1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
|
#include <epoxy/gl.h>
#include <assert.h>
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <set>
#include <stack>
#include <utility>
#include <vector>
#include <Eigen/Core>
#include "alpha_division_effect.h"
#include "alpha_multiplication_effect.h"
#include "colorspace_conversion_effect.h"
#include "dither_effect.h"
#include "effect.h"
#include "effect_chain.h"
#include "effect_util.h"
#include "gamma_compression_effect.h"
#include "gamma_expansion_effect.h"
#include "init.h"
#include "input.h"
#include "resource_pool.h"
#include "util.h"
#include "ycbcr_conversion_effect.h"
using namespace Eigen;
using namespace std;
namespace movit {
namespace {
// An effect whose only purpose is to sit in a phase on its own and take the
// texture output from a compute shader and display it to the normal backbuffer
// (or any FBO). That phase can be skipped when rendering using render_to_textures().
class ComputeShaderOutputDisplayEffect : public Effect {
public:
ComputeShaderOutputDisplayEffect() {}
string effect_type_id() const override { return "ComputeShaderOutputDisplayEffect"; }
string output_fragment_shader() override { return read_file("identity.frag"); }
bool needs_texture_bounce() const override { return true; }
};
} // namespace
EffectChain::EffectChain(float aspect_nom, float aspect_denom, ResourcePool *resource_pool)
: aspect_nom(aspect_nom),
aspect_denom(aspect_denom),
output_color_rgba(false),
num_output_color_ycbcr(0),
dither_effect(nullptr),
ycbcr_conversion_effect_node(nullptr),
intermediate_format(GL_RGBA16F),
intermediate_transformation(NO_FRAMEBUFFER_TRANSFORMATION),
num_dither_bits(0),
output_origin(OUTPUT_ORIGIN_BOTTOM_LEFT),
finalized(false),
resource_pool(resource_pool),
do_phase_timing(false) {
if (resource_pool == nullptr) {
this->resource_pool = new ResourcePool();
owns_resource_pool = true;
} else {
owns_resource_pool = false;
}
// Generate a VBO with some data in (shared position and texture coordinate data).
float vertices[] = {
0.0f, 2.0f,
0.0f, 0.0f,
2.0f, 0.0f
};
vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
}
EffectChain::~EffectChain()
{
for (unsigned i = 0; i < nodes.size(); ++i) {
delete nodes[i]->effect;
delete nodes[i];
}
for (unsigned i = 0; i < phases.size(); ++i) {
resource_pool->release_glsl_program(phases[i]->glsl_program_num);
delete phases[i];
}
if (owns_resource_pool) {
delete resource_pool;
}
glDeleteBuffers(1, &vbo);
check_error();
}
Input *EffectChain::add_input(Input *input)
{
assert(!finalized);
inputs.push_back(input);
add_node(input);
return input;
}
void EffectChain::add_output(const ImageFormat &format, OutputAlphaFormat alpha_format)
{
assert(!finalized);
assert(!output_color_rgba);
output_format = format;
output_alpha_format = alpha_format;
output_color_rgba = true;
}
void EffectChain::add_ycbcr_output(const ImageFormat &format, OutputAlphaFormat alpha_format,
const YCbCrFormat &ycbcr_format, YCbCrOutputSplitting output_splitting,
GLenum output_type)
{
assert(!finalized);
assert(num_output_color_ycbcr < 2);
output_format = format;
output_alpha_format = alpha_format;
if (num_output_color_ycbcr == 1) {
// Check that the format is the same.
assert(output_ycbcr_format.luma_coefficients == ycbcr_format.luma_coefficients);
assert(output_ycbcr_format.full_range == ycbcr_format.full_range);
assert(output_ycbcr_format.num_levels == ycbcr_format.num_levels);
assert(output_ycbcr_format.chroma_subsampling_x == 1);
assert(output_ycbcr_format.chroma_subsampling_y == 1);
assert(output_ycbcr_type == output_type);
} else {
output_ycbcr_format = ycbcr_format;
output_ycbcr_type = output_type;
}
output_ycbcr_splitting[num_output_color_ycbcr++] = output_splitting;
assert(ycbcr_format.chroma_subsampling_x == 1);
assert(ycbcr_format.chroma_subsampling_y == 1);
}
void EffectChain::change_ycbcr_output_format(const YCbCrFormat &ycbcr_format)
{
assert(num_output_color_ycbcr > 0);
assert(output_ycbcr_format.chroma_subsampling_x == 1);
assert(output_ycbcr_format.chroma_subsampling_y == 1);
output_ycbcr_format = ycbcr_format;
if (finalized) {
YCbCrConversionEffect *effect = (YCbCrConversionEffect *)(ycbcr_conversion_effect_node->effect);
effect->change_output_format(ycbcr_format);
}
}
Node *EffectChain::add_node(Effect *effect)
{
for (unsigned i = 0; i < nodes.size(); ++i) {
assert(nodes[i]->effect != effect);
}
Node *node = new Node;
node->effect = effect;
node->disabled = false;
node->output_color_space = COLORSPACE_INVALID;
node->output_gamma_curve = GAMMA_INVALID;
node->output_alpha_type = ALPHA_INVALID;
node->needs_mipmaps = Effect::DOES_NOT_NEED_MIPMAPS;
node->one_to_one_sampling = false;
node->strong_one_to_one_sampling = false;
nodes.push_back(node);
node_map[effect] = node;
effect->inform_added(this);
return node;
}
void EffectChain::connect_nodes(Node *sender, Node *receiver)
{
sender->outgoing_links.push_back(receiver);
receiver->incoming_links.push_back(sender);
}
void EffectChain::replace_receiver(Node *old_receiver, Node *new_receiver)
{
new_receiver->incoming_links = old_receiver->incoming_links;
old_receiver->incoming_links.clear();
for (unsigned i = 0; i < new_receiver->incoming_links.size(); ++i) {
Node *sender = new_receiver->incoming_links[i];
for (unsigned j = 0; j < sender->outgoing_links.size(); ++j) {
if (sender->outgoing_links[j] == old_receiver) {
sender->outgoing_links[j] = new_receiver;
}
}
}
}
void EffectChain::replace_sender(Node *old_sender, Node *new_sender)
{
new_sender->outgoing_links = old_sender->outgoing_links;
old_sender->outgoing_links.clear();
for (unsigned i = 0; i < new_sender->outgoing_links.size(); ++i) {
Node *receiver = new_sender->outgoing_links[i];
for (unsigned j = 0; j < receiver->incoming_links.size(); ++j) {
if (receiver->incoming_links[j] == old_sender) {
receiver->incoming_links[j] = new_sender;
}
}
}
}
void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver)
{
for (unsigned i = 0; i < sender->outgoing_links.size(); ++i) {
if (sender->outgoing_links[i] == receiver) {
sender->outgoing_links[i] = middle;
middle->incoming_links.push_back(sender);
}
}
for (unsigned i = 0; i < receiver->incoming_links.size(); ++i) {
if (receiver->incoming_links[i] == sender) {
receiver->incoming_links[i] = middle;
middle->outgoing_links.push_back(receiver);
}
}
assert(middle->incoming_links.size() == middle->effect->num_inputs());
}
GLenum EffectChain::get_input_sampler(Node *node, unsigned input_num) const
{
assert(node->effect->needs_texture_bounce());
assert(input_num < node->incoming_links.size());
assert(node->incoming_links[input_num]->bound_sampler_num >= 0);
assert(node->incoming_links[input_num]->bound_sampler_num < 8);
return GL_TEXTURE0 + node->incoming_links[input_num]->bound_sampler_num;
}
GLenum EffectChain::has_input_sampler(Node *node, unsigned input_num) const
{
assert(input_num < node->incoming_links.size());
return node->incoming_links[input_num]->bound_sampler_num >= 0 &&
node->incoming_links[input_num]->bound_sampler_num < 8;
}
void EffectChain::find_all_nonlinear_inputs(Node *node, vector<Node *> *nonlinear_inputs)
{
if (node->output_gamma_curve == GAMMA_LINEAR &&
node->effect->effect_type_id() != "GammaCompressionEffect") {
return;
}
if (node->effect->num_inputs() == 0) {
nonlinear_inputs->push_back(node);
} else {
assert(node->effect->num_inputs() == node->incoming_links.size());
for (unsigned i = 0; i < node->incoming_links.size(); ++i) {
find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs);
}
}
}
Effect *EffectChain::add_effect(Effect *effect, const vector<Effect *> &inputs)
{
assert(!finalized);
assert(inputs.size() == effect->num_inputs());
Node *node = add_node(effect);
for (unsigned i = 0; i < inputs.size(); ++i) {
assert(node_map.count(inputs[i]) != 0);
connect_nodes(node_map[inputs[i]], node);
}
return effect;
}
// ESSL doesn't support token pasting. Replace PREFIX(x) with <effect_id>_x.
string replace_prefix(const string &text, const string &prefix)
{
string output;
size_t start = 0;
while (start < text.size()) {
size_t pos = text.find("PREFIX(", start);
if (pos == string::npos) {
output.append(text.substr(start, string::npos));
break;
}
output.append(text.substr(start, pos - start));
output.append(prefix);
output.append("_");
pos += strlen("PREFIX(");
// Output stuff until we find the matching ), which we then eat.
int depth = 1;
size_t end_arg_pos = pos;
while (end_arg_pos < text.size()) {
if (text[end_arg_pos] == '(') {
++depth;
} else if (text[end_arg_pos] == ')') {
--depth;
if (depth == 0) {
break;
}
}
++end_arg_pos;
}
output.append(text.substr(pos, end_arg_pos - pos));
++end_arg_pos;
assert(depth == 0);
start = end_arg_pos;
}
return output;
}
namespace {
template<class T>
void extract_uniform_declarations(const vector<Uniform<T>> &effect_uniforms,
const string &type_specifier,
const string &effect_id,
vector<Uniform<T>> *phase_uniforms,
string *glsl_string)
{
for (unsigned i = 0; i < effect_uniforms.size(); ++i) {
phase_uniforms->push_back(effect_uniforms[i]);
phase_uniforms->back().prefix = effect_id;
*glsl_string += string("uniform ") + type_specifier + " " + effect_id
+ "_" + effect_uniforms[i].name + ";\n";
}
}
template<class T>
void extract_uniform_array_declarations(const vector<Uniform<T>> &effect_uniforms,
const string &type_specifier,
const string &effect_id,
vector<Uniform<T>> *phase_uniforms,
string *glsl_string)
{
for (unsigned i = 0; i < effect_uniforms.size(); ++i) {
phase_uniforms->push_back(effect_uniforms[i]);
phase_uniforms->back().prefix = effect_id;
char buf[256];
snprintf(buf, sizeof(buf), "uniform %s %s_%s[%d];\n",
type_specifier.c_str(), effect_id.c_str(),
effect_uniforms[i].name.c_str(),
int(effect_uniforms[i].num_values));
*glsl_string += buf;
}
}
template<class T>
void collect_uniform_locations(GLuint glsl_program_num, vector<Uniform<T>> *phase_uniforms)
{
for (unsigned i = 0; i < phase_uniforms->size(); ++i) {
Uniform<T> &uniform = (*phase_uniforms)[i];
uniform.location = get_uniform_location(glsl_program_num, uniform.prefix, uniform.name);
}
}
} // namespace
void EffectChain::compile_glsl_program(Phase *phase)
{
string frag_shader_header;
if (phase->is_compute_shader) {
frag_shader_header = read_file("header.comp");
} else {
frag_shader_header = read_version_dependent_file("header", "frag");
}
string frag_shader = "";
// Create functions and uniforms for all the texture inputs that we need.
for (unsigned i = 0; i < phase->inputs.size(); ++i) {
Node *input = phase->inputs[i]->output_node;
char effect_id[256];
sprintf(effect_id, "in%u", i);
phase->effect_ids.insert(make_pair(make_pair(input, IN_ANOTHER_PHASE), effect_id));
frag_shader += string("uniform sampler2D tex_") + effect_id + ";\n";
frag_shader += string("vec4 ") + effect_id + "(vec2 tc) {\n";
frag_shader += "\tvec4 tmp = tex2D(tex_" + string(effect_id) + ", tc);\n";
if (intermediate_transformation == SQUARE_ROOT_FRAMEBUFFER_TRANSFORMATION &&
phase->inputs[i]->output_node->output_gamma_curve == GAMMA_LINEAR) {
frag_shader += "\ttmp.rgb *= tmp.rgb;\n";
}
frag_shader += "\treturn tmp;\n";
frag_shader += "}\n";
frag_shader += "\n";
Uniform<int> uniform;
uniform.name = effect_id;
uniform.value = &phase->input_samplers[i];
uniform.prefix = "tex";
uniform.num_values = 1;
uniform.location = -1;
phase->uniforms_sampler2d.push_back(uniform);
}
// Give each effect in the phase its own ID.
for (unsigned i = 0; i < phase->effects.size(); ++i) {
Node *node = phase->effects[i];
char effect_id[256];
sprintf(effect_id, "eff%u", i);
bool inserted = phase->effect_ids.insert(make_pair(make_pair(node, IN_SAME_PHASE), effect_id)).second;
assert(inserted);
}
for (unsigned i = 0; i < phase->effects.size(); ++i) {
Node *node = phase->effects[i];
const string effect_id = phase->effect_ids[make_pair(node, IN_SAME_PHASE)];
for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
if (node->incoming_links.size() == 1) {
frag_shader += "#define INPUT";
} else {
char buf[256];
sprintf(buf, "#define INPUT%d", j + 1);
frag_shader += buf;
}
Node *input = node->incoming_links[j];
NodeLinkType link_type = node->incoming_link_type[j];
if (i != 0 &&
input->effect->is_compute_shader() &&
node->incoming_link_type[j] == IN_SAME_PHASE) {
// First effect after the compute shader reads the value
// that cs_output() wrote to a global variable,
// ignoring the tc (since all such effects have to be
// strong one-to-one).
frag_shader += "(tc) CS_OUTPUT_VAL\n";
} else {
assert(phase->effect_ids.count(make_pair(input, link_type)));
frag_shader += string(" ") + phase->effect_ids[make_pair(input, link_type)] + "\n";
}
}
frag_shader += "\n";
frag_shader += string("#define FUNCNAME ") + effect_id + "\n";
if (node->effect->is_compute_shader()) {
frag_shader += string("#define NORMALIZE_TEXTURE_COORDS(tc) ((tc) * ") + effect_id + "_inv_output_size + " + effect_id + "_output_texcoord_adjust)\n";
}
frag_shader += replace_prefix(node->effect->output_fragment_shader(), effect_id);
frag_shader += "#undef FUNCNAME\n";
if (node->incoming_links.size() == 1) {
frag_shader += "#undef INPUT\n";
} else {
for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
char buf[256];
sprintf(buf, "#undef INPUT%d\n", j + 1);
frag_shader += buf;
}
}
frag_shader += "\n";
}
if (phase->is_compute_shader) {
assert(phase->effect_ids.count(make_pair(phase->compute_shader_node, IN_SAME_PHASE)));
frag_shader += string("#define INPUT ") + phase->effect_ids[make_pair(phase->compute_shader_node, IN_SAME_PHASE)] + "\n";
if (phase->compute_shader_node == phase->effects.back()) {
// No postprocessing.
frag_shader += "#define CS_POSTPROC(tc) CS_OUTPUT_VAL\n";
} else {
frag_shader += string("#define CS_POSTPROC ") + phase->effect_ids[make_pair(phase->effects.back(), IN_SAME_PHASE)] + "\n";
}
} else {
assert(phase->effect_ids.count(make_pair(phase->effects.back(), IN_SAME_PHASE)));
frag_shader += string("#define INPUT ") + phase->effect_ids[make_pair(phase->effects.back(), IN_SAME_PHASE)] + "\n";
}
// If we're the last phase, add the right #defines for Y'CbCr multi-output as needed.
vector<string> frag_shader_outputs; // In order.
if (phase->output_node->outgoing_links.empty() && num_output_color_ycbcr > 0) {
switch (output_ycbcr_splitting[0]) {
case YCBCR_OUTPUT_INTERLEAVED:
// No #defines set.
frag_shader_outputs.push_back("FragColor");
break;
case YCBCR_OUTPUT_SPLIT_Y_AND_CBCR:
frag_shader += "#define YCBCR_OUTPUT_SPLIT_Y_AND_CBCR 1\n";
frag_shader_outputs.push_back("Y");
frag_shader_outputs.push_back("Chroma");
break;
case YCBCR_OUTPUT_PLANAR:
frag_shader += "#define YCBCR_OUTPUT_PLANAR 1\n";
frag_shader_outputs.push_back("Y");
frag_shader_outputs.push_back("Cb");
frag_shader_outputs.push_back("Cr");
break;
default:
assert(false);
}
if (num_output_color_ycbcr > 1) {
switch (output_ycbcr_splitting[1]) {
case YCBCR_OUTPUT_INTERLEAVED:
frag_shader += "#define SECOND_YCBCR_OUTPUT_INTERLEAVED 1\n";
frag_shader_outputs.push_back("YCbCr2");
break;
case YCBCR_OUTPUT_SPLIT_Y_AND_CBCR:
frag_shader += "#define SECOND_YCBCR_OUTPUT_SPLIT_Y_AND_CBCR 1\n";
frag_shader_outputs.push_back("Y2");
frag_shader_outputs.push_back("Chroma2");
break;
case YCBCR_OUTPUT_PLANAR:
frag_shader += "#define SECOND_YCBCR_OUTPUT_PLANAR 1\n";
frag_shader_outputs.push_back("Y2");
frag_shader_outputs.push_back("Cb2");
frag_shader_outputs.push_back("Cr2");
break;
default:
assert(false);
}
}
if (output_color_rgba) {
// Note: Needs to come in the header, because not only the
// output needs to see it (YCbCrConversionEffect and DitherEffect
// do, too).
frag_shader_header += "#define YCBCR_ALSO_OUTPUT_RGBA 1\n";
frag_shader_outputs.push_back("RGBA");
}
}
// If we're bouncing to a temporary texture, signal transformation if desired.
if (!phase->output_node->outgoing_links.empty()) {
if (intermediate_transformation == SQUARE_ROOT_FRAMEBUFFER_TRANSFORMATION &&
phase->output_node->output_gamma_curve == GAMMA_LINEAR) {
frag_shader += "#define SQUARE_ROOT_TRANSFORMATION 1\n";
}
}
if (phase->is_compute_shader) {
frag_shader.append(read_file("footer.comp"));
phase->compute_shader_node->effect->register_uniform_ivec2("output_size", phase->uniform_output_size);
phase->compute_shader_node->effect->register_uniform_vec2("inv_output_size", (float *)&phase->inv_output_size);
phase->compute_shader_node->effect->register_uniform_vec2("output_texcoord_adjust", (float *)&phase->output_texcoord_adjust);
} else {
frag_shader.append(read_file("footer.frag"));
}
// Collect uniforms from all effects and output them. Note that this needs
// to happen after output_fragment_shader(), even though the uniforms come
// before in the output source, since output_fragment_shader() is allowed
// to register new uniforms (e.g. arrays that are of unknown length until
// finalization time).
// TODO: Make a uniform block for platforms that support it.
string frag_shader_uniforms = "";
for (unsigned i = 0; i < phase->effects.size(); ++i) {
Node *node = phase->effects[i];
Effect *effect = node->effect;
const string effect_id = phase->effect_ids[make_pair(node, IN_SAME_PHASE)];
extract_uniform_declarations(effect->uniforms_image2d, "image2D", effect_id, &phase->uniforms_image2d, &frag_shader_uniforms);
extract_uniform_declarations(effect->uniforms_sampler2d, "sampler2D", effect_id, &phase->uniforms_sampler2d, &frag_shader_uniforms);
extract_uniform_declarations(effect->uniforms_bool, "bool", effect_id, &phase->uniforms_bool, &frag_shader_uniforms);
extract_uniform_declarations(effect->uniforms_int, "int", effect_id, &phase->uniforms_int, &frag_shader_uniforms);
extract_uniform_declarations(effect->uniforms_ivec2, "ivec2", effect_id, &phase->uniforms_ivec2, &frag_shader_uniforms);
extract_uniform_declarations(effect->uniforms_float, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms);
extract_uniform_declarations(effect->uniforms_vec2, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms);
extract_uniform_declarations(effect->uniforms_vec3, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms);
extract_uniform_declarations(effect->uniforms_vec4, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms);
extract_uniform_array_declarations(effect->uniforms_float_array, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms);
extract_uniform_array_declarations(effect->uniforms_vec2_array, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms);
extract_uniform_array_declarations(effect->uniforms_vec3_array, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms);
extract_uniform_array_declarations(effect->uniforms_vec4_array, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms);
extract_uniform_declarations(effect->uniforms_mat3, "mat3", effect_id, &phase->uniforms_mat3, &frag_shader_uniforms);
}
string vert_shader = read_version_dependent_file("vs", "vert");
// If we're the last phase and need to flip the picture to compensate for
// the origin, tell the vertex or compute shader so.
bool is_last_phase;
if (has_dummy_effect) {
is_last_phase = (phase->output_node->outgoing_links.size() == 1 &&
phase->output_node->outgoing_links[0]->effect->effect_type_id() == "ComputeShaderOutputDisplayEffect");
} else {
is_last_phase = phase->output_node->outgoing_links.empty();
}
if (is_last_phase && output_origin == OUTPUT_ORIGIN_TOP_LEFT) {
if (phase->is_compute_shader) {
frag_shader_header += "#define FLIP_ORIGIN 1\n";
} else {
const string needle = "#define FLIP_ORIGIN 0";
size_t pos = vert_shader.find(needle);
assert(pos != string::npos);
vert_shader[pos + needle.size() - 1] = '1';
}
}
frag_shader = frag_shader_header + frag_shader_uniforms + frag_shader;
if (phase->is_compute_shader) {
phase->glsl_program_num = resource_pool->compile_glsl_compute_program(frag_shader);
Uniform<int> uniform;
uniform.name = "outbuf";
uniform.value = &phase->outbuf_image_unit;
uniform.prefix = "tex";
uniform.num_values = 1;
uniform.location = -1;
phase->uniforms_image2d.push_back(uniform);
} else {
phase->glsl_program_num = resource_pool->compile_glsl_program(vert_shader, frag_shader, frag_shader_outputs);
}
GLint position_attribute_index = glGetAttribLocation(phase->glsl_program_num, "position");
GLint texcoord_attribute_index = glGetAttribLocation(phase->glsl_program_num, "texcoord");
if (position_attribute_index != -1) {
phase->attribute_indexes.insert(position_attribute_index);
}
if (texcoord_attribute_index != -1) {
phase->attribute_indexes.insert(texcoord_attribute_index);
}
// Collect the resulting location numbers for each uniform.
collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_image2d);
collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_sampler2d);
collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_bool);
collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_int);
collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_ivec2);
collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_float);
collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec2);
collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec3);
collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec4);
collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_mat3);
}
// Construct GLSL programs, starting at the given effect and following
// the chain from there. We end a program every time we come to an effect
// marked as "needs texture bounce", one that is used by multiple other
// effects, every time we need to bounce due to output size change
// (not all size changes require ending), and of course at the end.
//
// We follow a quite simple depth-first search from the output, although
// without recursing explicitly within each phase.
Phase *EffectChain::construct_phase(Node *output, map<Node *, Phase *> *completed_effects)
{
if (completed_effects->count(output)) {
return (*completed_effects)[output];
}
Phase *phase = new Phase;
phase->output_node = output;
phase->is_compute_shader = false;
phase->compute_shader_node = nullptr;
// If the output effect has one-to-one sampling, we try to trace this
// status down through the dependency chain. This is important in case
// we hit an effect that changes output size (and not sets a virtual
// output size); if we have one-to-one sampling, we don't have to break
// the phase.
output->one_to_one_sampling = output->effect->one_to_one_sampling();
output->strong_one_to_one_sampling = output->effect->strong_one_to_one_sampling();
// Effects that we have yet to calculate, but that we know should
// be in the current phase.
stack<Node *> effects_todo_this_phase;
effects_todo_this_phase.push(output);
while (!effects_todo_this_phase.empty()) {
Node *node = effects_todo_this_phase.top();
effects_todo_this_phase.pop();
assert(node->effect->one_to_one_sampling() >= node->effect->strong_one_to_one_sampling());
if (node->effect->needs_mipmaps() != Effect::DOES_NOT_NEED_MIPMAPS) {
// Can't have incompatible requirements imposed on us from a dependent effect;
// if so, it should have started a new phase instead.
assert(node->needs_mipmaps == Effect::DOES_NOT_NEED_MIPMAPS ||
node->needs_mipmaps == node->effect->needs_mipmaps());
node->needs_mipmaps = node->effect->needs_mipmaps();
}
// This should currently only happen for effects that are inputs
// (either true inputs or phase outputs). We special-case inputs,
// and then deduplicate phase outputs below.
if (node->effect->num_inputs() == 0) {
if (find(phase->effects.begin(), phase->effects.end(), node) != phase->effects.end()) {
continue;
}
} else {
assert(completed_effects->count(node) == 0);
}
phase->effects.push_back(node);
if (node->effect->is_compute_shader()) {
assert(phase->compute_shader_node == nullptr ||
phase->compute_shader_node == node);
phase->is_compute_shader = true;
phase->compute_shader_node = node;
}
// Find all the dependencies of this effect, and add them to the stack.
assert(node->effect->num_inputs() == node->incoming_links.size());
for (Node *dep : node->incoming_links) {
bool start_new_phase = false;
Effect::MipmapRequirements save_needs_mipmaps = dep->needs_mipmaps;
if (node->effect->needs_texture_bounce() &&
!dep->effect->is_single_texture() &&
!dep->effect->override_disable_bounce()) {
start_new_phase = true;
}
// Propagate information about needing mipmaps down the chain,
// breaking the phase if we notice an incompatibility.
//
// Note that we cannot do this propagation as a normal pass,
// because it needs information about where the phases end
// (we should not propagate the flag across phases).
if (node->needs_mipmaps != Effect::DOES_NOT_NEED_MIPMAPS) {
// The node can have a value set (ie. not DOES_NOT_NEED_MIPMAPS)
// if we have diamonds in the graph; if so, choose that.
// If not, the effect on the node can also decide (this is the
// more common case).
Effect::MipmapRequirements dep_mipmaps = dep->needs_mipmaps;
if (dep_mipmaps == Effect::DOES_NOT_NEED_MIPMAPS) {
if (dep->effect->num_inputs() == 0) {
Input *input = static_cast<Input *>(dep->effect);
dep_mipmaps = input->can_supply_mipmaps() ? Effect::DOES_NOT_NEED_MIPMAPS : Effect::CANNOT_ACCEPT_MIPMAPS;
} else {
dep_mipmaps = dep->effect->needs_mipmaps();
}
}
if (dep_mipmaps == Effect::DOES_NOT_NEED_MIPMAPS) {
dep->needs_mipmaps = node->needs_mipmaps;
} else if (dep_mipmaps != node->needs_mipmaps) {
// The dependency cannot supply our mipmap demands
// (either because it's an input that can't do mipmaps,
// or because there's a conflict between mipmap-needing
// and mipmap-refusing effects somewhere in the graph),
// so they cannot be in the same phase.
start_new_phase = true;
}
}
if (dep->outgoing_links.size() > 1) {
if (!dep->effect->is_single_texture()) {
// More than one effect uses this as the input,
// and it is not a texture itself.
// The easiest thing to do (and probably also the safest
// performance-wise in most cases) is to bounce it to a texture
// and then let the next passes read from that.
start_new_phase = true;
} else {
assert(dep->effect->num_inputs() == 0);
// For textures, we try to be slightly more clever;
// if none of our outputs need a bounce, we don't bounce
// but instead simply use the effect many times.
//
// Strictly speaking, we could bounce it for some outputs
// and use it directly for others, but the processing becomes
// somewhat simpler if the effect is only used in one such way.
for (unsigned j = 0; j < dep->outgoing_links.size(); ++j) {
Node *rdep = dep->outgoing_links[j];
start_new_phase |= rdep->effect->needs_texture_bounce();
}
}
}
if (dep->effect->is_compute_shader()) {
if (phase->is_compute_shader) {
// Only one compute shader per phase.
start_new_phase = true;
} else if (!node->strong_one_to_one_sampling) {
// If all nodes so far are strong one-to-one, we can put them after
// the compute shader (ie., process them on the output).
start_new_phase = true;
} else if (!start_new_phase) {
phase->is_compute_shader = true;
phase->compute_shader_node = dep;
}
} else if (dep->effect->sets_virtual_output_size()) {
assert(dep->effect->changes_output_size());
// If the next effect sets a virtual size to rely on OpenGL's
// bilinear sampling, we'll really need to break the phase here.
start_new_phase = true;
} else if (dep->effect->changes_output_size() && !node->one_to_one_sampling) {
// If the next effect changes size and we don't have one-to-one sampling,
// we also need to break here.
start_new_phase = true;
}
if (start_new_phase) {
// Since we're starting a new phase here, we don't need to impose any
// new demands on this effect. Restore the status we had before we
// started looking at it.
dep->needs_mipmaps = save_needs_mipmaps;
phase->inputs.push_back(construct_phase(dep, completed_effects));
} else {
effects_todo_this_phase.push(dep);
// Propagate the one-to-one status down through the dependency.
dep->one_to_one_sampling = node->one_to_one_sampling &&
dep->effect->one_to_one_sampling();
dep->strong_one_to_one_sampling = node->strong_one_to_one_sampling &&
dep->effect->strong_one_to_one_sampling();
}
node->incoming_link_type.push_back(start_new_phase ? IN_ANOTHER_PHASE : IN_SAME_PHASE);
}
}
// No more effects to do this phase. Take all the ones we have,
// and create a GLSL program for it.
assert(!phase->effects.empty());
// Deduplicate the inputs, but don't change the ordering e.g. by sorting;
// that would be nondeterministic and thus reduce cacheability.
// TODO: Make this even more deterministic.
vector<Phase *> dedup_inputs;
set<Phase *> seen_inputs;
for (size_t i = 0; i < phase->inputs.size(); ++i) {
if (seen_inputs.insert(phase->inputs[i]).second) {
dedup_inputs.push_back(phase->inputs[i]);
}
}
swap(phase->inputs, dedup_inputs);
// Allocate samplers for each input.
phase->input_samplers.resize(phase->inputs.size());
// We added the effects from the output and back, but we need to output
// them in topological sort order in the shader.
phase->effects = topological_sort(phase->effects);
// Figure out if we need mipmaps or not, and if so, tell the inputs that.
// (RTT inputs have different logic, which is checked in execute_phase().)
for (unsigned i = 0; i < phase->effects.size(); ++i) {
Node *node = phase->effects[i];
if (node->effect->num_inputs() == 0) {
Input *input = static_cast<Input *>(node->effect);
assert(node->needs_mipmaps != Effect::NEEDS_MIPMAPS || input->can_supply_mipmaps());
CHECK(input->set_int("needs_mipmaps", node->needs_mipmaps == Effect::NEEDS_MIPMAPS));
}
}
// Tell each node which phase it ended up in, so that the unit test
// can check that the phases were split in the right place.
// Note that this ignores that effects may be part of multiple phases;
// if the unit tests need to test such cases, we'll reconsider.
for (unsigned i = 0; i < phase->effects.size(); ++i) {
phase->effects[i]->containing_phase = phase;
}
// Actually make the shader for this phase.
compile_glsl_program(phase);
// Initialize timers.
if (movit_timer_queries_supported) {
phase->time_elapsed_ns = 0;
phase->num_measured_iterations = 0;
}
assert(completed_effects->count(output) == 0);
completed_effects->insert(make_pair(output, phase));
phases.push_back(phase);
return phase;
}
void EffectChain::output_dot(const char *filename)
{
if (movit_debug_level != MOVIT_DEBUG_ON) {
return;
}
FILE *fp = fopen(filename, "w");
if (fp == nullptr) {
perror(filename);
exit(1);
}
fprintf(fp, "digraph G {\n");
fprintf(fp, " output [shape=box label=\"(output)\"];\n");
for (unsigned i = 0; i < nodes.size(); ++i) {
// Find out which phase this event belongs to.
vector<int> in_phases;
for (unsigned j = 0; j < phases.size(); ++j) {
const Phase* p = phases[j];
if (find(p->effects.begin(), p->effects.end(), nodes[i]) != p->effects.end()) {
in_phases.push_back(j);
}
}
if (in_phases.empty()) {
fprintf(fp, " n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str());
} else if (in_phases.size() == 1) {
fprintf(fp, " n%ld [label=\"%s\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n",
(long)nodes[i], nodes[i]->effect->effect_type_id().c_str(),
(in_phases[0] % 8) + 1);
} else {
// If we had new enough Graphviz, style="wedged" would probably be ideal here.
// But alas.
fprintf(fp, " n%ld [label=\"%s [in multiple phases]\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n",
(long)nodes[i], nodes[i]->effect->effect_type_id().c_str(),
(in_phases[0] % 8) + 1);
}
char from_node_id[256];
snprintf(from_node_id, 256, "n%ld", (long)nodes[i]);
for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) {
char to_node_id[256];
snprintf(to_node_id, 256, "n%ld", (long)nodes[i]->outgoing_links[j]);
vector<string> labels = get_labels_for_edge(nodes[i], nodes[i]->outgoing_links[j]);
output_dot_edge(fp, from_node_id, to_node_id, labels);
}
if (nodes[i]->outgoing_links.empty() && !nodes[i]->disabled) {
// Output node.
vector<string> labels = get_labels_for_edge(nodes[i], nullptr);
output_dot_edge(fp, from_node_id, "output", labels);
}
}
fprintf(fp, "}\n");
fclose(fp);
}
vector<string> EffectChain::get_labels_for_edge(const Node *from, const Node *to)
{
vector<string> labels;
if (to != nullptr && to->effect->needs_texture_bounce()) {
labels.push_back("needs_bounce");
}
if (from->effect->changes_output_size()) {
labels.push_back("resize");
}
switch (from->output_color_space) {
case COLORSPACE_INVALID:
labels.push_back("spc[invalid]");
break;
case COLORSPACE_REC_601_525:
labels.push_back("spc[rec601-525]");
break;
case COLORSPACE_REC_601_625:
labels.push_back("spc[rec601-625]");
break;
default:
break;
}
switch (from->output_gamma_curve) {
case GAMMA_INVALID:
labels.push_back("gamma[invalid]");
break;
case GAMMA_sRGB:
labels.push_back("gamma[sRGB]");
break;
case GAMMA_REC_601: // and GAMMA_REC_709
labels.push_back("gamma[rec601/709]");
break;
default:
break;
}
switch (from->output_alpha_type) {
case ALPHA_INVALID:
labels.push_back("alpha[invalid]");
break;
case ALPHA_BLANK:
labels.push_back("alpha[blank]");
break;
case ALPHA_POSTMULTIPLIED:
labels.push_back("alpha[postmult]");
break;
default:
break;
}
return labels;
}
void EffectChain::output_dot_edge(FILE *fp,
const string &from_node_id,
const string &to_node_id,
const vector<string> &labels)
{
if (labels.empty()) {
fprintf(fp, " %s -> %s;\n", from_node_id.c_str(), to_node_id.c_str());
} else {
string label = labels[0];
for (unsigned k = 1; k < labels.size(); ++k) {
label += ", " + labels[k];
}
fprintf(fp, " %s -> %s [label=\"%s\"];\n", from_node_id.c_str(), to_node_id.c_str(), label.c_str());
}
}
void EffectChain::size_rectangle_to_fit(unsigned width, unsigned height, unsigned *output_width, unsigned *output_height)
{
unsigned scaled_width, scaled_height;
if (float(width) * aspect_denom >= float(height) * aspect_nom) {
// Same aspect, or W/H > aspect (image is wider than the frame).
// In either case, keep width, and adjust height.
scaled_width = width;
scaled_height = lrintf(width * aspect_denom / aspect_nom);
} else {
// W/H < aspect (image is taller than the frame), so keep height,
// and adjust width.
scaled_width = lrintf(height * aspect_nom / aspect_denom);
scaled_height = height;
}
// We should be consistently larger or smaller then the existing choice,
// since we have the same aspect.
assert(!(scaled_width < *output_width && scaled_height > *output_height));
assert(!(scaled_height < *output_height && scaled_width > *output_width));
if (scaled_width >= *output_width && scaled_height >= *output_height) {
*output_width = scaled_width;
*output_height = scaled_height;
}
}
// Propagate input texture sizes throughout, and inform effects downstream.
// (Like a lot of other code, we depend on effects being in topological order.)
void EffectChain::inform_input_sizes(Phase *phase)
{
// All effects that have a defined size (inputs and RTT inputs)
// get that. Reset all others.
for (unsigned i = 0; i < phase->effects.size(); ++i) {
Node *node = phase->effects[i];
if (node->effect->num_inputs() == 0) {
Input *input = static_cast<Input *>(node->effect);
node->output_width = input->get_width();
node->output_height = input->get_height();
assert(node->output_width != 0);
assert(node->output_height != 0);
} else {
node->output_width = node->output_height = 0;
}
}
for (unsigned i = 0; i < phase->inputs.size(); ++i) {
Phase *input = phase->inputs[i];
input->output_node->output_width = input->virtual_output_width;
input->output_node->output_height = input->virtual_output_height;
assert(input->output_node->output_width != 0);
assert(input->output_node->output_height != 0);
}
// Now propagate from the inputs towards the end, and inform as we go.
// The rules are simple:
//
// 1. Don't touch effects that already have given sizes (ie., inputs
// or effects that change the output size).
// 2. If all of your inputs have the same size, that will be your output size.
// 3. Otherwise, your output size is 0x0.
for (unsigned i = 0; i < phase->effects.size(); ++i) {
Node *node = phase->effects[i];
if (node->effect->num_inputs() == 0) {
continue;
}
unsigned this_output_width = 0;
unsigned this_output_height = 0;
for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
Node *input = node->incoming_links[j];
node->effect->inform_input_size(j, input->output_width, input->output_height);
if (j == 0) {
this_output_width = input->output_width;
this_output_height = input->output_height;
} else if (input->output_width != this_output_width || input->output_height != this_output_height) {
// Inputs disagree.
this_output_width = 0;
this_output_height = 0;
}
}
if (node->effect->changes_output_size()) {
// We cannot call get_output_size() before we've done inform_input_size()
// on all inputs.
unsigned real_width, real_height;
node->effect->get_output_size(&real_width, &real_height,
&node->output_width, &node->output_height);
assert(node->effect->sets_virtual_output_size() ||
(real_width == node->output_width &&
real_height == node->output_height));
} else {
node->output_width = this_output_width;
node->output_height = this_output_height;
}
}
}
// Note: You should call inform_input_sizes() before this, as the last effect's
// desired output size might change based on the inputs.
void EffectChain::find_output_size(Phase *phase)
{
Node *output_node = phase->is_compute_shader ? phase->compute_shader_node : phase->effects.back();
// If the last effect explicitly sets an output size, use that.
if (output_node->effect->changes_output_size()) {
output_node->effect->get_output_size(&phase->output_width, &phase->output_height,
&phase->virtual_output_width, &phase->virtual_output_height);
assert(output_node->effect->sets_virtual_output_size() ||
(phase->output_width == phase->virtual_output_width &&
phase->output_height == phase->virtual_output_height));
return;
}
// If all effects have the same size, use that.
unsigned output_width = 0, output_height = 0;
bool all_inputs_same_size = true;
for (unsigned i = 0; i < phase->inputs.size(); ++i) {
Phase *input = phase->inputs[i];
assert(input->output_width != 0);
assert(input->output_height != 0);
if (output_width == 0 && output_height == 0) {
output_width = input->virtual_output_width;
output_height = input->virtual_output_height;
} else if (output_width != input->virtual_output_width ||
output_height != input->virtual_output_height) {
all_inputs_same_size = false;
}
}
for (unsigned i = 0; i < phase->effects.size(); ++i) {
Effect *effect = phase->effects[i]->effect;
if (effect->num_inputs() != 0) {
continue;
}
Input *input = static_cast<Input *>(effect);
if (output_width == 0 && output_height == 0) {
output_width = input->get_width();
output_height = input->get_height();
} else if (output_width != input->get_width() ||
output_height != input->get_height()) {
all_inputs_same_size = false;
}
}
if (all_inputs_same_size) {
assert(output_width != 0);
assert(output_height != 0);
phase->virtual_output_width = phase->output_width = output_width;
phase->virtual_output_height = phase->output_height = output_height;
return;
}
// If not, fit all the inputs into the current aspect, and select the largest one.
output_width = 0;
output_height = 0;
for (unsigned i = 0; i < phase->inputs.size(); ++i) {
Phase *input = phase->inputs[i];
assert(input->output_width != 0);
assert(input->output_height != 0);
size_rectangle_to_fit(input->output_width, input->output_height, &output_width, &output_height);
}
for (unsigned i = 0; i < phase->effects.size(); ++i) {
Effect *effect = phase->effects[i]->effect;
if (effect->num_inputs() != 0) {
continue;
}
Input *input = static_cast<Input *>(effect);
size_rectangle_to_fit(input->get_width(), input->get_height(), &output_width, &output_height);
}
assert(output_width != 0);
assert(output_height != 0);
phase->virtual_output_width = phase->output_width = output_width;
phase->virtual_output_height = phase->output_height = output_height;
}
void EffectChain::sort_all_nodes_topologically()
{
nodes = topological_sort(nodes);
}
vector<Node *> EffectChain::topological_sort(const vector<Node *> &nodes)
{
set<Node *> nodes_left_to_visit(nodes.begin(), nodes.end());
vector<Node *> sorted_list;
for (unsigned i = 0; i < nodes.size(); ++i) {
topological_sort_visit_node(nodes[i], &nodes_left_to_visit, &sorted_list);
}
reverse(sorted_list.begin(), sorted_list.end());
return sorted_list;
}
void EffectChain::topological_sort_visit_node(Node *node, set<Node *> *nodes_left_to_visit, vector<Node *> *sorted_list)
{
if (nodes_left_to_visit->count(node) == 0) {
return;
}
nodes_left_to_visit->erase(node);
for (unsigned i = 0; i < node->outgoing_links.size(); ++i) {
topological_sort_visit_node(node->outgoing_links[i], nodes_left_to_visit, sorted_list);
}
sorted_list->push_back(node);
}
void EffectChain::find_color_spaces_for_inputs()
{
for (unsigned i = 0; i < nodes.size(); ++i) {
Node *node = nodes[i];
if (node->disabled) {
continue;
}
if (node->incoming_links.size() == 0) {
Input *input = static_cast<Input *>(node->effect);
node->output_color_space = input->get_color_space();
node->output_gamma_curve = input->get_gamma_curve();
Effect::AlphaHandling alpha_handling = input->alpha_handling();
switch (alpha_handling) {
case Effect::OUTPUT_BLANK_ALPHA:
node->output_alpha_type = ALPHA_BLANK;
break;
case Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA:
node->output_alpha_type = ALPHA_PREMULTIPLIED;
break;
case Effect::OUTPUT_POSTMULTIPLIED_ALPHA:
node->output_alpha_type = ALPHA_POSTMULTIPLIED;
break;
case Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK:
case Effect::DONT_CARE_ALPHA_TYPE:
default:
assert(false);
}
if (node->output_alpha_type == ALPHA_PREMULTIPLIED) {
assert(node->output_gamma_curve == GAMMA_LINEAR);
}
}
}
}
// Propagate gamma and color space information as far as we can in the graph.
// The rules are simple: Anything where all the inputs agree, get that as
// output as well. Anything else keeps having *_INVALID.
void EffectChain::propagate_gamma_and_color_space()
{
// We depend on going through the nodes in order.
sort_all_nodes_topologically();
for (unsigned i = 0; i < nodes.size(); ++i) {
Node *node = nodes[i];
if (node->disabled) {
continue;
}
assert(node->incoming_links.size() == node->effect->num_inputs());
if (node->incoming_links.size() == 0) {
assert(node->output_color_space != COLORSPACE_INVALID);
assert(node->output_gamma_curve != GAMMA_INVALID);
continue;
}
Colorspace color_space = node->incoming_links[0]->output_color_space;
GammaCurve gamma_curve = node->incoming_links[0]->output_gamma_curve;
for (unsigned j = 1; j < node->incoming_links.size(); ++j) {
if (node->incoming_links[j]->output_color_space != color_space) {
color_space = COLORSPACE_INVALID;
}
if (node->incoming_links[j]->output_gamma_curve != gamma_curve) {
gamma_curve = GAMMA_INVALID;
}
}
// The conversion effects already have their outputs set correctly,
// so leave them alone.
if (node->effect->effect_type_id() != "ColorspaceConversionEffect") {
node->output_color_space = color_space;
}
if (node->effect->effect_type_id() != "GammaCompressionEffect" &&
node->effect->effect_type_id() != "GammaExpansionEffect") {
node->output_gamma_curve = gamma_curve;
}
}
}
// Propagate alpha information as far as we can in the graph.
// Similar to propagate_gamma_and_color_space().
void EffectChain::propagate_alpha()
{
// We depend on going through the nodes in order.
sort_all_nodes_topologically();
for (unsigned i = 0; i < nodes.size(); ++i) {
Node *node = nodes[i];
if (node->disabled) {
continue;
}
assert(node->incoming_links.size() == node->effect->num_inputs());
if (node->incoming_links.size() == 0) {
assert(node->output_alpha_type != ALPHA_INVALID);
continue;
}
// The alpha multiplication/division effects are special cases.
if (node->effect->effect_type_id() == "AlphaMultiplicationEffect") {
assert(node->incoming_links.size() == 1);
assert(node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED);
node->output_alpha_type = ALPHA_PREMULTIPLIED;
continue;
}
if (node->effect->effect_type_id() == "AlphaDivisionEffect") {
assert(node->incoming_links.size() == 1);
assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED);
node->output_alpha_type = ALPHA_POSTMULTIPLIED;
continue;
}
// GammaCompressionEffect and GammaExpansionEffect are also a special case,
// because they are the only one that _need_ postmultiplied alpha.
if (node->effect->effect_type_id() == "GammaCompressionEffect" ||
node->effect->effect_type_id() == "GammaExpansionEffect") {
assert(node->incoming_links.size() == 1);
if (node->incoming_links[0]->output_alpha_type == ALPHA_BLANK) {
node->output_alpha_type = ALPHA_BLANK;
} else if (node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED) {
node->output_alpha_type = ALPHA_POSTMULTIPLIED;
} else {
node->output_alpha_type = ALPHA_INVALID;
}
continue;
}
// Only inputs can have unconditional alpha output (OUTPUT_BLANK_ALPHA
// or OUTPUT_POSTMULTIPLIED_ALPHA), and they have already been
// taken care of above. Rationale: Even if you could imagine
// e.g. an effect that took in an image and set alpha=1.0
// unconditionally, it wouldn't make any sense to have it as
// e.g. OUTPUT_BLANK_ALPHA, since it wouldn't know whether it
// got its input pre- or postmultiplied, so it wouldn't know
// whether to divide away the old alpha or not.
Effect::AlphaHandling alpha_handling = node->effect->alpha_handling();
assert(alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK ||
alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);
// If the node has multiple inputs, check that they are all valid and
// the same.
bool any_invalid = false;
bool any_premultiplied = false;
bool any_postmultiplied = false;
for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
switch (node->incoming_links[j]->output_alpha_type) {
case ALPHA_INVALID:
any_invalid = true;
break;
case ALPHA_BLANK:
// Blank is good as both pre- and postmultiplied alpha,
// so just ignore it.
break;
case ALPHA_PREMULTIPLIED:
any_premultiplied = true;
break;
case ALPHA_POSTMULTIPLIED:
any_postmultiplied = true;
break;
default:
assert(false);
}
}
if (any_invalid) {
node->output_alpha_type = ALPHA_INVALID;
continue;
}
// Inputs must be of the same type.
if (any_premultiplied && any_postmultiplied) {
node->output_alpha_type = ALPHA_INVALID;
continue;
}
if (alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
// This combination (requiring premultiplied alpha, but _not_ requiring
// linear light) is illegal, since the combination of premultiplied alpha
// and nonlinear inputs is meaningless.
assert(node->effect->needs_linear_light());
// If the effect has asked for premultiplied alpha, check that it has got it.
if (any_postmultiplied) {
node->output_alpha_type = ALPHA_INVALID;
} else if (!any_premultiplied &&
alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
// Blank input alpha, and the effect preserves blank alpha.
node->output_alpha_type = ALPHA_BLANK;
} else {
node->output_alpha_type = ALPHA_PREMULTIPLIED;
}
} else {
// OK, all inputs are the same, and this effect is not going
// to change it.
assert(alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);
if (any_premultiplied) {
node->output_alpha_type = ALPHA_PREMULTIPLIED;
} else if (any_postmultiplied) {
node->output_alpha_type = ALPHA_POSTMULTIPLIED;
} else {
node->output_alpha_type = ALPHA_BLANK;
}
}
}
}
bool EffectChain::node_needs_colorspace_fix(Node *node)
{
if (node->disabled) {
return false;
}
if (node->effect->num_inputs() == 0) {
return false;
}
// propagate_gamma_and_color_space() has already set our output
// to COLORSPACE_INVALID if the inputs differ, so we can rely on that.
if (node->output_color_space == COLORSPACE_INVALID) {
return true;
}
return (node->effect->needs_srgb_primaries() && node->output_color_space != COLORSPACE_sRGB);
}
// Fix up color spaces so that there are no COLORSPACE_INVALID nodes left in
// the graph. Our strategy is not always optimal, but quite simple:
// Find an effect that's as early as possible where the inputs are of
// unacceptable colorspaces (that is, either different, or, if the effect only
// wants sRGB, not sRGB.) Add appropriate conversions on all its inputs,
// propagate the information anew, and repeat until there are no more such
// effects.
void EffectChain::fix_internal_color_spaces()
{
unsigned colorspace_propagation_pass = 0;
bool found_any;
do {
found_any = false;
for (unsigned i = 0; i < nodes.size(); ++i) {
Node *node = nodes[i];
if (!node_needs_colorspace_fix(node)) {
continue;
}
// Go through each input that is not sRGB, and insert
// a colorspace conversion after it.
for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
Node *input = node->incoming_links[j];
assert(input->output_color_space != COLORSPACE_INVALID);
if (input->output_color_space == COLORSPACE_sRGB) {
continue;
}
Node *conversion = add_node(new ColorspaceConversionEffect());
CHECK(conversion->effect->set_int("source_space", input->output_color_space));
CHECK(conversion->effect->set_int("destination_space", COLORSPACE_sRGB));
conversion->output_color_space = COLORSPACE_sRGB;
replace_sender(input, conversion);
connect_nodes(input, conversion);
}
// Re-sort topologically, and propagate the new information.
propagate_gamma_and_color_space();
found_any = true;
break;
}
char filename[256];
sprintf(filename, "step5-colorspacefix-iter%u.dot", ++colorspace_propagation_pass);
output_dot(filename);
assert(colorspace_propagation_pass < 100);
} while (found_any);
for (unsigned i = 0; i < nodes.size(); ++i) {
Node *node = nodes[i];
if (node->disabled) {
continue;
}
assert(node->output_color_space != COLORSPACE_INVALID);
}
}
bool EffectChain::node_needs_alpha_fix(Node *node)
{
if (node->disabled) {
return false;
}
// propagate_alpha() has already set our output to ALPHA_INVALID if the
// inputs differ or we are otherwise in mismatch, so we can rely on that.
return (node->output_alpha_type == ALPHA_INVALID);
}
// Fix up alpha so that there are no ALPHA_INVALID nodes left in
// the graph. Similar to fix_internal_color_spaces().
void EffectChain::fix_internal_alpha(unsigned step)
{
unsigned alpha_propagation_pass = 0;
bool found_any;
do {
found_any = false;
for (unsigned i = 0; i < nodes.size(); ++i) {
Node *node = nodes[i];
if (!node_needs_alpha_fix(node)) {
continue;
}
// If we need to fix up GammaExpansionEffect, then clearly something
// is wrong, since the combination of premultiplied alpha and nonlinear inputs
// is meaningless.
assert(node->effect->effect_type_id() != "GammaExpansionEffect");
AlphaType desired_type = ALPHA_PREMULTIPLIED;
// GammaCompressionEffect is special; it needs postmultiplied alpha.
if (node->effect->effect_type_id() == "GammaCompressionEffect") {
assert(node->incoming_links.size() == 1);
assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED);
desired_type = ALPHA_POSTMULTIPLIED;
}
// Go through each input that is not premultiplied alpha, and insert
// a conversion before it.
for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
Node *input = node->incoming_links[j];
assert(input->output_alpha_type != ALPHA_INVALID);
if (input->output_alpha_type == desired_type ||
input->output_alpha_type == ALPHA_BLANK) {
continue;
}
Node *conversion;
if (desired_type == ALPHA_PREMULTIPLIED) {
conversion = add_node(new AlphaMultiplicationEffect());
} else {
conversion = add_node(new AlphaDivisionEffect());
}
conversion->output_alpha_type = desired_type;
replace_sender(input, conversion);
connect_nodes(input, conversion);
}
// Re-sort topologically, and propagate the new information.
propagate_gamma_and_color_space();
propagate_alpha();
found_any = true;
break;
}
char filename[256];
sprintf(filename, "step%u-alphafix-iter%u.dot", step, ++alpha_propagation_pass);
output_dot(filename);
assert(alpha_propagation_pass < 100);
} while (found_any);
for (unsigned i = 0; i < nodes.size(); ++i) {
Node *node = nodes[i];
if (node->disabled) {
continue;
}
assert(node->output_alpha_type != ALPHA_INVALID);
}
}
// Make so that the output is in the desired color space.
void EffectChain::fix_output_color_space()
{
Node *output = find_output_node();
if (output->output_color_space != output_format.color_space) {
Node *conversion = add_node(new ColorspaceConversionEffect());
CHECK(conversion->effect->set_int("source_space", output->output_color_space));
CHECK(conversion->effect->set_int("destination_space", output_format.color_space));
conversion->output_color_space = output_format.color_space;
connect_nodes(output, conversion);
propagate_alpha();
propagate_gamma_and_color_space();
}
}
// Make so that the output is in the desired pre-/postmultiplication alpha state.
void EffectChain::fix_output_alpha()
{
Node *output = find_output_node();
assert(output->output_alpha_type != ALPHA_INVALID);
if (output->output_alpha_type == ALPHA_BLANK) {
// No alpha output, so we don't care.
return;
}
if (output->output_alpha_type == ALPHA_PREMULTIPLIED &&
output_alpha_format == OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED) {
Node *conversion = add_node(new AlphaDivisionEffect());
connect_nodes(output, conversion);
propagate_alpha();
propagate_gamma_and_color_space();
}
if (output->output_alpha_type == ALPHA_POSTMULTIPLIED &&
output_alpha_format == OUTPUT_ALPHA_FORMAT_PREMULTIPLIED) {
Node *conversion = add_node(new AlphaMultiplicationEffect());
connect_nodes(output, conversion);
propagate_alpha();
propagate_gamma_and_color_space();
}
}
bool EffectChain::node_needs_gamma_fix(Node *node)
{
if (node->disabled) {
return false;
}
// Small hack since the output is not an explicit node:
// If we are the last node and our output is in the wrong
// space compared to EffectChain's output, we need to fix it.
// This will only take us to linear, but fix_output_gamma()
// will come and take us to the desired output gamma
// if it is needed.
//
// This needs to be before everything else, since it could
// even apply to inputs (if they are the only effect).
if (node->outgoing_links.empty() &&
node->output_gamma_curve != output_format.gamma_curve &&
node->output_gamma_curve != GAMMA_LINEAR) {
return true;
}
if (node->effect->num_inputs() == 0) {
return false;
}
// propagate_gamma_and_color_space() has already set our output
// to GAMMA_INVALID if the inputs differ, so we can rely on that,
// except for GammaCompressionEffect.
if (node->output_gamma_curve == GAMMA_INVALID) {
return true;
}
if (node->effect->effect_type_id() == "GammaCompressionEffect") {
assert(node->incoming_links.size() == 1);
return node->incoming_links[0]->output_gamma_curve != GAMMA_LINEAR;
}
return (node->effect->needs_linear_light() && node->output_gamma_curve != GAMMA_LINEAR);
}
// Very similar to fix_internal_color_spaces(), but for gamma.
// There is one difference, though; before we start adding conversion nodes,
// we see if we can get anything out of asking the sources to deliver
// linear gamma directly. fix_internal_gamma_by_asking_inputs()
// does that part, while fix_internal_gamma_by_inserting_nodes()
// inserts nodes as needed afterwards.
void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step)
{
unsigned gamma_propagation_pass = 0;
bool found_any;
do {
found_any = false;
for (unsigned i = 0; i < nodes.size(); ++i) {
Node *node = nodes[i];
if (!node_needs_gamma_fix(node)) {
continue;
}
// See if all inputs can give us linear gamma. If not, leave it.
vector<Node *> nonlinear_inputs;
find_all_nonlinear_inputs(node, &nonlinear_inputs);
assert(!nonlinear_inputs.empty());
bool all_ok = true;
for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
Input *input = static_cast<Input *>(nonlinear_inputs[i]->effect);
all_ok &= input->can_output_linear_gamma();
}
if (!all_ok) {
continue;
}
for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
CHECK(nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1));
nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR;
}
// Re-sort topologically, and propagate the new information.
propagate_gamma_and_color_space();
found_any = true;
break;
}
char filename[256];
sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
output_dot(filename);
assert(gamma_propagation_pass < 100);
} while (found_any);
}
void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step)
{
unsigned gamma_propagation_pass = 0;
bool found_any;
do {
found_any = false;
for (unsigned i = 0; i < nodes.size(); ++i) {
Node *node = nodes[i];
if (!node_needs_gamma_fix(node)) {
continue;
}
// Special case: We could be an input and still be asked to
// fix our gamma; if so, we should be the only node
// (as node_needs_gamma_fix() would only return true in
// for an input in that case). That means we should insert
// a conversion node _after_ ourselves.
if (node->incoming_links.empty()) {
assert(node->outgoing_links.empty());
Node *conversion = add_node(new GammaExpansionEffect());
CHECK(conversion->effect->set_int("source_curve", node->output_gamma_curve));
conversion->output_gamma_curve = GAMMA_LINEAR;
connect_nodes(node, conversion);
}
// If not, go through each input that is not linear gamma,
// and insert a gamma conversion after it.
for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
Node *input = node->incoming_links[j];
assert(input->output_gamma_curve != GAMMA_INVALID);
if (input->output_gamma_curve == GAMMA_LINEAR) {
continue;
}
Node *conversion = add_node(new GammaExpansionEffect());
CHECK(conversion->effect->set_int("source_curve", input->output_gamma_curve));
conversion->output_gamma_curve = GAMMA_LINEAR;
replace_sender(input, conversion);
connect_nodes(input, conversion);
}
// Re-sort topologically, and propagate the new information.
propagate_alpha();
propagate_gamma_and_color_space();
found_any = true;
break;
}
char filename[256];
sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
output_dot(filename);
assert(gamma_propagation_pass < 100);
} while (found_any);
for (unsigned i = 0; i < nodes.size(); ++i) {
Node *node = nodes[i];
if (node->disabled) {
continue;
}
assert(node->output_gamma_curve != GAMMA_INVALID);
}
}
// Make so that the output is in the desired gamma.
// Note that this assumes linear input gamma, so it might create the need
// for another pass of fix_internal_gamma().
void EffectChain::fix_output_gamma()
{
Node *output = find_output_node();
if (output->output_gamma_curve != output_format.gamma_curve) {
Node *conversion = add_node(new GammaCompressionEffect());
CHECK(conversion->effect->set_int("destination_curve", output_format.gamma_curve));
conversion->output_gamma_curve = output_format.gamma_curve;
connect_nodes(output, conversion);
}
}
// If the user has requested Y'CbCr output, we need to do this conversion
// _after_ GammaCompressionEffect etc., but before dither (see below).
// This is because Y'CbCr, with the exception of a special optional mode
// in Rec. 2020 (which we currently don't support), is defined to work on
// gamma-encoded data.
void EffectChain::add_ycbcr_conversion_if_needed()
{
assert(output_color_rgba || num_output_color_ycbcr > 0);
if (num_output_color_ycbcr == 0) {
return;
}
Node *output = find_output_node();
ycbcr_conversion_effect_node = add_node(new YCbCrConversionEffect(output_ycbcr_format, output_ycbcr_type));
connect_nodes(output, ycbcr_conversion_effect_node);
}
// If the user has requested dither, add a DitherEffect right at the end
// (after GammaCompressionEffect etc.). This needs to be done after everything else,
// since dither is about the only effect that can _not_ be done in linear space.
void EffectChain::add_dither_if_needed()
{
if (num_dither_bits == 0) {
return;
}
Node *output = find_output_node();
Node *dither = add_node(new DitherEffect());
CHECK(dither->effect->set_int("num_bits", num_dither_bits));
connect_nodes(output, dither);
dither_effect = dither->effect;
}
namespace {
// Whether this effect will cause the phase it is in to become a compute shader phase.
bool induces_compute_shader(Node *node)
{
if (node->effect->is_compute_shader()) {
return true;
}
if (!node->effect->strong_one_to_one_sampling()) {
// This effect can't be chained after a compute shader.
return false;
}
// If at least one of the effects we depend on is a compute shader,
// one of them will be put in the same phase as us (the other ones,
// if any, will be bounced).
for (Node *dep : node->incoming_links) {
if (induces_compute_shader(dep)) {
return true;
}
}
return false;
}
} // namespace
// Compute shaders can't output to the framebuffer, so if the last
// phase ends in a compute shader, add a dummy phase at the end that
// only blits directly from the temporary texture.
void EffectChain::add_dummy_effect_if_needed()
{
Node *output = find_output_node();
if (induces_compute_shader(output)) {
Node *dummy = add_node(new ComputeShaderOutputDisplayEffect());
connect_nodes(output, dummy);
has_dummy_effect = true;
}
}
// Find the output node. This is, simply, one that has no outgoing links.
// If there are multiple ones, the graph is malformed (we do not support
// multiple outputs right now).
Node *EffectChain::find_output_node()
{
vector<Node *> output_nodes;
for (unsigned i = 0; i < nodes.size(); ++i) {
Node *node = nodes[i];
if (node->disabled) {
continue;
}
if (node->outgoing_links.empty()) {
output_nodes.push_back(node);
}
}
assert(output_nodes.size() == 1);
return output_nodes[0];
}
void EffectChain::finalize()
{
// Output the graph as it is before we do any conversions on it.
output_dot("step0-start.dot");
// Give each effect in turn a chance to rewrite its own part of the graph.
// Note that if more effects are added as part of this, they will be
// picked up as part of the same for loop, since they are added at the end.
for (unsigned i = 0; i < nodes.size(); ++i) {
nodes[i]->effect->rewrite_graph(this, nodes[i]);
}
output_dot("step1-rewritten.dot");
find_color_spaces_for_inputs();
output_dot("step2-input-colorspace.dot");
propagate_alpha();
output_dot("step3-propagated-alpha.dot");
propagate_gamma_and_color_space();
output_dot("step4-propagated-all.dot");
fix_internal_color_spaces();
fix_internal_alpha(6);
fix_output_color_space();
output_dot("step7-output-colorspacefix.dot");
fix_output_alpha();
output_dot("step8-output-alphafix.dot");
// Note that we need to fix gamma after colorspace conversion,
// because colorspace conversions might create needs for gamma conversions.
// Also, we need to run an extra pass of fix_internal_gamma() after
// fixing the output gamma, as we only have conversions to/from linear,
// and fix_internal_alpha() since GammaCompressionEffect needs
// postmultiplied input.
fix_internal_gamma_by_asking_inputs(9);
fix_internal_gamma_by_inserting_nodes(10);
fix_output_gamma();
output_dot("step11-output-gammafix.dot");
propagate_alpha();
output_dot("step12-output-alpha-propagated.dot");
fix_internal_alpha(13);
output_dot("step14-output-alpha-fixed.dot");
fix_internal_gamma_by_asking_inputs(15);
fix_internal_gamma_by_inserting_nodes(16);
output_dot("step17-before-ycbcr.dot");
add_ycbcr_conversion_if_needed();
output_dot("step18-before-dither.dot");
add_dither_if_needed();
output_dot("step19-before-dummy-effect.dot");
add_dummy_effect_if_needed();
output_dot("step20-final.dot");
// Construct all needed GLSL programs, starting at the output.
// We need to keep track of which effects have already been computed,
// as an effect with multiple users could otherwise be calculated
// multiple times.
map<Node *, Phase *> completed_effects;
construct_phase(find_output_node(), &completed_effects);
output_dot("step21-split-to-phases.dot");
// There are some corner cases where we thought we needed to add a dummy
// effect, but then it turned out later we didn't (e.g. induces_compute_shader()
// didn't see a mipmap conflict coming, which would cause the compute shader
// to be split off from the inal phase); if so, remove the extra phase
// at the end, since it will give us some trouble during execution.
//
// TODO: Remove induces_compute_shader() and replace it with precise tracking.
if (has_dummy_effect && !phases[phases.size() - 2]->is_compute_shader) {
resource_pool->release_glsl_program(phases.back()->glsl_program_num);
delete phases.back();
phases.pop_back();
has_dummy_effect = false;
}
output_dot("step22-dummy-phase-removal.dot");
assert(phases[0]->inputs.empty());
finalized = true;
}
void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height)
{
// Save original viewport.
GLuint x = 0, y = 0;
if (width == 0 && height == 0) {
GLint viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
x = viewport[0];
y = viewport[1];
width = viewport[2];
height = viewport[3];
}
render(dest_fbo, {}, x, y, width, height);
}
void EffectChain::render_to_texture(const vector<DestinationTexture> &destinations, unsigned width, unsigned height)
{
assert(finalized);
assert(!destinations.empty());
if (!has_dummy_effect) {
// We don't end in a compute shader, so there's nothing specific for us to do.
// Create an FBO for this set of textures, and just render to that.
GLuint texnums[4] = { 0, 0, 0, 0 };
for (unsigned i = 0; i < destinations.size() && i < 4; ++i) {
texnums[i] = destinations[i].texnum;
}
GLuint dest_fbo = resource_pool->create_fbo(texnums[0], texnums[1], texnums[2], texnums[3]);
render(dest_fbo, {}, 0, 0, width, height);
resource_pool->release_fbo(dest_fbo);
} else {
render((GLuint)-1, destinations, 0, 0, width, height);
}
}
void EffectChain::render(GLuint dest_fbo, const vector<DestinationTexture> &destinations, unsigned x, unsigned y, unsigned width, unsigned height)
{
assert(finalized);
assert(destinations.size() <= 1);
// This needs to be set anew, in case we are coming from a different context
// from when we initialized.
check_error();
glDisable(GL_DITHER);
check_error();
const bool final_srgb = glIsEnabled(GL_FRAMEBUFFER_SRGB);
check_error();
bool current_srgb = final_srgb;
// Basic state.
check_error();
glDisable(GL_BLEND);
check_error();
glDisable(GL_DEPTH_TEST);
check_error();
glDepthMask(GL_FALSE);
check_error();
set<Phase *> generated_mipmaps;
// We keep one texture per output, but only for as long as we actually have any
// phases that need it as an input. (We don't make any effort to reorder phases
// to minimize the number of textures in play, as register allocation can be
// complicated and we rarely have much to gain, since our graphs are typically
// pretty linear.)
map<Phase *, GLuint> output_textures;
map<Phase *, int> ref_counts;
for (Phase *phase : phases) {
for (Phase *input : phase->inputs) {
++ref_counts[input];
}
}
size_t num_phases = phases.size();
if (destinations.empty()) {
assert(dest_fbo != (GLuint)-1);
} else {
assert(has_dummy_effect);
assert(x == 0);
assert(y == 0);
assert(num_phases >= 2);
assert(!phases.back()->is_compute_shader);
assert(phases[phases.size() - 2]->is_compute_shader);
assert(phases.back()->effects.size() == 1);
assert(phases.back()->effects[0]->effect->effect_type_id() == "ComputeShaderOutputDisplayEffect");
// We are rendering to a set of textures, so we can run the compute shader
// directly and skip the dummy phase.
--num_phases;
}
for (unsigned phase_num = 0; phase_num < num_phases; ++phase_num) {
Phase *phase = phases[phase_num];
if (do_phase_timing) {
GLuint timer_query_object;
if (phase->timer_query_objects_free.empty()) {
glGenQueries(1, &timer_query_object);
} else {
timer_query_object = phase->timer_query_objects_free.front();
phase->timer_query_objects_free.pop_front();
}
glBeginQuery(GL_TIME_ELAPSED, timer_query_object);
phase->timer_query_objects_running.push_back(timer_query_object);
}
bool last_phase = (phase_num == num_phases - 1);
if (last_phase) {
// Last phase goes to the output the user specified.
if (!phase->is_compute_shader) {
assert(dest_fbo != (GLuint)-1);
glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo);
check_error();
GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
assert(status == GL_FRAMEBUFFER_COMPLETE);
glViewport(x, y, width, height);
}
if (dither_effect != nullptr) {
CHECK(dither_effect->set_int("output_width", width));
CHECK(dither_effect->set_int("output_height", height));
}
}
// Enable sRGB rendering for intermediates in case we are
// rendering to an sRGB format.
// TODO: Support this for compute shaders.
bool needs_srgb = last_phase ? final_srgb : true;
if (needs_srgb && !current_srgb) {
glEnable(GL_FRAMEBUFFER_SRGB);
check_error();
current_srgb = true;
} else if (!needs_srgb && current_srgb) {
glDisable(GL_FRAMEBUFFER_SRGB);
check_error();
current_srgb = true;
}
// Find a texture for this phase.
inform_input_sizes(phase);
find_output_size(phase);
vector<DestinationTexture> phase_destinations;
if (!last_phase) {
GLuint tex_num = resource_pool->create_2d_texture(intermediate_format, phase->output_width, phase->output_height);
output_textures.insert(make_pair(phase, tex_num));
phase_destinations.push_back(DestinationTexture{ tex_num, intermediate_format });
// The output texture needs to have valid state to be written to by a compute shader.
glActiveTexture(GL_TEXTURE0);
check_error();
glBindTexture(GL_TEXTURE_2D, tex_num);
check_error();
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
check_error();
} else if (phase->is_compute_shader) {
assert(!destinations.empty());
phase_destinations = destinations;
}
execute_phase(phase, output_textures, phase_destinations, &generated_mipmaps);
if (do_phase_timing) {
glEndQuery(GL_TIME_ELAPSED);
}
// Drop any input textures we don't need anymore.
for (Phase *input : phase->inputs) {
assert(ref_counts[input] > 0);
if (--ref_counts[input] == 0) {
resource_pool->release_2d_texture(output_textures[input]);
output_textures.erase(input);
}
}
}
for (const auto &phase_and_texnum : output_textures) {
resource_pool->release_2d_texture(phase_and_texnum.second);
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
check_error();
glUseProgram(0);
check_error();
glBindBuffer(GL_ARRAY_BUFFER, 0);
check_error();
glBindVertexArray(0);
check_error();
if (do_phase_timing) {
// Get back the timer queries.
for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
Phase *phase = phases[phase_num];
for (auto timer_it = phase->timer_query_objects_running.cbegin();
timer_it != phase->timer_query_objects_running.cend(); ) {
GLint timer_query_object = *timer_it;
GLint available;
glGetQueryObjectiv(timer_query_object, GL_QUERY_RESULT_AVAILABLE, &available);
if (available) {
GLuint64 time_elapsed;
glGetQueryObjectui64v(timer_query_object, GL_QUERY_RESULT, &time_elapsed);
phase->time_elapsed_ns += time_elapsed;
++phase->num_measured_iterations;
phase->timer_query_objects_free.push_back(timer_query_object);
phase->timer_query_objects_running.erase(timer_it++);
} else {
++timer_it;
}
}
}
}
}
void EffectChain::enable_phase_timing(bool enable)
{
if (enable) {
assert(movit_timer_queries_supported);
}
this->do_phase_timing = enable;
}
void EffectChain::reset_phase_timing()
{
for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
Phase *phase = phases[phase_num];
phase->time_elapsed_ns = 0;
phase->num_measured_iterations = 0;
}
}
void EffectChain::print_phase_timing()
{
double total_time_ms = 0.0;
for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
Phase *phase = phases[phase_num];
double avg_time_ms = phase->time_elapsed_ns * 1e-6 / phase->num_measured_iterations;
printf("Phase %d: %5.1f ms [", phase_num, avg_time_ms);
for (unsigned effect_num = 0; effect_num < phase->effects.size(); ++effect_num) {
if (effect_num != 0) {
printf(", ");
}
printf("%s", phase->effects[effect_num]->effect->effect_type_id().c_str());
}
printf("]\n");
total_time_ms += avg_time_ms;
}
printf("Total: %5.1f ms\n", total_time_ms);
}
void EffectChain::execute_phase(Phase *phase,
const map<Phase *, GLuint> &output_textures,
const vector<DestinationTexture> &destinations,
set<Phase *> *generated_mipmaps)
{
// Set up RTT inputs for this phase.
for (unsigned sampler = 0; sampler < phase->inputs.size(); ++sampler) {
glActiveTexture(GL_TEXTURE0 + sampler);
Phase *input = phase->inputs[sampler];
input->output_node->bound_sampler_num = sampler;
const auto it = output_textures.find(input);
assert(it != output_textures.end());
glBindTexture(GL_TEXTURE_2D, it->second);
check_error();
// See if anything using this RTT input (in this phase) needs mipmaps.
// TODO: It could be that we get conflicting logic here, if we have
// multiple effects with incompatible mipmaps using the same
// RTT input. However, that is obscure enough that we can deal
// with it at some future point (preferably when we have
// universal support for separate sampler objects!). For now,
// an assert is good enough. See also the TODO at bound_sampler_num.
bool any_needs_mipmaps = false, any_refuses_mipmaps = false;
for (Node *node : phase->effects) {
assert(node->incoming_links.size() == node->incoming_link_type.size());
for (size_t i = 0; i < node->incoming_links.size(); ++i) {
if (node->incoming_links[i] == input->output_node &&
node->incoming_link_type[i] == IN_ANOTHER_PHASE) {
if (node->needs_mipmaps == Effect::NEEDS_MIPMAPS) {
any_needs_mipmaps = true;
} else if (node->needs_mipmaps == Effect::CANNOT_ACCEPT_MIPMAPS) {
any_refuses_mipmaps = true;
}
}
}
}
assert(!(any_needs_mipmaps && any_refuses_mipmaps));
if (any_needs_mipmaps && generated_mipmaps->count(input) == 0) {
glGenerateMipmap(GL_TEXTURE_2D);
check_error();
generated_mipmaps->insert(input);
}
setup_rtt_sampler(sampler, any_needs_mipmaps);
phase->input_samplers[sampler] = sampler; // Bind the sampler to the right uniform.
}
GLuint instance_program_num = resource_pool->use_glsl_program(phase->glsl_program_num);
check_error();
// And now the output.
GLuint fbo = 0;
if (phase->is_compute_shader) {
assert(!destinations.empty());
// This is currently the only place where we use image units,
// so we can always start at 0. TODO: Support multiple destinations.
phase->outbuf_image_unit = 0;
glBindImageTexture(phase->outbuf_image_unit, destinations[0].texnum, 0, GL_FALSE, 0, GL_WRITE_ONLY, destinations[0].format);
check_error();
phase->uniform_output_size[0] = phase->output_width;
phase->uniform_output_size[1] = phase->output_height;
phase->inv_output_size.x = 1.0f / phase->output_width;
phase->inv_output_size.y = 1.0f / phase->output_height;
phase->output_texcoord_adjust.x = 0.5f / phase->output_width;
phase->output_texcoord_adjust.y = 0.5f / phase->output_height;
} else if (!destinations.empty()) {
assert(destinations.size() == 1);
fbo = resource_pool->create_fbo(destinations[0].texnum);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glViewport(0, 0, phase->output_width, phase->output_height);
}
// Give the required parameters to all the effects.
unsigned sampler_num = phase->inputs.size();
for (unsigned i = 0; i < phase->effects.size(); ++i) {
Node *node = phase->effects[i];
unsigned old_sampler_num = sampler_num;
node->effect->set_gl_state(instance_program_num, phase->effect_ids[make_pair(node, IN_SAME_PHASE)], &sampler_num);
check_error();
if (node->effect->is_single_texture()) {
assert(sampler_num - old_sampler_num == 1);
node->bound_sampler_num = old_sampler_num;
} else {
node->bound_sampler_num = -1;
}
}
if (phase->is_compute_shader) {
unsigned x, y, z;
phase->compute_shader_node->effect->get_compute_dimensions(phase->output_width, phase->output_height, &x, &y, &z);
// Uniforms need to come after set_gl_state() _and_ get_compute_dimensions(),
// since they can be updated from there.
setup_uniforms(phase);
glDispatchCompute(x, y, z);
check_error();
glMemoryBarrier(GL_TEXTURE_FETCH_BARRIER_BIT | GL_TEXTURE_UPDATE_BARRIER_BIT);
check_error();
} else {
// Uniforms need to come after set_gl_state(), since they can be updated
// from there.
setup_uniforms(phase);
// Bind the vertex data.
GLuint vao = resource_pool->create_vec2_vao(phase->attribute_indexes, vbo);
glBindVertexArray(vao);
glDrawArrays(GL_TRIANGLES, 0, 3);
check_error();
resource_pool->release_vec2_vao(vao);
}
for (unsigned i = 0; i < phase->effects.size(); ++i) {
Node *node = phase->effects[i];
node->effect->clear_gl_state();
}
resource_pool->unuse_glsl_program(instance_program_num);
if (fbo != 0) {
resource_pool->release_fbo(fbo);
}
}
void EffectChain::setup_uniforms(Phase *phase)
{
// TODO: Use UBO blocks.
for (size_t i = 0; i < phase->uniforms_image2d.size(); ++i) {
const Uniform<int> &uniform = phase->uniforms_image2d[i];
if (uniform.location != -1) {
glUniform1iv(uniform.location, uniform.num_values, uniform.value);
}
}
for (size_t i = 0; i < phase->uniforms_sampler2d.size(); ++i) {
const Uniform<int> &uniform = phase->uniforms_sampler2d[i];
if (uniform.location != -1) {
glUniform1iv(uniform.location, uniform.num_values, uniform.value);
}
}
for (size_t i = 0; i < phase->uniforms_bool.size(); ++i) {
const Uniform<bool> &uniform = phase->uniforms_bool[i];
assert(uniform.num_values == 1);
if (uniform.location != -1) {
glUniform1i(uniform.location, *uniform.value);
}
}
for (size_t i = 0; i < phase->uniforms_int.size(); ++i) {
const Uniform<int> &uniform = phase->uniforms_int[i];
if (uniform.location != -1) {
glUniform1iv(uniform.location, uniform.num_values, uniform.value);
}
}
for (size_t i = 0; i < phase->uniforms_ivec2.size(); ++i) {
const Uniform<int> &uniform = phase->uniforms_ivec2[i];
if (uniform.location != -1) {
glUniform2iv(uniform.location, uniform.num_values, uniform.value);
}
}
for (size_t i = 0; i < phase->uniforms_float.size(); ++i) {
const Uniform<float> &uniform = phase->uniforms_float[i];
if (uniform.location != -1) {
glUniform1fv(uniform.location, uniform.num_values, uniform.value);
}
}
for (size_t i = 0; i < phase->uniforms_vec2.size(); ++i) {
const Uniform<float> &uniform = phase->uniforms_vec2[i];
if (uniform.location != -1) {
glUniform2fv(uniform.location, uniform.num_values, uniform.value);
}
}
for (size_t i = 0; i < phase->uniforms_vec3.size(); ++i) {
const Uniform<float> &uniform = phase->uniforms_vec3[i];
if (uniform.location != -1) {
glUniform3fv(uniform.location, uniform.num_values, uniform.value);
}
}
for (size_t i = 0; i < phase->uniforms_vec4.size(); ++i) {
const Uniform<float> &uniform = phase->uniforms_vec4[i];
if (uniform.location != -1) {
glUniform4fv(uniform.location, uniform.num_values, uniform.value);
}
}
for (size_t i = 0; i < phase->uniforms_mat3.size(); ++i) {
const Uniform<Matrix3d> &uniform = phase->uniforms_mat3[i];
assert(uniform.num_values == 1);
if (uniform.location != -1) {
// Convert to float (GLSL has no double matrices).
float matrixf[9];
for (unsigned y = 0; y < 3; ++y) {
for (unsigned x = 0; x < 3; ++x) {
matrixf[y + x * 3] = (*uniform.value)(y, x);
}
}
glUniformMatrix3fv(uniform.location, 1, GL_FALSE, matrixf);
}
}
}
void EffectChain::setup_rtt_sampler(int sampler_num, bool use_mipmaps)
{
glActiveTexture(GL_TEXTURE0 + sampler_num);
check_error();
if (use_mipmaps) {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
check_error();
} else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
check_error();
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
check_error();
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
check_error();
}
} // namespace movit
|