1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
# ------------------------------------------------------------------------------
#
# R A B B I T Stream Cipher
# by M. Boesgaard, M. Vesterager, E. Zenner (specified in RFC 4503)
#
#
# Pure Python Implementation by Toni Mattis
#
# ------------------------------------------------------------------------------
WORDSIZE = 0x100000000
rot08 = lambda x: ((x << 8) & 0xFFFFFFFF) | (x >> 24)
rot16 = lambda x: ((x << 16) & 0xFFFFFFFF) | (x >> 16)
def _nsf(u, v):
'''Internal non-linear state transition'''
s = (u + v) % WORDSIZE
s = s * s
return (s ^ (s >> 32)) % WORDSIZE
class Rabbit:
def __init__(self, key, iv = None):
'''Initialize Rabbit cipher using a 128 bit integer/string'''
if isinstance(key, str):
# interpret key string in big endian byte order
if len(key) < 16:
key = '\x00' * (16 - len(key)) + key
# if len(key) > 16 bytes only the first 16 will be considered
k = [ord(key[i + 1]) | (ord(key[i]) << 8)
for i in xrange(14, -1, -2)]
else:
# k[0] = least significant 16 bits
# k[7] = most significant 16 bits
k = [(key >> i) & 0xFFFF for i in xrange(0, 128, 16)]
# State and counter initialization
x = [(k[(j + 5) % 8] << 16) | k[(j + 4) % 8] if j & 1 else
(k[(j + 1) % 8] << 16) | k[j] for j in xrange(8)]
c = [(k[j] << 16) | k[(j + 1) % 8] if j & 1 else
(k[(j + 4) % 8] << 16) | k[(j + 5) % 8] for j in xrange(8)]
self.x = x
self.c = c
self.b = 0
self._buf = 0 # output buffer
self._buf_bytes = 0 # fill level of buffer
self.next()
self.next()
self.next()
self.next()
for j in xrange(8):
c[j] ^= x[(j + 4) % 8]
self.start_x = self.x[:] # backup initial key for IV/reset
self.start_c = self.c[:]
self.start_b = self.b
if iv != None:
self.set_iv(iv)
def reset(self, iv = None):
'''Reset the cipher and optionally set a new IV (int64 / string).'''
self.c = self.start_c[:]
self.x = self.start_x[:]
self.b = self.start_b
self._buf = 0
self._buf_bytes = 0
if iv != None:
self.set_iv(iv)
def set_iv(self, iv):
'''Set a new IV (64 bit integer / bytestring).'''
if isinstance(iv, str):
i = 0
for c in iv:
i = (i << 8) | ord(c)
iv = i
c = self.c
i0 = iv & 0xFFFFFFFF
i2 = iv >> 32
i1 = ((i0 >> 16) | (i2 & 0xFFFF0000)) % WORDSIZE
i3 = ((i2 << 16) | (i0 & 0x0000FFFF)) % WORDSIZE
c[0] ^= i0
c[1] ^= i1
c[2] ^= i2
c[3] ^= i3
c[4] ^= i0
c[5] ^= i1
c[6] ^= i2
c[7] ^= i3
self.next()
self.next()
self.next()
self.next()
def next(self):
'''Proceed to the next internal state'''
c = self.c
x = self.x
b = self.b
t = c[0] + 0x4D34D34D + b
c[0] = t % WORDSIZE
t = c[1] + 0xD34D34D3 + t // WORDSIZE
c[1] = t % WORDSIZE
t = c[2] + 0x34D34D34 + t // WORDSIZE
c[2] = t % WORDSIZE
t = c[3] + 0x4D34D34D + t // WORDSIZE
c[3] = t % WORDSIZE
t = c[4] + 0xD34D34D3 + t // WORDSIZE
c[4] = t % WORDSIZE
t = c[5] + 0x34D34D34 + t // WORDSIZE
c[5] = t % WORDSIZE
t = c[6] + 0x4D34D34D + t // WORDSIZE
c[6] = t % WORDSIZE
t = c[7] + 0xD34D34D3 + t // WORDSIZE
c[7] = t % WORDSIZE
b = t // WORDSIZE
g = [_nsf(x[j], c[j]) for j in xrange(8)]
x[0] = (g[0] + rot16(g[7]) + rot16(g[6])) % WORDSIZE
x[1] = (g[1] + rot08(g[0]) + g[7]) % WORDSIZE
x[2] = (g[2] + rot16(g[1]) + rot16(g[0])) % WORDSIZE
x[3] = (g[3] + rot08(g[2]) + g[1]) % WORDSIZE
x[4] = (g[4] + rot16(g[3]) + rot16(g[2])) % WORDSIZE
x[5] = (g[5] + rot08(g[4]) + g[3]) % WORDSIZE
x[6] = (g[6] + rot16(g[5]) + rot16(g[4])) % WORDSIZE
x[7] = (g[7] + rot08(g[6]) + g[5]) % WORDSIZE
self.b = b
return self
def derive(self):
'''Derive a 128 bit integer from the internal state'''
x = self.x
return ((x[0] & 0xFFFF) ^ (x[5] >> 16)) | \
(((x[0] >> 16) ^ (x[3] & 0xFFFF)) << 16)| \
(((x[2] & 0xFFFF) ^ (x[7] >> 16)) << 32)| \
(((x[2] >> 16) ^ (x[5] & 0xFFFF)) << 48)| \
(((x[4] & 0xFFFF) ^ (x[1] >> 16)) << 64)| \
(((x[4] >> 16) ^ (x[7] & 0xFFFF)) << 80)| \
(((x[6] & 0xFFFF) ^ (x[3] >> 16)) << 96)| \
(((x[6] >> 16) ^ (x[1] & 0xFFFF)) << 112)
def keystream(self, n):
'''Generate a keystream of n bytes'''
res = ""
b = self._buf
j = self._buf_bytes
next = self.next
derive = self.derive
for i in xrange(n):
if not j:
j = 16
next()
b = derive()
res += chr(b & 0xFF)
j -= 1
b >>= 1
self._buf = b
self._buf_bytes = j
return res
def encrypt(self, data):
'''Encrypt/Decrypt data of arbitrary length.'''
res = ""
b = self._buf
j = self._buf_bytes
next = self.next
derive = self.derive
for c in data:
if not j: # empty buffer => fetch next 128 bits
j = 16
next()
b = derive()
res += chr(ord(c) ^ (b & 0xFF))
j -= 1
b >>= 1
self._buf = b
self._buf_bytes = j
return res
decrypt = encrypt
if __name__ == "__main__":
import time
# --- Official Test Vectors ---
# RFC 4503 Appendix A.1 - Testing without IV Setup
r = Rabbit(0)
assert r.next().derive() == 0xB15754F036A5D6ECF56B45261C4AF702
assert r.next().derive() == 0x88E8D815C59C0C397B696C4789C68AA7
assert r.next().derive() == 0xF416A1C3700CD451DA68D1881673D696
r = Rabbit(0x912813292E3D36FE3BFC62F1DC51C3AC)
assert r.next().derive() == 0x3D2DF3C83EF627A1E97FC38487E2519C
assert r.next().derive() == 0xF576CD61F4405B8896BF53AA8554FC19
assert r.next().derive() == 0xE5547473FBDB43508AE53B20204D4C5E
r = Rabbit(0x8395741587E0C733E9E9AB01C09B0043)
assert r.next().derive() == 0x0CB10DCDA041CDAC32EB5CFD02D0609B
assert r.next().derive() == 0x95FC9FCA0F17015A7B7092114CFF3EAD
assert r.next().derive() == 0x9649E5DE8BFC7F3F924147AD3A947428
# RFC 4503 Appendix A.2 - Testing with IV Setup
r = Rabbit(0, 0)
assert r.next().derive() == 0xC6A7275EF85495D87CCD5D376705B7ED
assert r.next().derive() == 0x5F29A6AC04F5EFD47B8F293270DC4A8D
assert r.next().derive() == 0x2ADE822B29DE6C1EE52BDB8A47BF8F66
r = Rabbit(0, 0xC373F575C1267E59)
assert r.next().derive() == 0x1FCD4EB9580012E2E0DCCC9222017D6D
assert r.next().derive() == 0xA75F4E10D12125017B2499FFED936F2E
assert r.next().derive() == 0xEBC112C393E738392356BDD012029BA7
r = Rabbit(0, 0xA6EB561AD2F41727)
assert r.next().derive() == 0x445AD8C805858DBF70B6AF23A151104D
assert r.next().derive() == 0x96C8F27947F42C5BAEAE67C6ACC35B03
assert r.next().derive() == 0x9FCBFC895FA71C17313DF034F01551CB
# --- Performance Tests ---
def test_gen(n = 1048576):
'''Measure time for generating n bytes => (total, bytes per second)'''
r = Rabbit(0)
t = time.time()
r.keystream(n)
t = time.time() - t
return t, n / t
def test_enc(n = 1048576):
'''Measure time for encrypting n bytes => (total, bytes per second)'''
r = Rabbit(0)
x = 'x' * n
t = time.time()
r.encrypt(x)
t = time.time() - t
return t, n / t
|