1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
// Unit tests for GammaCompressionEffect.
//
// Pretty much the inverse of the GammaExpansionEffect tests;
// EffectChainTest tests that they are actually inverses.
// However, the accuracy tests are somewhat simpler, since we
// only need to care about absolute errors and not relative.
#include <epoxy/gl.h>
#include <math.h>
#include "gtest/gtest.h"
#include "gtest/gtest-message.h"
#include "image_format.h"
#include "test_util.h"
namespace movit {
TEST(GammaCompressionEffectTest, sRGB_KeyValues) {
float data[] = {
0.0f, 1.0f,
0.00309f, 0.00317f, // On either side of the discontinuity.
-0.5f, 1.5f, // To check clamping.
};
float expected_data[] = {
0.0f, 1.0f,
0.040f, 0.041f,
0.0f, 1.0f,
};
float out_data[6];
EffectChainTester tester(data, 2, 3, FORMAT_GRAYSCALE, COLORSPACE_sRGB, GAMMA_LINEAR);
tester.run(out_data, GL_RED, COLORSPACE_sRGB, GAMMA_sRGB);
expect_equal(expected_data, out_data, 2, 3);
}
TEST(GammaCompressionEffectTest, sRGB_RampAlwaysIncreases) {
float data[256], out_data[256];
for (unsigned i = 0; i < 256; ++i) {
data[i] = i / 255.0f;
}
EffectChainTester tester(data, 256, 1, FORMAT_GRAYSCALE, COLORSPACE_sRGB, GAMMA_LINEAR);
tester.run(out_data, GL_RED, COLORSPACE_sRGB, GAMMA_sRGB);
for (unsigned i = 1; i < 256; ++i) {
EXPECT_GT(out_data[i], out_data[i - 1])
<< "No increase between " << i-1 << " and " << i;
}
}
TEST(GammaCompressionEffectTest, sRGB_Accuracy) {
float data[256], expected_data[256], out_data[256];
for (int i = 0; i < 256; ++i) {
double x = i / 255.0;
expected_data[i] = x;
data[i] = srgb_to_linear(x);
}
EffectChainTester tester(data, 256, 1, FORMAT_GRAYSCALE, COLORSPACE_sRGB, GAMMA_LINEAR, GL_RGBA32F);
tester.run(out_data, GL_RED, COLORSPACE_sRGB, GAMMA_sRGB);
// Maximum absolute error is 25% of one pixel level. For comparison,
// a straightforward ALU solution (using a branch and pow()), used as a
// “high anchor” to indicate limitations of float arithmetic etc.,
// reaches maximum absolute error of 3.7% of one pixel level
// and rms of 3.2e-6.
expect_equal(expected_data, out_data, 256, 1, 0.25 / 255.0, 1e-4);
}
TEST(GammaCompressionEffectTest, Rec709_KeyValues) {
float data[] = {
0.0f, 1.0f,
0.017778f, 0.018167f, // On either side of the discontinuity.
};
float expected_data[] = {
0.0f, 1.0f,
0.080f, 0.082f,
};
float out_data[4];
EffectChainTester tester(data, 2, 2, FORMAT_GRAYSCALE, COLORSPACE_sRGB, GAMMA_LINEAR);
tester.run(out_data, GL_RED, COLORSPACE_sRGB, GAMMA_REC_709);
expect_equal(expected_data, out_data, 2, 2);
}
TEST(GammaCompressionEffectTest, Rec709_RampAlwaysIncreases) {
float data[256], out_data[256];
for (unsigned i = 0; i < 256; ++i) {
data[i] = i / 255.0f;
}
EffectChainTester tester(data, 256, 1, FORMAT_GRAYSCALE, COLORSPACE_sRGB, GAMMA_LINEAR);
tester.run(out_data, GL_RED, COLORSPACE_sRGB, GAMMA_REC_709);
for (unsigned i = 1; i < 256; ++i) {
EXPECT_GT(out_data[i], out_data[i - 1])
<< "No increase between " << i-1 << " and " << i;
}
}
TEST(GammaCompressionEffectTest, Rec709_Accuracy) {
float data[256], expected_data[256], out_data[256];
for (int i = 0; i < 256; ++i) {
double x = i / 255.0;
expected_data[i] = x;
// Rec. 2020, page 3.
if (x < 0.018 * 4.5) {
data[i] = x / 4.5;
} else {
data[i] = pow((x + 0.099) / 1.099, 1.0 / 0.45);
}
}
EffectChainTester tester(data, 256, 1, FORMAT_GRAYSCALE, COLORSPACE_sRGB, GAMMA_LINEAR, GL_RGBA32F);
tester.run(out_data, GL_RED, COLORSPACE_sRGB, GAMMA_REC_709);
// Maximum absolute error is 25% of one pixel level. For comparison,
// a straightforward ALU solution (using a branch and pow()), used as a
// “high anchor” to indicate limitations of float arithmetic etc.,
// reaches maximum absolute error of 3.7% of one pixel level
// and rms of 3.5e-6.
expect_equal(expected_data, out_data, 256, 1, 0.25 / 255.0, 1e-5);
}
// This test tests the same gamma ramp as Rec709_Accuracy, but with 10-bit
// input range and somewhat looser error bounds. (One could claim that this is
// already on the limit of what we can reasonably do with fp16 input, if you
// look at the local relative error.)
TEST(GammaCompressionEffectTest, Rec2020_10Bit_Accuracy) {
float data[1024], expected_data[1024], out_data[1024];
for (int i = 0; i < 1024; ++i) {
double x = i / 1023.0;
expected_data[i] = x;
// Rec. 2020, page 3.
if (x < 0.018 * 4.5) {
data[i] = x / 4.5;
} else {
data[i] = pow((x + 0.099) / 1.099, 1.0 / 0.45);
}
}
EffectChainTester tester(data, 1024, 1, FORMAT_GRAYSCALE, COLORSPACE_sRGB, GAMMA_LINEAR, GL_RGBA32F);
tester.run(out_data, GL_RED, COLORSPACE_sRGB, GAMMA_REC_2020_10_BIT);
// Maximum absolute error is 30% of one pixel level. For comparison,
// a straightforward ALU solution (using a branch and pow()), used as a
// “high anchor” to indicate limitations of float arithmetic etc.,
// reaches maximum absolute error of 25.2% of one pixel level
// and rms of 1.8e-6, so this is probably mostly related to input precision.
expect_equal(expected_data, out_data, 1024, 1, 0.30 / 1023.0, 1e-5);
}
TEST(GammaCompressionEffectTest, Rec2020_12BitIsVeryCloseToRec709) {
float data[4096];
for (unsigned i = 0; i < 4096; ++i) {
data[i] = i / 4095.0f;
}
float out_data_709[4096];
float out_data_2020[4096];
EffectChainTester tester(data, 4096, 1, FORMAT_GRAYSCALE, COLORSPACE_sRGB, GAMMA_LINEAR);
tester.run(out_data_709, GL_RED, COLORSPACE_sRGB, GAMMA_REC_709);
EffectChainTester tester2(data, 4096, 1, FORMAT_GRAYSCALE, COLORSPACE_sRGB, GAMMA_LINEAR);
tester2.run(out_data_2020, GL_RED, COLORSPACE_sRGB, GAMMA_REC_2020_12_BIT);
double sqdiff = 0.0;
for (unsigned i = 0; i < 4096; ++i) {
EXPECT_NEAR(out_data_709[i], out_data_2020[i], 0.001);
sqdiff += (out_data_709[i] - out_data_2020[i]) * (out_data_709[i] - out_data_2020[i]);
}
EXPECT_GT(sqdiff, 1e-6);
}
// The fp16 _input_ provided by FlatInput is not enough to distinguish between
// all of the possible 12-bit input values (every other level translates to the
// same value). Thus, this test has extremely loose bounds; if we ever decide
// to start supporting fp32, we should re-run this and tighten them a lot.
TEST(GammaCompressionEffectTest, Rec2020_12Bit_Inaccuracy) {
float data[4096], expected_data[4096], out_data[4096];
for (int i = 0; i < 4096; ++i) {
double x = i / 4095.0;
expected_data[i] = x;
// Rec. 2020, page 3.
if (x < 0.0181 * 4.5) {
data[i] = x / 4.5;
} else {
data[i] = pow((x + 0.0993) / 1.0993, 1.0 / 0.45);
}
}
EffectChainTester tester(data, 4096, 1, FORMAT_GRAYSCALE, COLORSPACE_sRGB, GAMMA_LINEAR, GL_RGBA32F);
tester.run(out_data, GL_RED, COLORSPACE_sRGB, GAMMA_REC_2020_12_BIT);
// Maximum absolute error is 120% of one pixel level. For comparison,
// a straightforward ALU solution (using a branch and pow()), used as a
// “high anchor” to indicate limitations of float arithmetic etc.,
// reaches maximum absolute error of 71.1% of one pixel level
// and rms of 0.9e-6, so this is probably a combination of input
// precision and inaccuracies in the polynomial approximation.
expect_equal(expected_data, out_data, 4096, 1, 1.2 / 4095.0, 1e-5);
}
} // namespace movit
|