File: gain_analysis.c

package info (click to toggle)
mp3gain 1.4.6-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 532 kB
  • ctags: 735
  • sloc: ansic: 7,583; makefile: 75
file content (472 lines) | stat: -rw-r--r-- 20,424 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
/*
 *  ReplayGainAnalysis - analyzes input samples and give the recommended dB change
 *  Copyright (C) 2001 David Robinson and Glen Sawyer
 *  Improvements and optimizations added by Frank Klemm, and by Marcel M´┐Żller 
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2.1 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *  concept and filter values by David Robinson (David@Robinson.org)
 *    -- blame him if you think the idea is flawed
 *  original coding by Glen Sawyer (mp3gain@hotmail.com)
 *    -- blame him if you think this runs too slowly, or the coding is otherwise flawed
 *
 *  lots of code improvements by Frank Klemm ( http://www.uni-jena.de/~pfk/mpp/ )
 *    -- credit him for all the _good_ programming ;)
 *
 *
 *  For an explanation of the concepts and the basic algorithms involved, go to:
 *    http://www.replaygain.org/
 */

/*
 *  Here's the deal. Call
 *
 *    InitGainAnalysis ( long samplefreq );
 *
 *  to initialize everything. Call
 *
 *    AnalyzeSamples ( const Float_t*  left_samples,
 *                     const Float_t*  right_samples,
 *                     size_t          num_samples,
 *                     int             num_channels );
 *
 *  as many times as you want, with as many or as few samples as you want.
 *  If mono, pass the sample buffer in through left_samples, leave
 *  right_samples NULL, and make sure num_channels = 1.
 *
 *    GetTitleGain()
 *
 *  will return the recommended dB level change for all samples analyzed
 *  SINCE THE LAST TIME you called GetTitleGain() OR InitGainAnalysis().
 *
 *    GetAlbumGain()
 *
 *  will return the recommended dB level change for all samples analyzed
 *  since InitGainAnalysis() was called and finalized with GetTitleGain().
 *
 *  Pseudo-code to process an album:
 *
 *    Float_t       l_samples [4096];
 *    Float_t       r_samples [4096];
 *    size_t        num_samples;
 *    unsigned int  num_songs;
 *    unsigned int  i;
 *
 *    InitGainAnalysis ( 44100 );
 *    for ( i = 1; i <= num_songs; i++ ) {
 *        while ( ( num_samples = getSongSamples ( song[i], left_samples, right_samples ) ) > 0 )
 *            AnalyzeSamples ( left_samples, right_samples, num_samples, 2 );
 *        fprintf ("Recommended dB change for song %2d: %+6.2f dB\n", i, GetTitleGain() );
 *    }
 *    fprintf ("Recommended dB change for whole album: %+6.2f dB\n", GetAlbumGain() );
 */

/*
 *  So here's the main source of potential code confusion:
 *
 *  The filters applied to the incoming samples are IIR filters,
 *  meaning they rely on up to <filter order> number of previous samples
 *  AND up to <filter order> number of previous filtered samples.
 *
 *  I set up the AnalyzeSamples routine to minimize memory usage and interface
 *  complexity. The speed isn't compromised too much (I don't think), but the
 *  internal complexity is higher than it should be for such a relatively
 *  simple routine.
 *
 *  Optimization/clarity suggestions are welcome.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "gain_analysis.h"

typedef unsigned short  Uint16_t;
typedef signed short    Int16_t;
typedef unsigned int    Uint32_t;
typedef signed int      Int32_t;

#define YULE_ORDER         10
#define BUTTER_ORDER        2
#define YULE_FILTER     filterYule
#define BUTTER_FILTER   filterButter
#define RMS_PERCENTILE      0.95        // percentile which is louder than the proposed level
#define MAX_SAMP_FREQ   48000.          // maximum allowed sample frequency [Hz]
#define RMS_WINDOW_TIME     0.050       // Time slice size [s]
#define STEPS_per_dB      100.          // Table entries per dB
#define MAX_dB            120.          // Table entries for 0...MAX_dB (normal max. values are 70...80 dB)

#define MAX_ORDER               (BUTTER_ORDER > YULE_ORDER ? BUTTER_ORDER : YULE_ORDER)
#define MAX_SAMPLES_PER_WINDOW  (size_t) (MAX_SAMP_FREQ * RMS_WINDOW_TIME + 1)      // max. Samples per Time slice
#define PINK_REF                64.82 //298640883795                              // calibration value

Float_t          linprebuf [MAX_ORDER * 2];
Float_t*         linpre;                                          // left input samples, with pre-buffer
Float_t          lstepbuf  [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
Float_t*         lstep;                                           // left "first step" (i.e. post first filter) samples
Float_t          loutbuf   [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
Float_t*         lout;                                            // left "out" (i.e. post second filter) samples
Float_t          rinprebuf [MAX_ORDER * 2];
Float_t*         rinpre;                                          // right input samples ...
Float_t          rstepbuf  [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
Float_t*         rstep;
Float_t          routbuf   [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
Float_t*         rout;
long             sampleWindow;                                    // number of samples required to reach number of milliseconds required for RMS window
long             totsamp;
double           lsum;
double           rsum;
int              freqindex;
int              first;
static Uint32_t  A [(size_t)(STEPS_per_dB * MAX_dB)];
static Uint32_t  B [(size_t)(STEPS_per_dB * MAX_dB)];

// for each filter:
// [0] 48 kHz, [1] 44.1 kHz, [2] 32 kHz, [3] 24 kHz, [4] 22050 Hz, [5] 16 kHz, [6] 12 kHz, [7] is 11025 Hz, [8] 8 kHz

#ifdef WIN32
#ifndef __GNUC__
#pragma warning ( disable : 4305 )
#endif
#endif

static const Float_t ABYule[9][2*YULE_ORDER + 1] = {
    {0.03857599435200, -3.84664617118067, -0.02160367184185,  7.81501653005538, -0.00123395316851,-11.34170355132042, -0.00009291677959, 13.05504219327545, -0.01655260341619,-12.28759895145294,  0.02161526843274,  9.48293806319790, -0.02074045215285, -5.87257861775999,  0.00594298065125,  2.75465861874613,  0.00306428023191, -0.86984376593551,  0.00012025322027,  0.13919314567432,  0.00288463683916 },
    {0.05418656406430, -3.47845948550071, -0.02911007808948,  6.36317777566148, -0.00848709379851, -8.54751527471874, -0.00851165645469,  9.47693607801280, -0.00834990904936, -8.81498681370155,  0.02245293253339,  6.85401540936998, -0.02596338512915, -4.39470996079559,  0.01624864962975,  2.19611684890774, -0.00240879051584, -0.75104302451432,  0.00674613682247,  0.13149317958808, -0.00187763777362 },
    {0.15457299681924, -2.37898834973084, -0.09331049056315,  2.84868151156327, -0.06247880153653, -2.64577170229825,  0.02163541888798,  2.23697657451713, -0.05588393329856, -1.67148153367602,  0.04781476674921,  1.00595954808547,  0.00222312597743, -0.45953458054983,  0.03174092540049,  0.16378164858596, -0.01390589421898, -0.05032077717131,  0.00651420667831,  0.02347897407020, -0.00881362733839 },
    {0.30296907319327, -1.61273165137247, -0.22613988682123,  1.07977492259970, -0.08587323730772, -0.25656257754070,  0.03282930172664, -0.16276719120440, -0.00915702933434, -0.22638893773906, -0.02364141202522,  0.39120800788284, -0.00584456039913, -0.22138138954925,  0.06276101321749,  0.04500235387352, -0.00000828086748,  0.02005851806501,  0.00205861885564,  0.00302439095741, -0.02950134983287 },
    {0.33642304856132, -1.49858979367799, -0.25572241425570,  0.87350271418188, -0.11828570177555,  0.12205022308084,  0.11921148675203, -0.80774944671438, -0.07834489609479,  0.47854794562326, -0.00469977914380, -0.12453458140019, -0.00589500224440, -0.04067510197014,  0.05724228140351,  0.08333755284107,  0.00832043980773, -0.04237348025746, -0.01635381384540,  0.02977207319925, -0.01760176568150 },
    {0.44915256608450, -0.62820619233671, -0.14351757464547,  0.29661783706366, -0.22784394429749, -0.37256372942400, -0.01419140100551,  0.00213767857124,  0.04078262797139, -0.42029820170918, -0.12398163381748,  0.22199650564824,  0.04097565135648,  0.00613424350682,  0.10478503600251,  0.06747620744683, -0.01863887810927,  0.05784820375801, -0.03193428438915,  0.03222754072173,  0.00541907748707 },
    {0.56619470757641, -1.04800335126349, -0.75464456939302,  0.29156311971249,  0.16242137742230, -0.26806001042947,  0.16744243493672,  0.00819999645858, -0.18901604199609,  0.45054734505008,  0.30931782841830, -0.33032403314006, -0.27562961986224,  0.06739368333110,  0.00647310677246, -0.04784254229033,  0.08647503780351,  0.01639907836189, -0.03788984554840,  0.01807364323573, -0.00588215443421 },
    {0.58100494960553, -0.51035327095184, -0.53174909058578, -0.31863563325245, -0.14289799034253, -0.20256413484477,  0.17520704835522,  0.14728154134330,  0.02377945217615,  0.38952639978999,  0.15558449135573, -0.23313271880868, -0.25344790059353, -0.05246019024463,  0.01628462406333, -0.02505961724053,  0.06920467763959,  0.02442357316099, -0.03721611395801,  0.01818801111503, -0.00749618797172 },
    {0.53648789255105, -0.25049871956020, -0.42163034350696, -0.43193942311114, -0.00275953611929, -0.03424681017675,  0.04267842219415, -0.04678328784242, -0.10214864179676,  0.26408300200955,  0.14590772289388,  0.15113130533216, -0.02459864859345, -0.17556493366449, -0.11202315195388, -0.18823009262115, -0.04060034127000,  0.05477720428674,  0.04788665548180,  0.04704409688120, -0.02217936801134 }
};

static const Float_t ABButter[9][2*BUTTER_ORDER + 1] = {
    {0.98621192462708, -1.97223372919527, -1.97242384925416,  0.97261396931306,  0.98621192462708 },
    {0.98500175787242, -1.96977855582618, -1.97000351574484,  0.97022847566350,  0.98500175787242 },
    {0.97938932735214, -1.95835380975398, -1.95877865470428,  0.95920349965459,  0.97938932735214 },
    {0.97531843204928, -1.95002759149878, -1.95063686409857,  0.95124613669835,  0.97531843204928 },
    {0.97316523498161, -1.94561023566527, -1.94633046996323,  0.94705070426118,  0.97316523498161 },
    {0.96454515552826, -1.92783286977036, -1.92909031105652,  0.93034775234268,  0.96454515552826 },
    {0.96009142950541, -1.91858953033784, -1.92018285901082,  0.92177618768381,  0.96009142950541 },
    {0.95856916599601, -1.91542108074780, -1.91713833199203,  0.91885558323625,  0.95856916599601 },
    {0.94597685600279, -1.88903307939452, -1.89195371200558,  0.89487434461664,  0.94597685600279 }
};


#ifdef WIN32
#ifndef __GNUC__
#pragma warning ( default : 4305 )
#endif
#endif

// When calling these filter procedures, make sure that ip[-order] and op[-order] point to real data!

// If your compiler complains that "'operation on 'output' may be undefined", you can
// either ignore the warnings or uncomment the three "y" lines (and comment out the indicated line)

static void
filterYule (const Float_t* input, Float_t* output, size_t nSamples, const Float_t* kernel)
{

    while (nSamples--) {
        *output =  
           input [0]  * kernel[0]
         - output[-1] * kernel[1]
         + input [-1] * kernel[2]
         - output[-2] * kernel[3]
         + input [-2] * kernel[4]
         - output[-3] * kernel[5]
         + input [-3] * kernel[6]
         - output[-4] * kernel[7]
         + input [-4] * kernel[8]
         - output[-5] * kernel[9]
         + input [-5] * kernel[10]
         - output[-6] * kernel[11]
         + input [-6] * kernel[12]
         - output[-7] * kernel[13]
         + input [-7] * kernel[14]
         - output[-8] * kernel[15]
         + input [-8] * kernel[16]
         - output[-9] * kernel[17]
         + input [-9] * kernel[18]
         - output[-10]* kernel[19]
         + input [-10]* kernel[20];
        ++output;
        ++input;
    }
}

static void
filterButter (const Float_t* input, Float_t* output, size_t nSamples, const Float_t* kernel)
{   

    while (nSamples--) {
        *output =  
           input [0]  * kernel[0]
         - output[-1] * kernel[1]
         + input [-1] * kernel[2]
         - output[-2] * kernel[3]
         + input [-2] * kernel[4];
        ++output;
        ++input;
    }
}


// returns a INIT_GAIN_ANALYSIS_OK if successful, INIT_GAIN_ANALYSIS_ERROR if not

int
ResetSampleFrequency ( long samplefreq ) {
    int  i;

    // zero out initial values
    for ( i = 0; i < MAX_ORDER; i++ )
        linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] = routbuf[i] = 0.;

    switch ( (int)(samplefreq) ) {
        case 48000: freqindex = 0; break;
        case 44100: freqindex = 1; break;
        case 32000: freqindex = 2; break;
        case 24000: freqindex = 3; break;
        case 22050: freqindex = 4; break;
        case 16000: freqindex = 5; break;
        case 12000: freqindex = 6; break;
        case 11025: freqindex = 7; break;
        case  8000: freqindex = 8; break;
        default:    return INIT_GAIN_ANALYSIS_ERROR;
    }

    sampleWindow = (int) ceil (samplefreq * RMS_WINDOW_TIME);

    lsum         = 0.;
    rsum         = 0.;
    totsamp      = 0;

    memset ( A, 0, sizeof(A) );

    return INIT_GAIN_ANALYSIS_OK;
}

int
InitGainAnalysis ( long samplefreq )
{
    if (ResetSampleFrequency(samplefreq) != INIT_GAIN_ANALYSIS_OK) {
        return INIT_GAIN_ANALYSIS_ERROR;
    }

    linpre       = linprebuf + MAX_ORDER;
    rinpre       = rinprebuf + MAX_ORDER;
    lstep        = lstepbuf  + MAX_ORDER;
    rstep        = rstepbuf  + MAX_ORDER;
    lout         = loutbuf   + MAX_ORDER;
    rout         = routbuf   + MAX_ORDER;

    memset ( B, 0, sizeof(B) );

    return INIT_GAIN_ANALYSIS_OK;
}

// returns GAIN_ANALYSIS_OK if successful, GAIN_ANALYSIS_ERROR if not

static __inline double fsqr(const double d)
{  return d*d;
}

int
AnalyzeSamples ( const Float_t* left_samples, const Float_t* right_samples, size_t num_samples, int num_channels )
{
    const Float_t*  curleft;
    const Float_t*  curright;
    long            batchsamples;
    long            cursamples;
    long            cursamplepos;
    int             i;

    if ( num_samples == 0 )
        return GAIN_ANALYSIS_OK;

    cursamplepos = 0;
    batchsamples = num_samples;

    switch ( num_channels) {
    case  1: right_samples = left_samples;
    case  2: break;
    default: return GAIN_ANALYSIS_ERROR;
    }

    if ( num_samples < MAX_ORDER ) {
        memcpy ( linprebuf + MAX_ORDER, left_samples , num_samples * sizeof(Float_t) );
        memcpy ( rinprebuf + MAX_ORDER, right_samples, num_samples * sizeof(Float_t) );
    }
    else {
        memcpy ( linprebuf + MAX_ORDER, left_samples,  MAX_ORDER   * sizeof(Float_t) );
        memcpy ( rinprebuf + MAX_ORDER, right_samples, MAX_ORDER   * sizeof(Float_t) );
    }

    while ( batchsamples > 0 ) {
        cursamples = batchsamples > sampleWindow-totsamp  ?  sampleWindow - totsamp  :  batchsamples;
        if ( cursamplepos < MAX_ORDER ) {
            curleft  = linpre+cursamplepos;
            curright = rinpre+cursamplepos;
            if (cursamples > MAX_ORDER - cursamplepos )
                cursamples = MAX_ORDER - cursamplepos;
        }
        else {
            curleft  = left_samples  + cursamplepos;
            curright = right_samples + cursamplepos;
        }

        YULE_FILTER ( curleft , lstep + totsamp, cursamples, ABYule[freqindex]);
        YULE_FILTER ( curright, rstep + totsamp, cursamples, ABYule[freqindex]);

        BUTTER_FILTER ( lstep + totsamp, lout + totsamp, cursamples, ABButter[freqindex]);
        BUTTER_FILTER ( rstep + totsamp, rout + totsamp, cursamples, ABButter[freqindex]);

        curleft = lout + totsamp;                   // Get the squared values
        curright = rout + totsamp;

        i = cursamples % 16;
        while (i--)
        {   lsum += fsqr(*curleft++);
            rsum += fsqr(*curright++);
        }
        i = cursamples / 16;
        while (i--)
        {   lsum += fsqr(curleft[0])
                  + fsqr(curleft[1])
                  + fsqr(curleft[2])
                  + fsqr(curleft[3])
                  + fsqr(curleft[4])
                  + fsqr(curleft[5])
                  + fsqr(curleft[6])
                  + fsqr(curleft[7])
                  + fsqr(curleft[8])
                  + fsqr(curleft[9])
                  + fsqr(curleft[10])
                  + fsqr(curleft[11])
                  + fsqr(curleft[12])
                  + fsqr(curleft[13])
                  + fsqr(curleft[14])
                  + fsqr(curleft[15]);
            curleft += 16;
            rsum += fsqr(curright[0])
                  + fsqr(curright[1])
                  + fsqr(curright[2])
                  + fsqr(curright[3])
                  + fsqr(curright[4])
                  + fsqr(curright[5])
                  + fsqr(curright[6])
                  + fsqr(curright[7])
                  + fsqr(curright[8])
                  + fsqr(curright[9])
                  + fsqr(curright[10])
                  + fsqr(curright[11])
                  + fsqr(curright[12])
                  + fsqr(curright[13])
                  + fsqr(curright[14])
                  + fsqr(curright[15]);
            curright += 16;
        }

        batchsamples -= cursamples;
        cursamplepos += cursamples;
        totsamp      += cursamples;
        if ( totsamp == sampleWindow ) {  // Get the Root Mean Square (RMS) for this set of samples
            double  val  = STEPS_per_dB * 10. * log10 ( (lsum+rsum) / totsamp * 0.5 + 1.e-37 );
            int     ival = (int) val;
            if ( ival <                     0 ) ival = 0;
            if ( ival >= (int)(sizeof(A)/sizeof(*A)) ) ival = sizeof(A)/sizeof(*A) - 1;
            A [ival]++;
            lsum = rsum = 0.;
            memmove ( loutbuf , loutbuf  + totsamp, MAX_ORDER * sizeof(Float_t) );
            memmove ( routbuf , routbuf  + totsamp, MAX_ORDER * sizeof(Float_t) );
            memmove ( lstepbuf, lstepbuf + totsamp, MAX_ORDER * sizeof(Float_t) );
            memmove ( rstepbuf, rstepbuf + totsamp, MAX_ORDER * sizeof(Float_t) );
            totsamp = 0;
        }
        if ( totsamp > sampleWindow )   // somehow I really screwed up: Error in programming! Contact author about totsamp > sampleWindow
            return GAIN_ANALYSIS_ERROR;
    }
    if ( num_samples < MAX_ORDER ) {
        memmove ( linprebuf,                           linprebuf + num_samples, (MAX_ORDER-num_samples) * sizeof(Float_t) );
        memmove ( rinprebuf,                           rinprebuf + num_samples, (MAX_ORDER-num_samples) * sizeof(Float_t) );
        memcpy  ( linprebuf + MAX_ORDER - num_samples, left_samples,          num_samples             * sizeof(Float_t) );
        memcpy  ( rinprebuf + MAX_ORDER - num_samples, right_samples,         num_samples             * sizeof(Float_t) );
    }
    else {
        memcpy  ( linprebuf, left_samples  + num_samples - MAX_ORDER, MAX_ORDER * sizeof(Float_t) );
        memcpy  ( rinprebuf, right_samples + num_samples - MAX_ORDER, MAX_ORDER * sizeof(Float_t) );
    }

    return GAIN_ANALYSIS_OK;
}


static Float_t
analyzeResult ( Uint32_t* Array, size_t len )
{
    Uint32_t  elems;
    Int32_t   upper;
    size_t    i;

    elems = 0;
    for ( i = 0; i < len; i++ )
        elems += Array[i];
    if ( elems == 0 )
        return GAIN_NOT_ENOUGH_SAMPLES;

    upper = (Int32_t) ceil (elems * (1. - RMS_PERCENTILE));
    for ( i = len; i-- > 0; ) {
        if ( (upper -= Array[i]) <= 0 )
            break;
    }

    return (Float_t) ((Float_t)PINK_REF - (Float_t)i / (Float_t)STEPS_per_dB);
}


Float_t
GetTitleGain ( void )
{
    Float_t  retval;
    int    i;

    retval = analyzeResult ( A, sizeof(A)/sizeof(*A) );

    for ( i = 0; i < (int)(sizeof(A)/sizeof(*A)); i++ ) {
        B[i] += A[i];
        A[i]  = 0;
    }

    for ( i = 0; i < MAX_ORDER; i++ )
        linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] = routbuf[i] = 0.f;

    totsamp = 0;
    lsum    = rsum = 0.;
    return retval;
}


Float_t
GetAlbumGain ( void )
{
    return analyzeResult ( B, sizeof(B)/sizeof(*B) );
}

/* end of gain_analysis.c */