() - 1] = '1';
		}
	}

	frag_shader = frag_shader_header + frag_shader_uniforms + frag_shader;

	if (phase->is_compute_shader) {
		phase->glsl_program_num = resource_pool->compile_glsl_compute_program(frag_shader);

		Uniform<int> uniform;
		uniform.name = "outbuf";
		uniform.value = &phase->outbuf_image_unit;
		uniform.prefix = "tex";
		uniform.num_values = 1;
		uniform.location = -1;
		phase->uniforms_image2d.push_back(uniform);
	} else {
		phase->glsl_program_num = resource_pool->compile_glsl_program(vert_shader, frag_shader, frag_shader_outputs);
	}
	GLint position_attribute_index = glGetAttribLocation(phase->glsl_program_num, "position");
	GLint texcoord_attribute_index = glGetAttribLocation(phase->glsl_program_num, "texcoord");
	if (position_attribute_index != -1) {
		phase->attribute_indexes.insert(position_attribute_index);
	}
	if (texcoord_attribute_index != -1) {
		phase->attribute_indexes.insert(texcoord_attribute_index);
	}

	// Collect the resulting location numbers for each uniform.
	collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_image2d);
	collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_sampler2d);
	collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_bool);
	collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_int);
	collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_ivec2);
	collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_float);
	collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec2);
	collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec3);
	collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec4);
	collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_mat3);
}

// Construct GLSL programs, starting at the given effect and following
// the chain from there. We end a program every time we come to an effect
// marked as "needs texture bounce", one that is used by multiple other
// effects, every time we need to bounce due to output size change
// (not all size changes require ending), and of course at the end.
//
// We follow a quite simple depth-first search from the output, although
// without recursing explicitly within each phase.
Phase *EffectChain::construct_phase(Node *output, map<Node *, Phase *> *completed_effects)
{
	if (completed_effects->count(output)) {
		return (*completed_effects)[output];
	}

	Phase *phase = new Phase;
	phase->output_node = output;
	phase->is_compute_shader = false;
	phase->compute_shader_node = nullptr;

	// If the output effect has one-to-one sampling, we try to trace this
	// status down through the dependency chain. This is important in case
	// we hit an effect that changes output size (and not sets a virtual
	// output size); if we have one-to-one sampling, we don't have to break
	// the phase.
	output->one_to_one_sampling = output->effect->one_to_one_sampling();
	output->strong_one_to_one_sampling = output->effect->strong_one_to_one_sampling();

	// Effects that we have yet to calculate, but that we know should
	// be in the current phase.
	stack<Node *> effects_todo_this_phase;
	effects_todo_this_phase.push(output);

	while (!effects_todo_this_phase.empty()) {
		Node *node = effects_todo_this_phase.top();
		effects_todo_this_phase.pop();

		assert(node->effect->one_to_one_sampling() >= node->effect->strong_one_to_one_sampling());

		if (node->effect->needs_mipmaps() != Effect::DOES_NOT_NEED_MIPMAPS) {
			// Can't have incompatible requirements imposed on us from a dependent effect;
			// if so, it should have started a new phase instead.
			assert(node->needs_mipmaps == Effect::DOES_NOT_NEED_MIPMAPS ||
			       node->needs_mipmaps == node->effect->needs_mipmaps());
			node->needs_mipmaps = node->effect->needs_mipmaps();
		}

		// This should currently only happen for effects that are inputs
		// (either true inputs or phase outputs). We special-case inputs,
		// and then deduplicate phase outputs below.
		if (node->effect->num_inputs() == 0) {
			if (find(phase->effects.begin(), phase->effects.end(), node) != phase->effects.end()) {
				continue;
			}
		} else {
			assert(completed_effects->count(node) == 0);
		}

		phase->effects.push_back(node);
		if (node->effect->is_compute_shader()) {
			assert(phase->compute_shader_node == nullptr ||
			       phase->compute_shader_node == node);
			phase->is_compute_shader = true;
			phase->compute_shader_node = node;
		}

		// Find all the dependencies of this effect, and add them to the stack.
		assert(node->effect->num_inputs() == node->incoming_links.size());
		for (Node *dep : node->incoming_links) {
			bool start_new_phase = false;

			Effect::MipmapRequirements save_needs_mipmaps = dep->needs_mipmaps;

			if (node->effect->needs_texture_bounce() &&
			    !dep->effect->is_single_texture() &&
			    !dep->effect->override_disable_bounce()) {
				start_new_phase = true;
			}

			// Propagate information about needing mipmaps down the chain,
			// breaking the phase if we notice an incompatibility.
			//
			// Note that we cannot do this propagation as a normal pass,
			// because it needs information about where the phases end
			// (we should not propagate the flag across phases).
			if (node->needs_mipmaps != Effect::DOES_NOT_NEED_MIPMAPS) {
				// The node can have a value set (ie. not DOES_NOT_NEED_MIPMAPS)
				// if we have diamonds in the graph; if so, choose that.
				// If not, the effect on the node can also decide (this is the
				// more common case).
				Effect::MipmapRequirements dep_mipmaps = dep->needs_mipmaps;
				if (dep_mipmaps == Effect::DOES_NOT_NEED_MIPMAPS) {
					if (dep->effect->num_inputs() == 0) {
						Input *input = static_cast<Input *>(dep->effect);
						dep_mipmaps = input->can_supply_mipmaps() ? Effect::DOES_NOT_NEED_MIPMAPS : Effect::CANNOT_ACCEPT_MIPMAPS;
					} else {
						dep_mipmaps = dep->effect->needs_mipmaps();
					}
				}
				if (dep_mipmaps == Effect::DOES_NOT_NEED_MIPMAPS) {
					dep->needs_mipmaps = node->needs_mipmaps;
				} else if (dep_mipmaps != node->needs_mipmaps) {
					// The dependency cannot supply our mipmap demands
					// (either because it's an input that can't do mipmaps,
					// or because there's a conflict between mipmap-needing
					// and mipmap-refusing effects somewhere in the graph),
					// so they cannot be in the same phase.
					start_new_phase = true;
				}
			}

			if (dep->outgoing_links.size() > 1) {
				if (!dep->effect->is_single_texture()) {
					// More than one effect uses this as the input,
					// and it is not a texture itself.
					// The easiest thing to do (and probably also the safest
					// performance-wise in most cases) is to bounce it to a texture
					// and then let the next passes read from that.
					start_new_phase = true;
				} else {
					assert(dep->effect->num_inputs() == 0);

					// For textures, we try to be slightly more clever;
					// if none of our outputs need a bounce, we don't bounce
					// but instead simply use the effect many times.
					//
					// Strictly speaking, we could bounce it for some outputs
					// and use it directly for others, but the processing becomes
					// somewhat simpler if the effect is only used in one such way.
					for (unsigned j = 0; j < dep->outgoing_links.size(); ++j) {
						Node *rdep = dep->outgoing_links[j];
						start_new_phase |= rdep->effect->needs_texture_bounce();
					}
				}
			}

			if (dep->effect->is_compute_shader()) {
				if (phase->is_compute_shader) {
					// Only one compute shader per phase.
					start_new_phase = true;
				} else if (!node->strong_one_to_one_sampling) {
					// If all nodes so far are strong one-to-one, we can put them after
					// the compute shader (ie., process them on the output).
					start_new_phase = true;
				} else if (!start_new_phase) {
					phase->is_compute_shader = true;
					phase->compute_shader_node = dep;
				}
			} else if (dep->effect->sets_virtual_output_size()) {
				assert(dep->effect->changes_output_size());
				// If the next effect sets a virtual size to rely on OpenGL's
				// bilinear sampling, we'll really need to break the phase here.
				start_new_phase = true;
			} else if (dep->effect->changes_output_size() && !node->one_to_one_sampling) {
				// If the next effect changes size and we don't have one-to-one sampling,
				// we also need to break here.
				start_new_phase = true;
			}

			if (start_new_phase) {
				// Since we're starting a new phase here, we don't need to impose any
				// new demands on this effect. Restore the status we had before we
				// started looking at it.
				dep->needs_mipmaps = save_needs_mipmaps;

				phase->inputs.push_back(construct_phase(dep, completed_effects));
			} else {
				effects_todo_this_phase.push(dep);

				// Propagate the one-to-one status down through the dependency.
				dep->one_to_one_sampling = node->one_to_one_sampling &&
					dep->effect->one_to_one_sampling();
				dep->strong_one_to_one_sampling = node->strong_one_to_one_sampling &&
					dep->effect->strong_one_to_one_sampling();
			}

			node->incoming_link_type.push_back(start_new_phase ? IN_ANOTHER_PHASE : IN_SAME_PHASE);
		}
	}

	// No more effects to do this phase. Take all the ones we have,
	// and create a GLSL program for it.
	assert(!phase->effects.empty());

	// Deduplicate the inputs, but don't change the ordering e.g. by sorting;
	// that would be nondeterministic and thus reduce cacheability.
	// TODO: Make this even more deterministic.
	vector<Phase *> dedup_inputs;
	set<Phase *> seen_inputs;
	for (size_t i = 0; i < phase->inputs.size(); ++i) {
		if (seen_inputs.insert(phase->inputs[i]).second) {
			dedup_inputs.push_back(phase->inputs[i]);
		}
	}
	swap(phase->inputs, dedup_inputs);

	// Allocate samplers for each input.
	phase->input_samplers.resize(phase->inputs.size());

	// We added the effects from the output and back, but we need to output
	// them in topological sort order in the shader.
	phase->effects = topological_sort(phase->effects);

	// Figure out if we need mipmaps or not, and if so, tell the inputs that.
	// (RTT inputs have different logic, which is checked in execute_phase().)
	for (unsigned i = 0; i < phase->effects.size(); ++i) {
		Node *node = phase->effects[i];
		if (node->effect->num_inputs() == 0) {
			Input *input = static_cast<Input *>(node->effect);
			assert(node->needs_mipmaps != Effect::NEEDS_MIPMAPS || input->can_supply_mipmaps());
			CHECK(input->set_int("needs_mipmaps", node->needs_mipmaps == Effect::NEEDS_MIPMAPS));
		}
	}

	// Tell each node which phase it ended up in, so that the unit test
	// can check that the phases were split in the right place.
	// Note that this ignores that effects may be part of multiple phases;
	// if the unit tests need to test such cases, we'll reconsider.
	for (unsigned i = 0; i < phase->effects.size(); ++i) {
		phase->effects[i]->containing_phase = phase;
	}

	// Actually make the shader for this phase.
	compile_glsl_program(phase);

	// Initialize timers.
	if (movit_timer_queries_supported) {
		phase->time_elapsed_ns = 0;
		phase->num_measured_iterations = 0;
	}

	assert(completed_effects->count(output) == 0);
	completed_effects->insert(make_pair(output, phase));
	phases.push_back(phase);
	return phase;
}

void EffectChain::output_dot(const char *filename)
{
	if (movit_debug_level != MOVIT_DEBUG_ON) {
		return;
	}

	FILE *fp = fopen(filename, "w");
	if (fp == nullptr) {
		perror(filename);
		exit(1);
	}

	fprintf(fp, "digraph G {\n");
	fprintf(fp, "  output [shape=box label=\"(output)\"];\n");
	for (unsigned i = 0; i < nodes.size(); ++i) {
		// Find out which phase this event belongs to.
		vector<int> in_phases;
		for (unsigned j = 0; j < phases.size(); ++j) {
			const Phase* p = phases[j];
			if (find(p->effects.begin(), p->effects.end(), nodes[i]) != p->effects.end()) {
				in_phases.push_back(j);
			}
		}

		if (in_phases.empty()) {
			fprintf(fp, "  n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str());
		} else if (in_phases.size() == 1) {
			fprintf(fp, "  n%ld [label=\"%s\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n",
				(long)nodes[i], nodes[i]->effect->effect_type_id().c_str(),
				(in_phases[0] % 8) + 1);
		} else {
			// If we had new enough Graphviz, style="wedged" would probably be ideal here.
			// But alas.
			fprintf(fp, "  n%ld [label=\"%s [in multiple phases]\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n",
				(long)nodes[i], nodes[i]->effect->effect_type_id().c_str(),
				(in_phases[0] % 8) + 1);
		}

		char from_node_id[256];
		snprintf(from_node_id, 256, "n%ld", (long)nodes[i]);

		for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) {
			char to_node_id[256];
			snprintf(to_node_id, 256, "n%ld", (long)nodes[i]->outgoing_links[j]);

			vector<string> labels = get_labels_for_edge(nodes[i], nodes[i]->outgoing_links[j]);
			output_dot_edge(fp, from_node_id, to_node_id, labels);
		}

		if (nodes[i]->outgoing_links.empty() && !nodes[i]->disabled) {
			// Output node.
			vector<string> labels = get_labels_for_edge(nodes[i], nullptr);
			output_dot_edge(fp, from_node_id, "output", labels);
		}
	}
	fprintf(fp, "}\n");

	fclose(fp);
}

vector<string> EffectChain::get_labels_for_edge(const Node *from, const Node *to)
{
	vector<string> labels;

	if (to != nullptr && to->effect->needs_texture_bounce()) {
		labels.push_back("needs_bounce");
	}
	if (from->effect->changes_output_size()) {
		labels.push_back("resize");
	}

	switch (from->output_color_space) {
	case COLORSPACE_INVALID:
		labels.push_back("spc[invalid]");
		break;
	case COLORSPACE_REC_601_525:
		labels.push_back("spc[rec601-525]");
		break;
	case COLORSPACE_REC_601_625:
		labels.push_back("spc[rec601-625]");
		break;
	default:
		break;
	}

	switch (from->output_gamma_curve) {
	case GAMMA_INVALID:
		labels.push_back("gamma[invalid]");
		break;
	case GAMMA_sRGB:
		labels.push_back("gamma[sRGB]");
		break;
	case GAMMA_REC_601:  // and GAMMA_REC_709
		labels.push_back("gamma[rec601/709]");
		break;
	default:
		break;
	}

	switch (from->output_alpha_type) {
	case ALPHA_INVALID:
		labels.push_back("alpha[invalid]");
		break;
	case ALPHA_BLANK:
		labels.push_back("alpha[blank]");
		break;
	case ALPHA_POSTMULTIPLIED:
		labels.push_back("alpha[postmult]");
		break;
	default:
		break;
	}

	return labels;
}

void EffectChain::output_dot_edge(FILE *fp,
                                  const string &from_node_id,
                                  const string &to_node_id,
                                  const vector<string> &labels)
{
	if (labels.empty()) {
		fprintf(fp, "  %s -> %s;\n", from_node_id.c_str(), to_node_id.c_str());
	} else {
		string label = labels[0];
		for (unsigned k = 1; k < labels.size(); ++k) {
			label += ", " + labels[k];
		}
		fprintf(fp, "  %s -> %s [label=\"%s\"];\n", from_node_id.c_str(), to_node_id.c_str(), label.c_str());
	}
}

void EffectChain::size_rectangle_to_fit(unsigned width, unsigned height, unsigned *output_width, unsigned *output_height)
{
	unsigned scaled_width, scaled_height;

	if (float(width) * aspect_denom >= float(height) * aspect_nom) {
		// Same aspect, or W/H > aspect (image is wider than the frame).
		// In either case, keep width, and adjust height.
		scaled_width = width;
		scaled_height = lrintf(width * aspect_denom / aspect_nom);
	} else {
		// W/H < aspect (image is taller than the frame), so keep height,
		// and adjust width.
		scaled_width = lrintf(height * aspect_nom / aspect_denom);
		scaled_height = height;
	}

	// We should be consistently larger or smaller then the existing choice,
	// since we have the same aspect.
	assert(!(scaled_width < *output_width && scaled_height > *output_height));
	assert(!(scaled_height < *output_height && scaled_width > *output_width));

	if (scaled_width >= *output_width && scaled_height >= *output_height) {
		*output_width = scaled_width;
		*output_height = scaled_height;
	}
}

// Propagate input texture sizes throughout, and inform effects downstream.
// (Like a lot of other code, we depend on effects being in topological order.)
void EffectChain::inform_input_sizes(Phase *phase)
{
	// All effects that have a defined size (inputs and RTT inputs)
	// get that. Reset all others.
	for (unsigned i = 0; i < phase->effects.size(); ++i) {
		Node *node = phase->effects[i];
		if (node->effect->num_inputs() == 0) {
			Input *input = static_cast<Input *>(node->effect);
			node->output_width = input->get_width();
			node->output_height = input->get_height();
			assert(node->output_width != 0);
			assert(node->output_height != 0);
		} else {
			node->output_width = node->output_height = 0;
		}
	}
	for (unsigned i = 0; i < phase->inputs.size(); ++i) {
		Phase *input = phase->inputs[i];
		input->output_node->output_width = input->virtual_output_width;
		input->output_node->output_height = input->virtual_output_height;
		assert(input->output_node->output_width != 0);
		assert(input->output_node->output_height != 0);
	}

	// Now propagate from the inputs towards the end, and inform as we go.
	// The rules are simple:
	//
	//   1. Don't touch effects that already have given sizes (ie., inputs
	//      or effects that change the output size).
	//   2. If all of your inputs have the same size, that will be your output size.
	//   3. Otherwise, your output size is 0x0.
	for (unsigned i = 0; i < phase->effects.size(); ++i) {
		Node *node = phase->effects[i];
		if (node->effect->num_inputs() == 0) {
			continue;
		}
		unsigned this_output_width = 0;
		unsigned this_output_height = 0;
		for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
			Node *input = node->incoming_links[j];
			node->effect->inform_input_size(j, input->output_width, input->output_height);
			if (j == 0) {
				this_output_width = input->output_width;
				this_output_height = input->output_height;
			} else if (input->output_width != this_output_width || input->output_height != this_output_height) {
				// Inputs disagree.
				this_output_width = 0;
				this_output_height = 0;
			}
		}
		if (node->effect->changes_output_size()) {
			// We cannot call get_output_size() before we've done inform_input_size()
			// on all inputs.
			unsigned real_width, real_height;
			node->effect->get_output_size(&real_width, &real_height,
			                              &node->output_width, &node->output_height);
			assert(node->effect->sets_virtual_output_size() ||
			       (real_width == node->output_width &&
			        real_height == node->output_height));
		} else {
			node->output_width = this_output_width;
			node->output_height = this_output_height;
		}
	}
}

// Note: You should call inform_input_sizes() before this, as the last effect's
// desired output size might change based on the inputs.
void EffectChain::find_output_size(Phase *phase)
{
	Node *output_node = phase->is_compute_shader ? phase->compute_shader_node : phase->effects.back();

	// If the last effect explicitly sets an output size, use that.
	if (output_node->effect->changes_output_size()) {
		output_node->effect->get_output_size(&phase->output_width, &phase->output_height,
		                                     &phase->virtual_output_width, &phase->virtual_output_height);
		assert(output_node->effect->sets_virtual_output_size() ||
		       (phase->output_width == phase->virtual_output_width &&
			phase->output_height == phase->virtual_output_height));
		return;
	}

	// If all effects have the same size, use that.
	unsigned output_width = 0, output_height = 0;
	bool all_inputs_same_size = true;

	for (unsigned i = 0; i < phase->inputs.size(); ++i) {
		Phase *input = phase->inputs[i];
		assert(input->output_width != 0);
		assert(input->output_height != 0);
		if (output_width == 0 && output_height == 0) {
			output_width = input->virtual_output_width;
			output_height = input->virtual_output_height;
		} else if (output_width != input->virtual_output_width ||
		           output_height != input->virtual_output_height) {
			all_inputs_same_size = false;
		}
	}
	for (unsigned i = 0; i < phase->effects.size(); ++i) {
		Effect *effect = phase->effects[i]->effect;
		if (effect->num_inputs() != 0) {
			continue;
		}

		Input *input = static_cast<Input *>(effect);
		if (output_width == 0 && output_height == 0) {
			output_width = input->get_width();
			output_height = input->get_height();
		} else if (output_width != input->get_width() ||
		           output_height != input->get_height()) {
			all_inputs_same_size = false;
		}
	}

	if (all_inputs_same_size) {
		assert(output_width != 0);
		assert(output_height != 0);
		phase->virtual_output_width = phase->output_width = output_width;
		phase->virtual_output_height = phase->output_height = output_height;
		return;
	}

	// If not, fit all the inputs into the current aspect, and select the largest one. 
	output_width = 0;
	output_height = 0;
	for (unsigned i = 0; i < phase->inputs.size(); ++i) {
		Phase *input = phase->inputs[i];
		assert(input->output_width != 0);
		assert(input->output_height != 0);
		size_rectangle_to_fit(input->output_width, input->output_height, &output_width, &output_height);
	}
	for (unsigned i = 0; i < phase->effects.size(); ++i) {
		Effect *effect = phase->effects[i]->effect;
		if (effect->num_inputs() != 0) {
			continue;
		}

		Input *input = static_cast<Input *>(effect);
		size_rectangle_to_fit(input->get_width(), input->get_height(), &output_width, &output_height);
	}
	assert(output_width != 0);
	assert(output_height != 0);
	phase->virtual_output_width = phase->output_width = output_width;
	phase->virtual_output_height = phase->output_height = output_height;
}

void EffectChain::sort_all_nodes_topologically()
{
	nodes = topological_sort(nodes);
}

vector<Node *> EffectChain::topological_sort(const vector<Node *> &nodes)
{
	set<Node *> nodes_left_to_visit(nodes.begin(), nodes.end());
	vector<Node *> sorted_list;
	for (unsigned i = 0; i < nodes.size(); ++i) {
		topological_sort_visit_node(nodes[i], &nodes_left_to_visit, &sorted_list);
	}
	reverse(sorted_list.begin(), sorted_list.end());
	return sorted_list;
}

void EffectChain::topological_sort_visit_node(Node *node, set<Node *> *nodes_left_to_visit, vector<Node *> *sorted_list)
{
	if (nodes_left_to_visit->count(node) == 0) {
		return;
	}
	nodes_left_to_visit->erase(node);
	for (unsigned i = 0; i < node->outgoing_links.size(); ++i) {
		topological_sort_visit_node(node->outgoing_links[i], nodes_left_to_visit, sorted_list);
	}
	sorted_list->push_back(node);
}

void EffectChain::find_color_spaces_for_inputs()
{
	for (unsigned i = 0; i < nodes.size(); ++i) {
		Node *node = nodes[i];
		if (node->disabled) {
			continue;
		}
		if (node->incoming_links.size() == 0) {
			Input *input = static_cast<Input *>(node->effect);
			node->output_color_space = input->get_color_space();
			node->output_gamma_curve = input->get_gamma_curve();

			Effect::AlphaHandling alpha_handling = input->alpha_handling();
			switch (alpha_handling) {
			case Effect::OUTPUT_BLANK_ALPHA:
				node->output_alpha_type = ALPHA_BLANK;
				break;
			case Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA:
				node->output_alpha_type = ALPHA_PREMULTIPLIED;
				break;
			case Effect::OUTPUT_POSTMULTIPLIED_ALPHA:
				node->output_alpha_type = ALPHA_POSTMULTIPLIED;
				break;
			case Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK:
			case Effect::DONT_CARE_ALPHA_TYPE:
			default:
				assert(false);
			}

			if (node->output_alpha_type == ALPHA_PREMULTIPLIED) {
				assert(node->output_gamma_curve == GAMMA_LINEAR);
			}
		}
	}
}

// Propagate gamma and color space information as far as we can in the graph.
// The rules are simple: Anything where all the inputs agree, get that as
// output as well. Anything else keeps having *_INVALID.
void EffectChain::propagate_gamma_and_color_space()
{
	// We depend on going through the nodes in order.
	sort_all_nodes_topologically();

	for (unsigned i = 0; i < nodes.size(); ++i) {
		Node *node = nodes[i];
		if (node->disabled) {
			continue;
		}
		assert(node->incoming_links.size() == node->effect->num_inputs());
		if (node->incoming_links.size() == 0) {
			assert(node->output_color_space != COLORSPACE_INVALID);
			assert(node->output_gamma_curve != GAMMA_INVALID);
			continue;
		}

		Colorspace color_space = node->incoming_links[0]->output_color_space;
		GammaCurve gamma_curve = node->incoming_links[0]->output_gamma_curve;
		for (unsigned j = 1; j < node->incoming_links.size(); ++j) {
			if (node->incoming_links[j]->output_color_space != color_space) {
				color_space = COLORSPACE_INVALID;
			}
			if (node->incoming_links[j]->output_gamma_curve != gamma_curve) {
				gamma_curve = GAMMA_INVALID;
			}
		}

		// The conversion effects already have their outputs set correctly,
		// so leave them alone.
		if (node->effect->effect_type_id() != "ColorspaceConversionEffect") {
			node->output_color_space = color_space;
		}		
		if (node->effect->effect_type_id() != "GammaCompressionEffect" &&
		    node->effect->effect_type_id() != "GammaExpansionEffect") {
			node->output_gamma_curve = gamma_curve;
		}		
	}
}

// Propagate alpha information as far as we can in the graph.
// Similar to propagate_gamma_and_color_space().
void EffectChain::propagate_alpha()
{
	// We depend on going through the nodes in order.
	sort_all_nodes_topologically();

	for (unsigned i = 0; i < nodes.size(); ++i) {
		Node *node = nodes[i];
		if (node->disabled) {
			continue;
		}
		assert(node->incoming_links.size() == node->effect->num_inputs());
		if (node->incoming_links.size() == 0) {
			assert(node->output_alpha_type != ALPHA_INVALID);
			continue;
		}

		// The alpha multiplication/division effects are special cases.
		if (node->effect->effect_type_id() == "AlphaMultiplicationEffect") {
			assert(node->incoming_links.size() == 1);
			assert(node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED);
			node->output_alpha_type = ALPHA_PREMULTIPLIED;
			continue;
		}
		if (node->effect->effect_type_id() == "AlphaDivisionEffect") {
			assert(node->incoming_links.size() == 1);
			assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED);
			node->output_alpha_type = ALPHA_POSTMULTIPLIED;
			continue;
		}

		// GammaCompressionEffect and GammaExpansionEffect are also a special case,
		// because they are the only one that _need_ postmultiplied alpha.
		if (node->effect->effect_type_id() == "GammaCompressionEffect" ||
		    node->effect->effect_type_id() == "GammaExpansionEffect") {
			assert(node->incoming_links.size() == 1);
			if (node->incoming_links[0]->output_alpha_type == ALPHA_BLANK) {
				node->output_alpha_type = ALPHA_BLANK;
			} else if (node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED) {
				node->output_alpha_type = ALPHA_POSTMULTIPLIED;
			} else {
				node->output_alpha_type = ALPHA_INVALID;
			}
			continue;
		}

		// Only inputs can have unconditional alpha output (OUTPUT_BLANK_ALPHA
		// or OUTPUT_POSTMULTIPLIED_ALPHA), and they have already been
		// taken care of above. Rationale: Even if you could imagine
		// e.g. an effect that took in an image and set alpha=1.0
		// unconditionally, it wouldn't make any sense to have it as
		// e.g. OUTPUT_BLANK_ALPHA, since it wouldn't know whether it
		// got its input pre- or postmultiplied, so it wouldn't know
		// whether to divide away the old alpha or not.
		Effect::AlphaHandling alpha_handling = node->effect->alpha_handling();
		assert(alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
		       alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK ||
		       alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);

		// If the node has multiple inputs, check that they are all valid and
		// the same.
		bool any_invalid = false;
		bool any_premultiplied = false;
		bool any_postmultiplied = false;

		for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
			switch (node->incoming_links[j]->output_alpha_type) {
			case ALPHA_INVALID:
				any_invalid = true;
				break;
			case ALPHA_BLANK:
				// Blank is good as both pre- and postmultiplied alpha,
				// so just ignore it.
				break;
			case ALPHA_PREMULTIPLIED:
				any_premultiplied = true;
				break;
			case ALPHA_POSTMULTIPLIED:
				any_postmultiplied = true;
				break;
			default:
				assert(false);
			}
		}

		if (any_invalid) {
			node->output_alpha_type = ALPHA_INVALID;
			continue;
		}

		// Inputs must be of the same type.
		if (any_premultiplied && any_postmultiplied) {
			node->output_alpha_type = ALPHA_INVALID;
			continue;
		}

		if (alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
		    alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
			// This combination (requiring premultiplied alpha, but _not_ requiring
			// linear light) is illegal, since the combination of premultiplied alpha
			// and nonlinear inputs is meaningless.
			assert(node->effect->needs_linear_light());

			// If the effect has asked for premultiplied alpha, check that it has got it.
			if (any_postmultiplied) {
				node->output_alpha_type = ALPHA_INVALID;
			} else if (!any_premultiplied &&
			           alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
				// Blank input alpha, and the effect preserves blank alpha.
				node->output_alpha_type = ALPHA_BLANK;
			} else {
				node->output_alpha_type = ALPHA_PREMULTIPLIED;
			}
		} else {
			// OK, all inputs are the same, and this effect is not going
			// to change it.
			assert(alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);
			if (any_premultiplied) {
				node->output_alpha_type = ALPHA_PREMULTIPLIED;
			} else if (any_postmultiplied) {
				node->output_alpha_type = ALPHA_POSTMULTIPLIED;
			} else {
				node->output_alpha_type = ALPHA_BLANK;
			}
		}
	}
}

bool EffectChain::node_needs_colorspace_fix(Node *node)
{
	if (node->disabled) {
		return false;
	}
	if (node->effect->num_inputs() == 0) {
		return false;
	}

	// propagate_gamma_and_color_space() has already set our output
	// to COLORSPACE_INVALID if the inputs differ, so we can rely on that.
	if (node->output_color_space == COLORSPACE_INVALID) {
		return true;
	}
	return (node->effect->needs_srgb_primaries() && node->output_color_space != COLORSPACE_sRGB);
}

// Fix up color spaces so that there are no COLORSPACE_INVALID nodes left in
// the graph. Our strategy is not always optimal, but quite simple:
// Find an effect that's as early as possible where the inputs are of
// unacceptable colorspaces (that is, either different, or, if the effect only
// wants sRGB, not sRGB.) Add appropriate conversions on all its inputs,
// propagate the information anew, and repeat until there are no more such
// effects.
void EffectChain::fix_internal_color_spaces()
{
	unsigned colorspace_propagation_pass = 0;
	bool found_any;
	do {
		found_any = false;
		for (unsigned i = 0; i < nodes.size(); ++i) {
			Node *node = nodes[i];
			if (!node_needs_colorspace_fix(node)) {
				continue;
			}

			// Go through each input that is not sRGB, and insert
			// a colorspace conversion after it.
			for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
				Node *input = node->incoming_links[j];
				assert(input->output_color_space != COLORSPACE_INVALID);
				if (input->output_color_space == COLORSPACE_sRGB) {
					continue;
				}
				Node *conversion = add_node(new ColorspaceConversionEffect());
				CHECK(conversion->effect->set_int("source_space", input->output_color_space));
				CHECK(conversion->effect->set_int("destination_space", COLORSPACE_sRGB));
				conversion->output_color_space = COLORSPACE_sRGB;
				replace_sender(input, conversion);
				connect_nodes(input, conversion);
			}

			// Re-sort topologically, and propagate the new information.
			propagate_gamma_and_color_space();
			
			found_any = true;
			break;
		}
	
		char filename[256];
		sprintf(filename, "step5-colorspacefix-iter%u.dot", ++colorspace_propagation_pass);
		output_dot(filename);
		assert(colorspace_propagation_pass < 100);
	} while (found_any);

	for (unsigned i = 0; i < nodes.size(); ++i) {
		Node *node = nodes[i];
		if (node->disabled) {
			continue;
		}
		assert(node->output_color_space != COLORSPACE_INVALID);
	}
}

bool EffectChain::node_needs_alpha_fix(Node *node)
{
	if (node->disabled) {
		return false;
	}

	// propagate_alpha() has already set our output to ALPHA_INVALID if the
	// inputs differ or we are otherwise in mismatch, so we can rely on that.
	return (node->output_alpha_type == ALPHA_INVALID);
}

// Fix up alpha so that there are no ALPHA_INVALID nodes left in
// the graph. Similar to fix_internal_color_spaces().
void EffectChain::fix_internal_alpha(unsigned step)
{
	unsigned alpha_propagation_pass = 0;
	bool found_any;
	do {
		found_any = false;
		for (unsigned i = 0; i < nodes.size(); ++i) {
			Node *node = nodes[i];
			if (!node_needs_alpha_fix(node)) {
				continue;
			}

			// If we need to fix up GammaExpansionEffect, then clearly something
			// is wrong, since the combination of premultiplied alpha and nonlinear inputs
			// is meaningless.
			assert(node->effect->effect_type_id() != "GammaExpansionEffect");

			AlphaType desired_type = ALPHA_PREMULTIPLIED;

			// GammaCompressionEffect is special; it needs postmultiplied alpha.
			if (node->effect->effect_type_id() == "GammaCompressionEffect") {
				assert(node->incoming_links.size() == 1);
				assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED);
				desired_type = ALPHA_POSTMULTIPLIED;
			}

			// Go through each input that is not premultiplied alpha, and insert
			// a conversion before it.
			for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
				Node *input = node->incoming_links[j];
				assert(input->output_alpha_type != ALPHA_INVALID);
				if (input->output_alpha_type == desired_type ||
				    input->output_alpha_type == ALPHA_BLANK) {
					continue;
				}
				Node *conversion;
				if (desired_type == ALPHA_PREMULTIPLIED) {
					conversion = add_node(new AlphaMultiplicationEffect());
				} else {
					conversion = add_node(new AlphaDivisionEffect());
				}
				conversion->output_alpha_type = desired_type;
				replace_sender(input, conversion);
				connect_nodes(input, conversion);
			}

			// Re-sort topologically, and propagate the new information.
			propagate_gamma_and_color_space();
			propagate_alpha();
			
			found_any = true;
			break;
		}
	
		char filename[256];
		sprintf(filename, "step%u-alphafix-iter%u.dot", step, ++alpha_propagation_pass);
		output_dot(filename);
		assert(alpha_propagation_pass < 100);
	} while (found_any);

	for (unsigned i = 0; i < nodes.size(); ++i) {
		Node *node = nodes[i];
		if (node->disabled) {
			continue;
		}
		assert(node->output_alpha_type != ALPHA_INVALID);
	}
}

// Make so that the output is in the desired color space.
void EffectChain::fix_output_color_space()
{
	Node *output = find_output_node();
	if (output->output_color_space != output_format.color_space) {
		Node *conversion = add_node(new ColorspaceConversionEffect());
		CHECK(conversion->effect->set_int("source_space", output->output_color_space));
		CHECK(conversion->effect->set_int("destination_space", output_format.color_space));
		conversion->output_color_space = output_format.color_space;
		connect_nodes(output, conversion);
		propagate_alpha();
		propagate_gamma_and_color_space();
	}
}

// Make so that the output is in the desired pre-/postmultiplication alpha state.
void EffectChain::fix_output_alpha()
{
	Node *output = find_output_node();
	assert(output->output_alpha_type != ALPHA_INVALID);
	if (output->output_alpha_type == ALPHA_BLANK) {
		// No alpha output, so we don't care.
		return;
	}
	if (output->output_alpha_type == ALPHA_PREMULTIPLIED &&
	    output_alpha_format == OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED) {
		Node *conversion = add_node(new AlphaDivisionEffect());
		connect_nodes(output, conversion);
		propagate_alpha();
		propagate_gamma_and_color_space();
	}
	if (output->output_alpha_type == ALPHA_POSTMULTIPLIED &&
	    output_alpha_format == OUTPUT_ALPHA_FORMAT_PREMULTIPLIED) {
		Node *conversion = add_node(new AlphaMultiplicationEffect());
		connect_nodes(output, conversion);
		propagate_alpha();
		propagate_gamma_and_color_space();
	}
}

bool EffectChain::node_needs_gamma_fix(Node *node)
{
	if (node->disabled) {
		return false;
	}

	// Small hack since the output is not an explicit node:
	// If we are the last node and our output is in the wrong
	// space compared to EffectChain's output, we need to fix it.
	// This will only take us to linear, but fix_output_gamma()
	// will come and take us to the desired output gamma
	// if it is needed.
	//
	// This needs to be before everything else, since it could
	// even apply to inputs (if they are the only effect).
	if (node->outgoing_links.empty() &&
	    node->output_gamma_curve != output_format.gamma_curve &&
	    node->output_gamma_curve != GAMMA_LINEAR) {
		return true;
	}

	if (node->effect->num_inputs() == 0) {
		return false;
	}

	// propagate_gamma_and_color_space() has already set our output
	// to GAMMA_INVALID if the inputs differ, so we can rely on that,
	// except for GammaCompressionEffect.
	if (node->output_gamma_curve == GAMMA_INVALID) {
		return true;
	}
	if (node->effect->effect_type_id() == "GammaCompressionEffect") {
		assert(node->incoming_links.size() == 1);
		return node->incoming_links[0]->output_gamma_curve != GAMMA_LINEAR;
	}

	return (node->effect->needs_linear_light() && node->output_gamma_curve != GAMMA_LINEAR);
}

// Very similar to fix_internal_color_spaces(), but for gamma.
// There is one difference, though; before we start adding conversion nodes,
// we see if we can get anything out of asking the sources to deliver
// linear gamma directly. fix_internal_gamma_by_asking_inputs()
// does that part, while fix_internal_gamma_by_inserting_nodes()
// inserts nodes as needed afterwards.
void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step)
{
	unsigned gamma_propagation_pass = 0;
	bool found_any;
	do {
		found_any = false;
		for (unsigned i = 0; i < nodes.size(); ++i) {
			Node *node = nodes[i];
			if (!node_needs_gamma_fix(node)) {
				continue;
			}

			// See if all inputs can give us linear gamma. If not, leave it.
			vector<Node *> nonlinear_inputs;
			find_all_nonlinear_inputs(node, &nonlinear_inputs);
			assert(!nonlinear_inputs.empty());

			bool all_ok = true;
			for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
				Input *input = static_cast<Input *>(nonlinear_inputs[i]->effect);
				all_ok &= input->can_output_linear_gamma();
			}

			if (!all_ok) {
				continue;
			}

			for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
				CHECK(nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1));
				nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR;
			}

			// Re-sort topologically, and propagate the new information.
			propagate_gamma_and_color_space();
			
			found_any = true;
			break;
		}
	
		char filename[256];
		sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
		output_dot(filename);
		assert(gamma_propagation_pass < 100);
	} while (found_any);
}

void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step)
{
	unsigned gamma_propagation_pass = 0;
	bool found_any;
	do {
		found_any = false;
		for (unsigned i = 0; i < nodes.size(); ++i) {
			Node *node = nodes[i];
			if (!node_needs_gamma_fix(node)) {
				continue;
			}

			// Special case: We could be an input and still be asked to
			// fix our gamma; if so, we should be the only node
			// (as node_needs_gamma_fix() would only return true in
			// for an input in that case). That means we should insert
			// a conversion node _after_ ourselves.
			if (node->incoming_links.empty()) {
				assert(node->outgoing_links.empty());
				Node *conversion = add_node(new GammaExpansionEffect());
				CHECK(conversion->effect->set_int("source_curve", node->output_gamma_curve));
				conversion->output_gamma_curve = GAMMA_LINEAR;
				connect_nodes(node, conversion);
			}

			// If not, go through each input that is not linear gamma,
			// and insert a gamma conversion after it.
			for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
				Node *input = node->incoming_links[j];
				assert(input->output_gamma_curve != GAMMA_INVALID);
				if (input->output_gamma_curve == GAMMA_LINEAR) {
					continue;
				}
				Node *conversion = add_node(new GammaExpansionEffect());
				CHECK(conversion->effect->set_int("source_curve", input->output_gamma_curve));
				conversion->output_gamma_curve = GAMMA_LINEAR;
				replace_sender(input, conversion);
				connect_nodes(input, conversion);
			}

			// Re-sort topologically, and propagate the new information.
			propagate_alpha();
			propagate_gamma_and_color_space();
			
			found_any = true;
			break;
		}
	
		char filename[256];
		sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
		output_dot(filename);
		assert(gamma_propagation_pass < 100);
	} while (found_any);

	for (unsigned i = 0; i < nodes.size(); ++i) {
		Node *node = nodes[i];
		if (node->disabled) {
			continue;
		}
		assert(node->output_gamma_curve != GAMMA_INVALID);
	}
}

// Make so that the output is in the desired gamma.
// Note that this assumes linear input gamma, so it might create the need
// for another pass of fix_internal_gamma().
void EffectChain::fix_output_gamma()
{
	Node *output = find_output_node();
	if (output->output_gamma_curve != output_format.gamma_curve) {
		Node *conversion = add_node(new GammaCompressionEffect());
		CHECK(conversion->effect->set_int("destination_curve", output_format.gamma_curve));
		conversion->output_gamma_curve = output_format.gamma_curve;
		connect_nodes(output, conversion);
	}
}

// If the user has requested Y'CbCr output, we need to do this conversion
// _after_ GammaCompressionEffect etc., but before dither (see below).
// This is because Y'CbCr, with the exception of a special optional mode
// in Rec. 2020 (which we currently don't support), is defined to work on
// gamma-encoded data.
void EffectChain::add_ycbcr_conversion_if_needed()
{
	assert(output_color_rgba || num_output_color_ycbcr > 0);
	if (num_output_color_ycbcr == 0) {
		return;
	}
	Node *output = find_output_node();
	ycbcr_conversion_effect_node = add_node(new YCbCrConversionEffect(output_ycbcr_format, output_ycbcr_type));
	connect_nodes(output, ycbcr_conversion_effect_node);
}
	
// If the user has requested dither, add a DitherEffect right at the end
// (after GammaCompressionEffect etc.). This needs to be done after everything else,
// since dither is about the only effect that can _not_ be done in linear space.
void EffectChain::add_dither_if_needed()
{
	if (num_dither_bits == 0) {
		return;
	}
	Node *output = find_output_node();
	Node *dither = add_node(new DitherEffect());
	CHECK(dither->effect->set_int("num_bits", num_dither_bits));
	connect_nodes(output, dither);

	dither_effect = dither->effect;
}

namespace {

// Whether this effect will cause the phase it is in to become a compute shader phase.
bool induces_compute_shader(Node *node)
{
	if (node->effect->is_compute_shader()) {
		return true;
	}
	if (!node->effect->strong_one_to_one_sampling()) {
		// This effect can't be chained after a compute shader.
		return false;
	}
	// If at least one of the effects we depend on is a compute shader,
	// one of them will be put in the same phase as us (the other ones,
	// if any, will be bounced).
	for (Node *dep : node->incoming_links) {
		if (induces_compute_shader(dep)) {
			return true;
		}
	}
	return false;
}

}  // namespace

// Compute shaders can't output to the framebuffer, so if the last
// phase ends in a compute shader, add a dummy phase at the end that
// only blits directly from the temporary texture.
void EffectChain::add_dummy_effect_if_needed()
{
	Node *output = find_output_node();
	if (induces_compute_shader(output)) {
		Node *dummy = add_node(new ComputeShaderOutputDisplayEffect());
		connect_nodes(output, dummy);
		has_dummy_effect = true;
	}
}

// Find the output node. This is, simply, one that has no outgoing links.
// If there are multiple ones, the graph is malformed (we do not support
// multiple outputs right now).
Node *EffectChain::find_output_node()
{
	vector<Node *> output_nodes;
	for (unsigned i = 0; i < nodes.size(); ++i) {
		Node *node = nodes[i];
		if (node->disabled) {
			continue;
		}
		if (node->outgoing_links.empty()) {
			output_nodes.push_back(node);
		}
	}
	assert(output_nodes.size() == 1);
	return output_nodes[0];
}

void EffectChain::finalize()
{
	// Output the graph as it is before we do any conversions on it.
	output_dot("step0-start.dot");

	// Give each effect in turn a chance to rewrite its own part of the graph.
	// Note that if more effects are added as part of this, they will be
	// picked up as part of the same for loop, since they are added at the end.
	for (unsigned i = 0; i < nodes.size(); ++i) {
		nodes[i]->effect->rewrite_graph(this, nodes[i]);
	}
	output_dot("step1-rewritten.dot");

	find_color_spaces_for_inputs();
	output_dot("step2-input-colorspace.dot");

	propagate_alpha();
	output_dot("step3-propagated-alpha.dot");

	propagate_gamma_and_color_space();
	output_dot("step4-propagated-all.dot");

	fix_internal_color_spaces();
	fix_internal_alpha(6);
	fix_output_color_space();
	output_dot("step7-output-colorspacefix.dot");
	fix_output_alpha();
	output_dot("step8-output-alphafix.dot");

	// Note that we need to fix gamma after colorspace conversion,
	// because colorspace conversions might create needs for gamma conversions.
	// Also, we need to run an extra pass of fix_internal_gamma() after 
	// fixing the output gamma, as we only have conversions to/from linear,
	// and fix_internal_alpha() since GammaCompressionEffect needs
	// postmultiplied input.
	fix_internal_gamma_by_asking_inputs(9);
	fix_internal_gamma_by_inserting_nodes(10);
	fix_output_gamma();
	output_dot("step11-output-gammafix.dot");
	propagate_alpha();
	output_dot("step12-output-alpha-propagated.dot");
	fix_internal_alpha(13);
	output_dot("step14-output-alpha-fixed.dot");
	fix_internal_gamma_by_asking_inputs(15);
	fix_internal_gamma_by_inserting_nodes(16);

	output_dot("step17-before-ycbcr.dot");
	add_ycbcr_conversion_if_needed();

	output_dot("step18-before-dither.dot");
	add_dither_if_needed();

	output_dot("step19-before-dummy-effect.dot");
	add_dummy_effect_if_needed();

	output_dot("step20-final.dot");
	
	// Construct all needed GLSL programs, starting at the output.
	// We need to keep track of which effects have already been computed,
	// as an effect with multiple users could otherwise be calculated
	// multiple times.
	map<Node *, Phase *> completed_effects;
	construct_phase(find_output_node(), &completed_effects);

	output_dot("step21-split-to-phases.dot");

	// There are some corner cases where we thought we needed to add a dummy
	// effect, but then it turned out later we didn't (e.g. induces_compute_shader()
	// didn't see a mipmap conflict coming, which would cause the compute shader
	// to be split off from the inal phase); if so, remove the extra phase
	// at the end, since it will give us some trouble during execution.
	//
	// TODO: Remove induces_compute_shader() and replace it with precise tracking.
	if (has_dummy_effect && !phases[phases.size() - 2]->is_compute_shader) {
		resource_pool->release_glsl_program(phases.back()->glsl_program_num);
		delete phases.back();
		phases.pop_back();
		has_dummy_effect = false;
	}

	output_dot("step22-dummy-phase-removal.dot");

	assert(phases[0]->inputs.empty());
	
	finalized = true;
}

void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height)
{
	// Save original viewport.
	GLuint x = 0, y = 0;

	if (width == 0 && height == 0) {
		GLint viewport[4];
		glGetIntegerv(GL_VIEWPORT, viewport);
		x = viewport[0];
		y = viewport[1];
		width = viewport[2];
		height = viewport[3];
	}

	render(dest_fbo, {}, x, y, width, height);
}

void EffectChain::render_to_texture(const vector<DestinationTexture> &destinations, unsigned width, unsigned height)
{
	assert(finalized);
	assert(!destinations.empty());

	if (!has_dummy_effect) {
		// We don't end in a compute shader, so there's nothing specific for us to do.
		// Create an FBO for this set of textures, and just render to that.
		GLuint texnums[4] = { 0, 0, 0, 0 };
		for (unsigned i = 0; i < destinations.size() && i < 4; ++i) {
			texnums[i] = destinations[i].texnum;
		}
		GLuint dest_fbo = resource_pool->create_fbo(texnums[0], texnums[1], texnums[2], texnums[3]);
		render(dest_fbo, {}, 0, 0, width, height);
		resource_pool->release_fbo(dest_fbo);
	} else {
		render((GLuint)-1, destinations, 0, 0, width, height);
	}
}

void EffectChain::render(GLuint dest_fbo, const vector<DestinationTexture> &destinations, unsigned x, unsigned y, unsigned width, unsigned height)
{
	assert(finalized);
	assert(destinations.size() <= 1);

	// This needs to be set anew, in case we are coming from a different context
	// from when we initialized.
	check_error();
	glDisable(GL_DITHER);
	check_error();

	const bool final_srgb = glIsEnabled(GL_FRAMEBUFFER_SRGB);
	check_error();
	bool current_srgb = final_srgb;

	// Basic state.
	check_error();
	glDisable(GL_BLEND);
	check_error();
	glDisable(GL_DEPTH_TEST);
	check_error();
	glDepthMask(GL_FALSE);
	check_error();

	set<Phase *> generated_mipmaps;

	// We keep one texture per output, but only for as long as we actually have any
	// phases that need it as an input. (We don't make any effort to reorder phases
	// to minimize the number of textures in play, as register allocation can be
	// complicated and we rarely have much to gain, since our graphs are typically
	// pretty linear.)
	map<Phase *, GLuint> output_textures;
	map<Phase *, int> ref_counts;
	for (Phase *phase : phases) {
		for (Phase *input : phase->inputs) {
			++ref_counts[input];
		}
	}

	size_t num_phases = phases.size();
	if (destinations.empty()) {
		assert(dest_fbo != (GLuint)-1);
	} else {
		assert(has_dummy_effect);
		assert(x == 0);
		assert(y == 0);
		assert(num_phases >= 2);
		assert(!phases.back()->is_compute_shader);
		assert(phases[phases.size() - 2]->is_compute_shader);
		assert(phases.back()->effects.size() == 1);
		assert(phases.back()->effects[0]->effect->effect_type_id() == "ComputeShaderOutputDisplayEffect");

		// We are rendering to a set of textures, so we can run the compute shader
		// directly and skip the dummy phase.
		--num_phases;
	}

	for (unsigned phase_num = 0; phase_num < num_phases; ++phase_num) {
		Phase *phase = phases[phase_num];

		if (do_phase_timing) {
			GLuint timer_query_object;
			if (phase->timer_query_objects_free.empty()) {
				glGenQueries(1, &timer_query_object);
			} else {
				timer_query_object = phase->timer_query_objects_free.front();
				phase->timer_query_objects_free.pop_front();
			}
			glBeginQuery(GL_TIME_ELAPSED, timer_query_object);
			phase->timer_query_objects_running.push_back(timer_query_object);
		}
		bool last_phase = (phase_num == num_phases - 1);
		if (last_phase) {
			// Last phase goes to the output the user specified.
			if (!phase->is_compute_shader) {
				assert(dest_fbo != (GLuint)-1);
				glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo);
				check_error();
				GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
				assert(status == GL_FRAMEBUFFER_COMPLETE);
				glViewport(x, y, width, height);
			}
			if (dither_effect != nullptr) {
				CHECK(dither_effect->set_int("output_width", width));
				CHECK(dither_effect->set_int("output_height", height));
			}
		}

		// Enable sRGB rendering for intermediates in case we are
		// rendering to an sRGB format.
		// TODO: Support this for compute shaders.
		bool needs_srgb = last_phase ? final_srgb : true;
		if (needs_srgb && !current_srgb) {
			glEnable(GL_FRAMEBUFFER_SRGB);
			check_error();
			current_srgb = true;
		} else if (!needs_srgb && current_srgb) {
			glDisable(GL_FRAMEBUFFER_SRGB);
			check_error();
			current_srgb = true;
		}

		// Find a texture for this phase.
		inform_input_sizes(phase);
		find_output_size(phase);
		vector<DestinationTexture> phase_destinations;
		if (!last_phase) {
			GLuint tex_num = resource_pool->create_2d_texture(intermediate_format, phase->output_width, phase->output_height);
			output_textures.insert(make_pair(phase, tex_num));
			phase_destinations.push_back(DestinationTexture{ tex_num, intermediate_format });

			// The output texture needs to have valid state to be written to by a compute shader.
			glActiveTexture(GL_TEXTURE0);
			check_error();
			glBindTexture(GL_TEXTURE_2D, tex_num);
			check_error();
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
			check_error();
		} else if (phase->is_compute_shader) {
			assert(!destinations.empty());
			phase_destinations = destinations;
		}

		execute_phase(phase, output_textures, phase_destinations, &generated_mipmaps);
		if (do_phase_timing) {
			glEndQuery(GL_TIME_ELAPSED);
		}

		// Drop any input textures we don't need anymore.
		for (Phase *input : phase->inputs) {
			assert(ref_counts[input] > 0);
			if (--ref_counts[input] == 0) {
				resource_pool->release_2d_texture(output_textures[input]);
				output_textures.erase(input);
			}
		}
	}

	for (const auto &phase_and_texnum : output_textures) {
		resource_pool->release_2d_texture(phase_and_texnum.second);
	}

	glBindFramebuffer(GL_FRAMEBUFFER, 0);
	check_error();
	glUseProgram(0);
	check_error();

	glBindBuffer(GL_ARRAY_BUFFER, 0);
	check_error();
	glBindVertexArray(0);
	check_error();

	if (do_phase_timing) {
		// Get back the timer queries.
		for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
			Phase *phase = phases[phase_num];
			for (auto timer_it = phase->timer_query_objects_running.cbegin();
			     timer_it != phase->timer_query_objects_running.cend(); ) {
				GLint timer_query_object = *timer_it;
				GLint available;
				glGetQueryObjectiv(timer_query_object, GL_QUERY_RESULT_AVAILABLE, &available);
				if (available) {
					GLuint64 time_elapsed;
					glGetQueryObjectui64v(timer_query_object, GL_QUERY_RESULT, &time_elapsed);
					phase->time_elapsed_ns += time_elapsed;
					++phase->num_measured_iterations;
					phase->timer_query_objects_free.push_back(timer_query_object);
					phase->timer_query_objects_running.erase(timer_it++);
				} else {
					++timer_it;
				}
			}
		}
	}
}

void EffectChain::enable_phase_timing(bool enable)
{
	if (enable) {
		assert(movit_timer_queries_supported);
	}
	this->do_phase_timing = enable;
}

void EffectChain::reset_phase_timing()
{
	for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
		Phase *phase = phases[phase_num];
		phase->time_elapsed_ns = 0;
		phase->num_measured_iterations = 0;
	}
}

void EffectChain::print_phase_timing()
{
	double total_time_ms = 0.0;
	for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
		Phase *phase = phases[phase_num];
		double avg_time_ms = phase->time_elapsed_ns * 1e-6 / phase->num_measured_iterations;
		printf("Phase %d: %5.1f ms  [", phase_num, avg_time_ms);
		for (unsigned effect_num = 0; effect_num < phase->effects.size(); ++effect_num) {
			if (effect_num != 0) {
				printf(", ");
			}
			printf("%s", phase->effects[effect_num]->effect->effect_type_id().c_str());
		}
		printf("]\n");
		total_time_ms += avg_time_ms;
	}
	printf("Total:   %5.1f ms\n", total_time_ms);
}

void EffectChain::execute_phase(Phase *phase,
                                const map<Phase *, GLuint> &output_textures,
                                const vector<DestinationTexture> &destinations,
                                set<Phase *> *generated_mipmaps)
{
	// Set up RTT inputs for this phase.
	for (unsigned sampler = 0; sampler < phase->inputs.size(); ++sampler) {
		glActiveTexture(GL_TEXTURE0 + sampler);
		Phase *input = phase->inputs[sampler];
		input->output_node->bound_sampler_num = sampler;
		const auto it = output_textures.find(input);
		assert(it != output_textures.end());
		glBindTexture(GL_TEXTURE_2D, it->second);
		check_error();

		// See if anything using this RTT input (in this phase) needs mipmaps.
		// TODO: It could be that we get conflicting logic here, if we have
		// multiple effects with incompatible mipmaps using the same
		// RTT input. However, that is obscure enough that we can deal
		// with it at some future point (preferably when we have
		// universal support for separate sampler objects!). For now,
		// an assert is good enough. See also the TODO at bound_sampler_num.
		bool any_needs_mipmaps = false, any_refuses_mipmaps = false;
		for (Node *node : phase->effects) {
			assert(node->incoming_links.size() == node->incoming_link_type.size());
			for (size_t i = 0; i < node->incoming_links.size(); ++i) {
				if (node->incoming_links[i] == input->output_node &&
				    node->incoming_link_type[i] == IN_ANOTHER_PHASE) {
					if (node->needs_mipmaps == Effect::NEEDS_MIPMAPS) {
						any_needs_mipmaps = true;
					} else if (node->needs_mipmaps == Effect::CANNOT_ACCEPT_MIPMAPS) {
						any_refuses_mipmaps = true;
					}
				}
			}
		}
		assert(!(any_needs_mipmaps && any_refuses_mipmaps));

		if (any_needs_mipmaps && generated_mipmaps->count(input) == 0) {
			glGenerateMipmap(GL_TEXTURE_2D);
			check_error();
			generated_mipmaps->insert(input);
		}
		setup_rtt_sampler(sampler, any_needs_mipmaps);
		phase->input_samplers[sampler] = sampler;  // Bind the sampler to the right uniform.
	}

	GLuint instance_program_num = resource_pool->use_glsl_program(phase->glsl_program_num);
	check_error();

	// And now the output.
	GLuint fbo = 0;
	if (phase->is_compute_shader) {
		assert(!destinations.empty());

		// This is currently the only place where we use image units,
		// so we can always start at 0. TODO: Support multiple destinations.
		phase->outbuf_image_unit = 0;
		glBindImageTexture(phase->outbuf_image_unit, destinations[0].texnum, 0, GL_FALSE, 0, GL_WRITE_ONLY, destinations[0].format);
		check_error();
		phase->uniform_output_size[0] = phase->output_width;
		phase->uniform_output_size[1] = phase->output_height;
		phase->inv_output_size.x = 1.0f / phase->output_width;
		phase->inv_output_size.y = 1.0f / phase->output_height;
		phase->output_texcoord_adjust.x = 0.5f / phase->output_width;
		phase->output_texcoord_adjust.y = 0.5f / phase->output_height;
	} else if (!destinations.empty()) {
		assert(destinations.size() == 1);
		fbo = resource_pool->create_fbo(destinations[0].texnum);
		glBindFramebuffer(GL_FRAMEBUFFER, fbo);
		glViewport(0, 0, phase->output_width, phase->output_height);
	}

	// Give the required parameters to all the effects.
	unsigned sampler_num = phase->inputs.size();
	for (unsigned i = 0; i < phase->effects.size(); ++i) {
		Node *node = phase->effects[i];
		unsigned old_sampler_num = sampler_num;
		node->effect->set_gl_state(instance_program_num, phase->effect_ids[make_pair(node, IN_SAME_PHASE)], &sampler_num);
		check_error();

		if (node->effect->is_single_texture()) {
			assert(sampler_num - old_sampler_num == 1);
			node->bound_sampler_num = old_sampler_num;
		} else {
			node->bound_sampler_num = -1;
		}
	}

	if (phase->is_compute_shader) {
		unsigned x, y, z;
		phase->compute_shader_node->effect->get_compute_dimensions(phase->output_width, phase->output_height, &x, &y, &z);

		// Uniforms need to come after set_gl_state() _and_ get_compute_dimensions(),
		// since they can be updated from there.
		setup_uniforms(phase);
		glDispatchCompute(x, y, z);
		check_error();
		glMemoryBarrier(GL_TEXTURE_FETCH_BARRIER_BIT | GL_TEXTURE_UPDATE_BARRIER_BIT);
		check_error();
	} else {
		// Uniforms need to come after set_gl_state(), since they can be updated
		// from there.
		setup_uniforms(phase);

		// Bind the vertex data.
		GLuint vao = resource_pool->create_vec2_vao(phase->attribute_indexes, vbo);
		glBindVertexArray(vao);

		glDrawArrays(GL_TRIANGLES, 0, 3);
		check_error();

		resource_pool->release_vec2_vao(vao);
	}
	
	for (unsigned i = 0; i < phase->effects.size(); ++i) {
		Node *node = phase->effects[i];
		node->effect->clear_gl_state();
	}

	resource_pool->unuse_glsl_program(instance_program_num);

	if (fbo != 0) {
		resource_pool->release_fbo(fbo);
	}
}

void EffectChain::setup_uniforms(Phase *phase)
{
	// TODO: Use UBO blocks.
	for (size_t i = 0; i < phase->uniforms_image2d.size(); ++i) {
		const Uniform<int> &uniform = phase->uniforms_image2d[i];
		if (uniform.location != -1) {
			glUniform1iv(uniform.location, uniform.num_values, uniform.value);
		}
	}
	for (size_t i = 0; i < phase->uniforms_sampler2d.size(); ++i) {
		const Uniform<int> &uniform = phase->uniforms_sampler2d[i];
		if (uniform.location != -1) {
			glUniform1iv(uniform.location, uniform.num_values, uniform.value);
		}
	}
	for (size_t i = 0; i < phase->uniforms_bool.size(); ++i) {
		const Uniform<bool> &uniform = phase->uniforms_bool[i];
		assert(uniform.num_values == 1);
		if (uniform.location != -1) {
			glUniform1i(uniform.location, *uniform.value);
		}
	}
	for (size_t i = 0; i < phase->uniforms_int.size(); ++i) {
		const Uniform<int> &uniform = phase->uniforms_int[i];
		if (uniform.location != -1) {
			glUniform1iv(uniform.location, uniform.num_values, uniform.value);
		}
	}
	for (size_t i = 0; i < phase->uniforms_ivec2.size(); ++i) {
		const Uniform<int> &uniform = phase->uniforms_ivec2[i];
		if (uniform.location != -1) {
			glUniform2iv(uniform.location, uniform.num_values, uniform.value);
		}
	}
	for (size_t i = 0; i < phase->uniforms_float.size(); ++i) {
		const Uniform<float> &uniform = phase->uniforms_float[i];
		if (uniform.location != -1) {
			glUniform1fv(uniform.location, uniform.num_values, uniform.value);
		}
	}
	for (size_t i = 0; i < phase->uniforms_vec2.size(); ++i) {
		const Uniform<float> &uniform = phase->uniforms_vec2[i];
		if (uniform.location != -1) {
			glUniform2fv(uniform.location, uniform.num_values, uniform.value);
		}
	}
	for (size_t i = 0; i < phase->uniforms_vec3.size(); ++i) {
		const Uniform<float> &uniform = phase->uniforms_vec3[i];
		if (uniform.location != -1) {
			glUniform3fv(uniform.location, uniform.num_values, uniform.value);
		}
	}
	for (size_t i = 0; i < phase->uniforms_vec4.size(); ++i) {
		const Uniform<float> &uniform = phase->uniforms_vec4[i];
		if (uniform.location != -1) {
			glUniform4fv(uniform.location, uniform.num_values, uniform.value);
		}
	}
	for (size_t i = 0; i < phase->uniforms_mat3.size(); ++i) {
		const Uniform<Matrix3d> &uniform = phase->uniforms_mat3[i];
		assert(uniform.num_values == 1);
		if (uniform.location != -1) {
			// Convert to float (GLSL has no double matrices).
		        float matrixf[9];
			for (unsigned y = 0; y < 3; ++y) {
				for (unsigned x = 0; x < 3; ++x) {
					matrixf[y + x * 3] = (*uniform.value)(y, x);
				}
			}
			glUniformMatrix3fv(uniform.location, 1, GL_FALSE, matrixf);
		}
	}
}

void EffectChain::setup_rtt_sampler(int sampler_num, bool use_mipmaps)
{
	glActiveTexture(GL_TEXTURE0 + sampler_num);
	check_error();
	if (use_mipmaps) {
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
		check_error();
	} else {
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
		check_error();
	}
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	check_error();
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	check_error();
}

}  // namespace movit