1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
// Unit tests for FFTPassEffect.
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <epoxy/gl.h>
#include <gtest/gtest.h>
#include "effect_chain.h"
#include "fft_pass_effect.h"
#include "image_format.h"
#include "multiply_effect.h"
#include "test_util.h"
namespace movit {
namespace {
// Generate a random number uniformly distributed between [-1.0, 1.0].
float uniform_random()
{
return 2.0 * ((float)rand() / RAND_MAX - 0.5);
}
void setup_fft(EffectChain *chain, int fft_size, bool inverse,
bool add_normalizer = false,
FFTPassEffect::Direction direction = FFTPassEffect::HORIZONTAL)
{
assert((fft_size & (fft_size - 1)) == 0); // Must be power of two.
for (int i = 1, subsize = 2; subsize <= fft_size; ++i, subsize *= 2) {
Effect *fft_effect = chain->add_effect(new FFTPassEffect());
bool ok = fft_effect->set_int("fft_size", fft_size);
ok |= fft_effect->set_int("pass_number", i);
ok |= fft_effect->set_int("inverse", inverse);
ok |= fft_effect->set_int("direction", direction);
assert(ok);
}
if (add_normalizer) {
float factor[4] = { 1.0f / fft_size, 1.0f / fft_size, 1.0f / fft_size, 1.0f / fft_size };
Effect *multiply_effect = chain->add_effect(new MultiplyEffect());
bool ok = multiply_effect->set_vec4("factor", factor);
assert(ok);
}
}
void run_fft(const float *in, float *out, int fft_size, bool inverse,
bool add_normalizer = false,
FFTPassEffect::Direction direction = FFTPassEffect::HORIZONTAL)
{
int width, height;
if (direction == FFTPassEffect::HORIZONTAL) {
width = fft_size;
height = 1;
} else {
width = 1;
height = fft_size;
}
EffectChainTester tester(in, width, height, FORMAT_RGBA_PREMULTIPLIED_ALPHA, COLORSPACE_sRGB, GAMMA_LINEAR);
setup_fft(tester.get_chain(), fft_size, inverse, add_normalizer, direction);
tester.run(out, GL_RGBA, COLORSPACE_sRGB, GAMMA_LINEAR, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED);
}
} // namespace
TEST(FFTPassEffectTest, ZeroStaysZero) {
const int fft_size = 64;
float data[fft_size * 4] = { 0 };
float out_data[fft_size * 4];
run_fft(data, out_data, fft_size, false);
expect_equal(data, out_data, 4, fft_size);
run_fft(data, out_data, fft_size, true);
expect_equal(data, out_data, 4, fft_size);
}
TEST(FFTPassEffectTest, Impulse) {
const int fft_size = 64;
float data[fft_size * 4] = { 0 };
float expected_data[fft_size * 4], out_data[fft_size * 4];
data[0] = 1.0;
data[1] = 1.2;
data[2] = 1.4;
data[3] = 3.0;
for (int i = 0; i < fft_size; ++i) {
expected_data[i * 4 + 0] = data[0];
expected_data[i * 4 + 1] = data[1];
expected_data[i * 4 + 2] = data[2];
expected_data[i * 4 + 3] = data[3];
}
run_fft(data, out_data, fft_size, false);
expect_equal(expected_data, out_data, 4, fft_size);
run_fft(data, out_data, fft_size, true);
expect_equal(expected_data, out_data, 4, fft_size);
}
TEST(FFTPassEffectTest, SingleFrequency) {
const int fft_size = 16;
float data[fft_size * 4] = { 0 };
float expected_data[fft_size * 4], out_data[fft_size * 4];
for (int i = 0; i < fft_size; ++i) {
data[i * 4 + 0] = sin(2.0 * M_PI * (4.0 * i) / fft_size);
data[i * 4 + 1] = 0.0;
data[i * 4 + 2] = 0.0;
data[i * 4 + 3] = 0.0;
}
for (int i = 0; i < fft_size; ++i) {
expected_data[i * 4 + 0] = 0.0;
expected_data[i * 4 + 1] = 0.0;
expected_data[i * 4 + 2] = 0.0;
expected_data[i * 4 + 3] = 0.0;
}
expected_data[4 * 4 + 1] = -8.0;
expected_data[12 * 4 + 1] = 8.0;
run_fft(data, out_data, fft_size, false, false, FFTPassEffect::HORIZONTAL);
expect_equal(expected_data, out_data, 4, fft_size);
run_fft(data, out_data, fft_size, false, false, FFTPassEffect::VERTICAL);
expect_equal(expected_data, out_data, 4, fft_size);
}
TEST(FFTPassEffectTest, Repeat) {
srand(12345);
for (int fft_size = 2; fft_size <= 128; fft_size *= 2) {
const int num_repeats = 31; // Prime, to make things more challenging.
float data[num_repeats * fft_size * 4];
float expected_data[num_repeats * fft_size * 4], out_data[num_repeats * fft_size * 4];
for (int i = 0; i < num_repeats * fft_size * 4; ++i) {
data[i] = uniform_random();
}
for (int i = 0; i < num_repeats; ++i) {
run_fft(data + i * fft_size * 4, expected_data + i * fft_size * 4, fft_size, false);
}
{
// Horizontal.
EffectChainTester tester(data, num_repeats * fft_size, 1, FORMAT_RGBA_PREMULTIPLIED_ALPHA, COLORSPACE_sRGB, GAMMA_LINEAR);
setup_fft(tester.get_chain(), fft_size, false);
tester.run(out_data, GL_RGBA, COLORSPACE_sRGB, GAMMA_LINEAR, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED);
expect_equal(expected_data, out_data, 4, num_repeats * fft_size);
}
{
// Vertical.
EffectChainTester tester(data, 1, num_repeats * fft_size, FORMAT_RGBA_PREMULTIPLIED_ALPHA, COLORSPACE_sRGB, GAMMA_LINEAR);
setup_fft(tester.get_chain(), fft_size, false, false, FFTPassEffect::VERTICAL);
tester.run(out_data, GL_RGBA, COLORSPACE_sRGB, GAMMA_LINEAR, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED);
expect_equal(expected_data, out_data, 4, num_repeats * fft_size);
}
}
}
TEST(FFTPassEffectTest, TwoDimensional) { // Implicitly tests vertical.
srand(1234);
const int fft_size = 16;
float in[fft_size * fft_size * 4], out[fft_size * fft_size * 4], expected_out[fft_size * fft_size * 4];
for (int y = 0; y < fft_size; ++y) {
for (int x = 0; x < fft_size; ++x) {
in[(y * fft_size + x) * 4 + 0] =
sin(2.0 * M_PI * (2 * x + 3 * y) / fft_size);
in[(y * fft_size + x) * 4 + 1] = 0.0;
in[(y * fft_size + x) * 4 + 2] = 0.0;
in[(y * fft_size + x) * 4 + 3] = 0.0;
}
}
memset(expected_out, 0, sizeof(expected_out));
// This result has been verified using the fft2() function in Octave,
// which uses FFTW.
expected_out[(3 * fft_size + 2) * 4 + 1] = -128.0;
expected_out[(13 * fft_size + 14) * 4 + 1] = 128.0;
EffectChainTester tester(in, fft_size, fft_size, FORMAT_RGBA_PREMULTIPLIED_ALPHA, COLORSPACE_sRGB, GAMMA_LINEAR);
setup_fft(tester.get_chain(), fft_size, false, false, FFTPassEffect::HORIZONTAL);
setup_fft(tester.get_chain(), fft_size, false, false, FFTPassEffect::VERTICAL);
tester.run(out, GL_RGBA, COLORSPACE_sRGB, GAMMA_LINEAR, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED);
expect_equal(expected_out, out, 4 * fft_size, fft_size, 0.25, 0.0005);
}
// The classic paper for FFT correctness testing is Funda Ergün:
// “Testing Multivariate Linear Functions: Overcoming the Generator Bottleneck”
// (http://www.cs.sfu.ca/~funda/PUBLICATIONS/stoc95.ps), which proves that
// testing three basic properties of FFTs guarantees that the function is
// correct (at least under the assumption that errors are random).
//
// We don't follow the paper directly, though, for a few reasons: First,
// Ergün's paper really considers _self-correcting_ systems, which may
// be stochastically faulty, and thus uses various relatively complicated
// bounds and tests we don't really need. Second, the FFTs it considers
// are all about polynomials over finite fields, which means that results
// are exact and thus easy to test; we work with floats (half-floats!),
// and thus need some error tolerance.
//
// So instead, we follow the implementation of FFTW, which is really the
// gold standard when it comes to FFTs these days. They hard-code 20
// testing rounds as opposed to the more complicated bounds in the paper,
// and have a simpler version of the third test.
//
// The error bounds are set somewhat empirically, but remember that these
// inputs will give frequency values as large as ~16, where 0.025 is
// within the 9th bit (of 11 total mantissa bits in fp16).
const int ergun_rounds = 20;
// Test 1: Test that FFT(a + b) = FFT(a) + FFT(b).
TEST(FFTPassEffectTest, ErgunLinearityTest) {
srand(1234);
const int max_fft_size = 64;
float a[max_fft_size * 4], b[max_fft_size * 4], sum[max_fft_size * 4];
float a_out[max_fft_size * 4], b_out[max_fft_size * 4], sum_out[max_fft_size * 4], expected_sum_out[max_fft_size * 4];
for (int fft_size = 2; fft_size <= max_fft_size; fft_size *= 2) {
for (int inverse = 0; inverse <= 1; ++inverse) {
for (int i = 0; i < ergun_rounds; ++i) {
for (int j = 0; j < fft_size * 4; ++j) {
a[j] = uniform_random();
b[j] = uniform_random();
}
run_fft(a, a_out, fft_size, inverse);
run_fft(b, b_out, fft_size, inverse);
for (int j = 0; j < fft_size * 4; ++j) {
sum[j] = a[j] + b[j];
expected_sum_out[j] = a_out[j] + b_out[j];
}
run_fft(sum, sum_out, fft_size, inverse);
expect_equal(expected_sum_out, sum_out, 4, fft_size, 0.03, 0.0005);
}
}
}
}
// Test 2: Test that FFT(delta(i)) = 1 (where delta(i) = [1 0 0 0 ...]),
// or more specifically, test that FFT(a + delta(i)) - FFT(a) = 1.
TEST(FFTPassEffectTest, ErgunImpulseTransform) {
srand(1235);
const int max_fft_size = 64;
float a[max_fft_size * 4], b[max_fft_size * 4];
float a_out[max_fft_size * 4], b_out[max_fft_size * 4], sum_out[max_fft_size * 4], expected_sum_out[max_fft_size * 4];
for (int fft_size = 2; fft_size <= max_fft_size; fft_size *= 2) {
for (int inverse = 0; inverse <= 1; ++inverse) {
for (int i = 0; i < ergun_rounds; ++i) {
for (int j = 0; j < fft_size * 4; ++j) {
a[j] = uniform_random();
// Compute delta(j) - a.
if (j < 4) {
b[j] = 1.0 - a[j];
} else {
b[j] = -a[j];
}
}
run_fft(a, a_out, fft_size, inverse);
run_fft(b, b_out, fft_size, inverse);
for (int j = 0; j < fft_size * 4; ++j) {
sum_out[j] = a_out[j] + b_out[j];
expected_sum_out[j] = 1.0;
}
expect_equal(expected_sum_out, sum_out, 4, fft_size, 0.025, 0.0005);
}
}
}
}
// Test 3: Test the time-shift property of the FFT, in that a circular left-shift
// multiplies the result by e^(j 2pi k/N) (linear phase adjustment).
// As fftw_test.c says, “The paper performs more tests, but this code should be
// fine too”.
TEST(FFTPassEffectTest, ErgunShiftProperty) {
srand(1236);
const int max_fft_size = 64;
float a[max_fft_size * 4], b[max_fft_size * 4];
float a_out[max_fft_size * 4], b_out[max_fft_size * 4], expected_a_out[max_fft_size * 4];
for (int fft_size = 2; fft_size <= max_fft_size; fft_size *= 2) {
for (int inverse = 0; inverse <= 1; ++inverse) {
for (int direction = 0; direction <= 1; ++direction) {
for (int i = 0; i < ergun_rounds; ++i) {
for (int j = 0; j < fft_size * 4; ++j) {
a[j] = uniform_random();
}
// Circular shift left by one step.
for (int j = 0; j < fft_size * 4; ++j) {
b[j] = a[(j + 4) % (fft_size * 4)];
}
run_fft(a, a_out, fft_size, inverse, false, FFTPassEffect::Direction(direction));
run_fft(b, b_out, fft_size, inverse, false, FFTPassEffect::Direction(direction));
for (int j = 0; j < fft_size; ++j) {
double s = -sin(j * 2.0 * M_PI / fft_size);
double c = cos(j * 2.0 * M_PI / fft_size);
if (inverse) {
s = -s;
}
expected_a_out[j * 4 + 0] = b_out[j * 4 + 0] * c - b_out[j * 4 + 1] * s;
expected_a_out[j * 4 + 1] = b_out[j * 4 + 0] * s + b_out[j * 4 + 1] * c;
expected_a_out[j * 4 + 2] = b_out[j * 4 + 2] * c - b_out[j * 4 + 3] * s;
expected_a_out[j * 4 + 3] = b_out[j * 4 + 2] * s + b_out[j * 4 + 3] * c;
}
expect_equal(expected_a_out, a_out, 4, fft_size, 0.025, 0.0005);
}
}
}
}
}
TEST(FFTPassEffectTest, BigFFTAccuracy) {
srand(1234);
const int max_fft_size = 2048;
float in[max_fft_size * 4], out[max_fft_size * 4], out2[max_fft_size * 4];
for (int fft_size = 2; fft_size <= max_fft_size; fft_size *= 2) {
for (int j = 0; j < fft_size * 4; ++j) {
in[j] = uniform_random();
}
run_fft(in, out, fft_size, false, true); // Forward, with normalization.
run_fft(out, out2, fft_size, true); // Reverse.
// These error bounds come from
// http://en.wikipedia.org/wiki/Fast_Fourier_transform#Accuracy_and_approximations,
// with empirically estimated epsilons. Note that the calculated
// rms in expect_equal() is divided by sqrt(N), so we compensate
// similarly here.
double max_error = 0.0009 * log2(fft_size);
double rms_limit = 0.0007 * sqrt(log2(fft_size)) / sqrt(fft_size);
expect_equal(in, out2, 4, fft_size, max_error, rms_limit);
}
}
} // namespace movit
|