1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
#include <assert.h>
#include "effect_util.h"
#include "gamma_compression_effect.h"
#include "util.h"
using namespace std;
namespace movit {
GammaCompressionEffect::GammaCompressionEffect()
: destination_curve(GAMMA_LINEAR)
{
register_int("destination_curve", (int *)&destination_curve);
register_uniform_float("linear_scale", &uniform_linear_scale);
register_uniform_float_array("c", uniform_c, 5);
register_uniform_float("beta", &uniform_beta);
}
string GammaCompressionEffect::output_fragment_shader()
{
if (destination_curve == GAMMA_LINEAR) {
return read_file("identity.frag");
}
if (destination_curve == GAMMA_sRGB ||
destination_curve == GAMMA_REC_709 || // Also includes Rec. 601, and 10-bit Rec. 2020.
destination_curve == GAMMA_REC_2020_12_BIT) {
return read_file("gamma_compression_effect.frag");
}
assert(false);
}
void GammaCompressionEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
{
Effect::set_gl_state(glsl_program_num, prefix, sampler_num);
// See GammaExpansionEffect for more details about the approximations in use;
// we will primarily deal with the differences here.
//
// Like in expansion, we have a piecewise curve that for very low values
// (up to some β) are linear. Above β, we have a power curve that looks
// like this:
//
// y = ɑ x^ɣ - (ɑ - 1)
//
// Like in expansion, we want to approximate this by some minimax polynomial
// in the range β..1. However, in this case, ɣ is typically around 0.4, and
// x^0.4 is actually very hard to approximate accurately in this range.
// We do a little trick by instead asking for a polynomial of s=sqrt(x),
// which means we instead need something like s^0.8, which is much easier.
// This warps the input space a bit as seen by the minimax algorithm,
// but since we are optimizing for _maximum_ error and not _average_,
// we should not add any extra weighting factors.
//
// However, since we have problems reaching the desired accuracy (~25%
// of a pixel level), especially for sRGB, we modify w(x) from
// GammaExpansionEffect to remove the special handling of the area
// around β; it is not really as useful when the next step is just a
// dither and round anyway. We keep it around 1, though, since that
// seems to hurt less.
//
// The Maple commands this time around become (again using sRGB as an example):
//
// > alpha := 1.055;
// > beta := 0.0031308;
// > gamma_ := 1.0/2.4;
// > w := x -> piecewise(x > 0.999, 10, 1);
// > numapprox[minimax](alpha * (x^2)^gamma_ - (alpha - 1), x=sqrt(beta)..1, [4,0], w(x^2), 'maxerror');
//
// Since the error here is possible to interpret on a uniform scale,
// we also show it as a value relative to a 8-, 10- or 12-bit pixel level,
// as appropriate.
if (destination_curve == GAMMA_sRGB) {
// From the Wikipedia article on sRGB; ɑ (called a+1 there) = 1.055,
// β = 0.0031308, ɣ = 1/2.4.
// maxerror = 0.000785 = 0.200 * 255
// error at 1.0 = 0.000078 = 0.020 * 255
uniform_linear_scale = 12.92;
uniform_c[0] = -0.03679675939;
uniform_c[1] = 1.443803073;
uniform_c[2] = -0.9239780987;
uniform_c[3] = 0.8060491596;
uniform_c[4] = -0.2891558568;
uniform_beta = 0.0031308;
}
if (destination_curve == GAMMA_REC_709) { // Also includes Rec. 601, and 10-bit Rec. 2020.
// Rec. 2020, page 3; ɑ = 1.099, β = 0.018, ɣ = 0.45.
// maxerror = 0.000131 = 0.033 * 255 = 0.134 * 1023
// error at 1.0 = 0.000013 = 0.003 * 255 = 0.013 * 1023
uniform_linear_scale = 4.5;
uniform_c[0] = -0.08541688528;
uniform_c[1] = 1.292793370;
uniform_c[2] = -0.4070417645;
uniform_c[3] = 0.2923891828;
uniform_c[4] = -0.09273699351;
uniform_beta = 0.018;
}
if (destination_curve == GAMMA_REC_2020_12_BIT) {
// Rec. 2020, page 3; ɑ = 1.0993, β = 0.0181, ɣ = 0.45.
// maxerror = 0.000130 = 0.533 * 4095
// error at 1.0 = 0.000013 = 0.053 * 4095
//
// Note that this error is above one half of a pixel level,
// which means that a few values will actually be off in the lowest
// bit. (Removing the constraint for x=1 will only take this down
// from 0.553 to 0.501; adding a fifth order can get it down to
// 0.167, although this assumes working in fp64 and not fp32.)
uniform_linear_scale = 4.5;
uniform_c[0] = -0.08569685663;
uniform_c[1] = 1.293000900;
uniform_c[2] = -0.4067291321;
uniform_c[3] = 0.2919741179;
uniform_c[4] = -0.09256205770;
uniform_beta = 0.0181;
}
}
} // namespace movit
|