
mpatrol
A library for controlling and tracing dynamic memory allocations

Edition 2.13 for mpatrol version 1.4.8
8th January, 2002

Graeme S. Roy



Copyright c© 1997-2002 Graeme S. Roy <graeme.roy@analog.com>

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the Free Software Foundation.
All product names mentioned in the documentation and source code for this library are the
trademarks of their respective owners.

mailto:graeme.roy@analog.com


i

Table of Contents

mpatrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1 Adding mpatrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Removing mpatrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Memory allocations . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 Static memory allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Stack memory allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Dynamic memory allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Operating system support . . . . . . . . . . . . . . . . . . . . 21
6.1 Virtual memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Call stacks and symbol tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Using mpatrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1 Library behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Logging and tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.3 General errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4 Overwrites and underwrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.5 Using with a debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.6 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.7 Library functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.8 Leak table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.1 Dbmalloc-compatible functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2 Dmalloc-compatible functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.3 Determining heap differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.4 Memory allocation gauge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.5 Memory allocation tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



ii mpatrol

9 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.1 The mpatrol command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2 The mleak command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.3 The mpsym command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.4 The mpedit command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.5 The hexwords command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

11 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

12 Heap corruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

13 Memory leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

14 Improving performance . . . . . . . . . . . . . . . . . . . . . 89

15 How it works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

16 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
16.1 Getting started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
16.2 Detecting incorrect reuse of freed memory . . . . . . . . . . . . . . . . . . 104
16.3 Detecting use of free memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
16.4 Using overflow buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
16.5 Checking memory accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
16.6 Bad memory operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
16.7 Incompatible function calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
16.8 The alloca() functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
16.9 The MP_MALLOC() functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
16.10 Additional useful information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

17 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix A Functions . . . . . . . . . . . . . . . . . . . . . . . . 137
A.1 C dynamic memory allocation functions . . . . . . . . . . . . . . . . . . . . 137
A.2 C dynamic memory extension functions . . . . . . . . . . . . . . . . . . . . . 141
A.3 C dynamic memory alternative functions . . . . . . . . . . . . . . . . . . . 142
A.4 C++ dynamic memory allocation functions . . . . . . . . . . . . . . . . . . 143
A.5 C memory operation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.6 mpatrol library functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Appendix B Environment . . . . . . . . . . . . . . . . . . . . . 153

Appendix C Options . . . . . . . . . . . . . . . . . . . . . . . . . 161

Appendix D Diagnostic messages . . . . . . . . . . . . . . 167

Appendix E Library performance. . . . . . . . . . . . . . 175



iii

Appendix F File formats . . . . . . . . . . . . . . . . . . . . . . 177
F.1 Profiling file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
F.2 Tracing file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Appendix G Supported systems . . . . . . . . . . . . . . . 179

Appendix H Porting . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Appendix I Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
I.1 Notes for all platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
I.2 Notes for UNIX platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
I.3 Notes for Amiga platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
I.4 Notes for Windows platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
I.5 Notes for Netware platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Appendix J Frequently asked questions . . . . . . . . 203
J.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
J.2 Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
J.3 Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
J.4 Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
J.5 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Appendix K Related software . . . . . . . . . . . . . . . . . 213

Appendix L References . . . . . . . . . . . . . . . . . . . . . . . 233

Appendix M About the author . . . . . . . . . . . . . . . . 235

Appendix N Copying . . . . . . . . . . . . . . . . . . . . . . . . . 237

Function index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249



iv mpatrol



mpatrol 1

mpatrol

This document describes mpatrol, a library for controlling and tracing dynamic memory
allocations.

This is edition 2.13 of the mpatrol manual for version 1.4.8, 8th January, 2002.



2 mpatrol



Foreword 3

Foreword

I first started writing this library a few years ago when the company I work for sent me out
to a customer who had reported a memory leak, which he expected was coming from the code
generated by our C++ compiler. A few years on and the library has changed dramatically from
its first beginnings, but I thought I’d release it publicly in case anyone else found it useful.

When writing the library, I placed more emphasis on the quantity and quality of information
about allocated memory rather than the speed and efficiency of allocating the actual memory.
This means that the library will use dramatically more memory than normal dynamic memory
allocation libraries and can slow down to a crawl depending on which options you use. However,
the end results are likely to be accurate and reliable, and in most cases the library will run quite
happily at a sane speed.

The mpatrol library is by no means the only library of its kind. Solaris has no less that 6
different malloc libraries, and there are plenty available as freeware or as commercial products.
Try to keep in mind that mpatrol comes with absolutely no warranty and so if it doesn’t work
for you and you need a fast solution, try some of the other libraries or products available. I have
listed some of the most popular at the end of this manual (see Appendix K [Related software],
page 213).

This manual is arranged so that complete reference material on the mpatrol library can
be found in the appendices, while introductory and background material can be found in the
preceding chapters and sections. For readers who wish to delve right in and use the library, the
Installation (see Chapter 3 [Installation], page 13) and Examples (see Chapter 16 [Examples],
page 95) chapters should be enough to get started in combination with the quick reference card.
Otherwise, this manual should be read from beginning to end in order to get the most out of
the software it describes. Note that all of the output shown from the examples was produced
on 32-bit environments, although mpatrol can be built to support 64-bit environments as well.

Due to their very nature, problems with dynamic memory allocations are notoriously difficult
to reproduce and debug, and this is likely to be the case if you find a bug in the mpatrol library
as it might be extremely hard to reproduce on another system. Details on how to report bugs are
given elsewhere in this document (see Appendix I [Notes], page 193), but it would be very useful
if you could try to provide as much information as possible when reporting a problem, and that
includes having a look in the library source code to see if it’s obvious what is wrong. However,
please try to read the frequently asked questions (see Appendix J [Frequently asked questions],
page 203) first in case your question or problem is covered there since they are usually updated
every time I receive a question about mpatrol.

The latest version of the mpatrol library and this manual can always be found
at http://www.cbmamiga.demon.co.uk/mpatrol/, and any correspondence relat-
ing to mpatrol (bug reports, enhancement requests, compliments, etc.) should
be sent to mpatrol@cbmamiga.demon.co.uk. I’d be very interested in hearing
any success stories with using mpatrol to debug programs, since I get very little
feedback apart from the occasional bug report. The mpatrol library is also regis-
tered at FreshMeat (http://freshmeat.net/projects/mpatrol/) and SourceForge
(http://sourceforge.net/projects/mpatrol/) and several other software sites so you
can receive notification of updates there as well. I normally only check my e-mail about
once or twice a week, so don’t expect an immediate response. I can also be reached at
graeme.roy@analog.com but that is my work e-mail address. There is also a discussion group
at http://groups.yahoo.com/group/mpatrol/ where you can post mpatrol-related questions
but you must first subscribe to the group before you can send mail to it.

Finally, I’d like to thank Stephan Springl (springl@bfw-online.de) for his help on
reading debugging information from object files via the GNU BFD library, and Adam
Zell (zell@best.com) for helping with patching the dynamic linker support functions
for loading shared libraries. Both Alexander Barton (abarton@innotrac.com) and Dave

http://www.cbmamiga.demon.co.uk/mpatrol/
mailto:mpatrol@cbmamiga.demon.co.uk
http://freshmeat.net/projects/mpatrol/
http://sourceforge.net/projects/mpatrol/
mailto:graeme.roy@analog.com
http://groups.yahoo.com/group/mpatrol/
mailto:springl@bfw-online.de
mailto:zell@best.com
mailto:abarton@innotrac.com


4 mpatrol

Gibson (david.gibson@analog.com) helped to make mpatrol thread-safe. Roger Keane
(rgr@bcs-inc.com) provided the perl code in the mpsym command and also the idea for the
MP_USE_ATEXIT feature macro. Steve McIntyre (smcintyre@allstor-sw.co.uk) helped by
diagnosing the fork() problem and provided example code on how to fix it. Peter Zijlstra
(peter@xlnt-software.com) contributed code to enhance stack traces for errors.

Boris Makushkin (oberon@antibiotic.ru) requested, helped with, and pro-
vided initial testing for the FreeBSD port, and Ivan Finch (i.finch@rl.ac.uk),
Gerrit Bruchhaeuser (gbruchhaeuser@orga.com) and Andreas Schallenberg
(andreas.schallenberg@informatik.uni-oldenburg.de) did the same for the
Tru64 and SuSE ports. Both Aleksandar Donev (donev@pa.msu.edu) and Van Snyder
(vsnyder@math.jpl.nasa.gov) provided suggestions and code for using mpatrol with
FORTRAN. Michael Anthony (m@xyzfind.com) wrote the profdiff tool and Jerome Marant
(jerome@debian.org) did the Debian GNU/Linux port.

In addition, after spending well over 2000 hours designing and programming mpatrol, my
sanity would not have been preserved in the state it is in today were it not for the music of The
Chemical Brothers, The Manic Street Preachers, Orbital and The Prodigy. You can now argue
how sane I am depending on your musical tastes!

Oh, and always remember to do final release builds without the mpatrol library as the library
is much slower than normal malloc implementations and uses much more memory.

Happy debugging!
Graeme Roy, 11th October, 1999.
Edinburgh, Scotland.

mailto:david.gibson@analog.com
mailto:rgr@bcs-inc.com
mailto:smcintyre@allstor-sw.co.uk
mailto:peter@xlnt-software.com
mailto:oberon@antibiotic.ru
mailto:i.finch@rl.ac.uk
mailto:gbruchhaeuser@orga.com
mailto:andreas.schallenberg@informatik.uni-oldenburg.de
mailto:donev@pa.msu.edu
mailto:vsnyder@math.jpl.nasa.gov
mailto:m@xyzfind.com
mailto:jerome@debian.org


Chapter 1: Overview 5

1 Overview

The mpatrol library is yet another link library that attempts to diagnose run-time errors
that are caused by the wrong use of dynamically allocated memory. If you don’t know what the
malloc() function or operator new[] do then this library is probably not for you. You have
to have a certain amount of programming expertise and a knowledge of how to run a command
line compiler and linker before you should attempt to use this.

Along with providing a comprehensive and configurable log of all dynamic memory operations
that occurred during the lifetime of a program, the mpatrol library performs extensive checking
to detect any misuse of dynamically allocated memory. All of this functionality can be integrated
into existing code through the inclusion of a single header file at compile-time. On UNIX and
Windows platforms (and AmigaOS when using gcc) this may not even be necessary as the
mpatrol library can be linked with existing object files at link-time or, on some platforms, even
dynamically linked with existing programs at run-time.

All logging and tracing output from the mpatrol library is sent to a separate log file in order
to keep its diagnostics separate from any that the program being tested might generate. A wide
variety of library settings can also be changed at run-time via an environment variable, thus
removing the need to recompile or relink in order to change the library’s behaviour.

A file containing a summary of the memory allocation profiling statistics for a particular
program can be produced by the mpatrol library. This file can then be read by a profiling tool
which will display a set of tables based upon the accumulated data. The profiling information
includes summaries of all of the memory allocations listed by size and the function that allocated
them and a list of memory leaks with the call stack of the allocating function. It also includes a
graph of all memory allocations listed in tabular form, and an optional graph specification file
for later processing by the dot graph visualisation package.

A file containing a concise encoded trace of all memory allocations, reallocations and deallo-
cations made by a program can also be produced by the mpatrol library. This file can then be
read by a tracing tool which will decode the trace and display the events in tabular or graphical
form, and also display any relevant statistics that could be calculated.

The mpatrol library has been designed with the intention of replacing calls to existing C and
C++ memory allocation functions as seamlessly as possible, but in many cases that may not be
possible and slight code modifications may be required. However, a preprocessor macro contain-
ing the version of the mpatrol library is provided for the purposes of conditional compilation so
that release builds and debug builds can be easily automated.



6 mpatrol



Chapter 2: Features 7

2 Features

An overall list of features contained in the mpatrol library is given below. This is not intended
to be exhaustive since the best way to see what the library does is to read the documentation
and try it out.
• Written for 32-bit and 64-bit UNIX, AmigaOS, Windows and Netware platforms. Contains

direct support for (and takes advantage of most of the features of) AIX, DG/UX, DRS/NX,
DYNIX/ptx, FreeBSD, HP/UX, IRIX, Linux, LynxOS, NetBSD, OpenBSD, SINIX, Solaris,
SunOS, Tru64 and UnixWare. Also contains target-specific code to take advantage of Alpha,
Intel 80x86, Motorola 680x0 and 88xx0, MIPS, HP PA/RISC, IBM RS/6000, PowerPC and
SPARC processors.

• Has the ability to read symbols from executable files and shared libraries in the ‘a.out’,
COFF, XCOFF, ELF32, ELF64 and Windows Portable Executable file formats, and if the
GNU BFD library is available then the mpatrol library can read symbols from all of the
file formats that it has support for as well. Can also liase with AIX, BSD-based, HP/UX,
IRIX, OSF, SVR4-based and Windows dynamic linkers in order to find out information
about shared libraries.

• Can be built to allocate memory from a fixed-sized static array rather than using heap
memory from the system.

• Can be built as archive, shared and/or thread-safe libraries on systems that support them,
or even as one large object file. A lint library can also be built from the mpatrol library on
UNIX platforms.

• A release version of the mpatrol library is provided, which has the same functional interface,
but does not contain any of mpatrol’s debugging, tracing or profiling features. It is intended
to be used to quickly remove the mpatrol library.

• Details of memory allocations and free memory are stored internally as a tree structure for
speed and also to allow the best fit allocation algorithm to be used. This also enables the
library to perform intelligent resizing of memory allocations and can be used to quickly
determine if an address has been allocated on the heap.

• Contains 19 replacement C dynamic memory allocation functions:
malloc() ANSI Allocates memory.
calloc() ANSI Allocates zero-filled memory.
memalign() UNIX Allocates memory with a specified alignment.
valloc() UNIX Allocates page-aligned memory.
pvalloc() UNIX Allocates a number of pages.
alloca() old Allocates temporary memory.
strdup() UNIX Duplicates a string.
strndup() old Duplicates a string with a maximum length.
strsave() old Duplicates a string.
strnsave() old Duplicates a string with a maximum length.
strdupa() old Duplicates a string.
strndupa() old Duplicates a string with a maximum length.
realloc() ANSI Resizes memory.
reallocf() BSD Resizes memory and frees on failure.
recalloc() old Resizes memory allocated by calloc().
expand() old Resizes memory but does not relocate it.
free() ANSI Frees memory.
cfree() old Frees memory allocated by calloc().
dealloca() new Explicitly frees temporary memory.

• Contains 5 replacement C dynamic memory extension functions:
xmalloc() Allocates memory without failure.



8 mpatrol

xcalloc() Allocates zero-filled memory without failure.
xstrdup() Duplicates a string without failure.
xrealloc() Resizes memory without failure.
xfree() Frees memory.

• Contains 6 replacement C dynamic memory alternative functions:
MP_MALLOC() Allocates memory without failure.
MP_CALLOC() Allocates zero-filled memory without failure.
MP_STRDUP() Duplicates a string without failure.
MP_REALLOC() Resizes memory without failure.
MP_FREE() Frees memory.
MP_FAILURE() Sets the allocation failure handler.

• Contains 4 replacement C++ dynamic memory allocation operators (in both throw and
nothrow forms):
operator new Allocates memory.
operator new[] Allocates memory for an array.
operator delete Frees memory.
operator delete[] Frees memory allocated by operator new[].

• Contains 10 replacement C memory operation functions:
memset() ANSI Fills memory with a specific byte.
bzero() UNIX Fills memory with the zero byte.
memccpy() UNIX Copies memory up to a specific byte.
memcpy() ANSI Copies non-overlapping memory.
memmove() ANSI Copies possibly-overlapping memory.
bcopy() UNIX Copies possibly-overlapping memory.
memcmp() ANSI Compares two blocks of memory.
bcmp() UNIX Compares two blocks of memory.
memchr() ANSI Searches memory for a specific byte.
memmem() UNIX Searches memory for specific bytes.

• All of the above functions can also be defined with an additional underscore prepended to
their external name in order to catch all uses of these functions in the system and third-party
libraries.

• Contains support for a user-defined low-memory handler function, including a replacement
for the C++ function, set_new_handler().

• The C++ dynamic memory allocation operators make use of the preprocessor in order to
obtain source-level information. If this causes problems then replacement operator names
may be used so that the existing operators will still work.

• Contains support for automatically registering any functions whose names begin with
‘__mp_init_’ and ‘__mp_fini_’ to be called when the mpatrol library is initialised and
terminated respectively. A function is also provided to register additional functions to be
called when the mpatrol library terminates.

• Contains support for user-defined prologue and epilogue callback functions, which get called
before and after every memory allocation, reallocation or deallocation.

• A function is provided to return as much information as possible about a given memory
allocation or free block, and can be called at any time during program execution. A similar
function is also provided for calling from within a debugger and an example command file
is provided for use with gdb.

• A function is provided to display library settings and heap usage statistics, including peak
memory usage. This information is also displayed at program termination, and can also be
placed into a data structure at run-time via another function.

• The library reads any user-controllable options at run-time from an environment variable,
but this does not have to be set as defaults will then be used. This prevents having to



Chapter 2: Features 9

recompile anything in order to change any library settings. An option exists to display a
quick-reference summary of all of the recognised options to the standard error file stream.
Library settings can also be set and read from within user code after the library has been
initialised by calling two internal functions.

• All diagnostics and logging are sent to a file in the current directory, but this can be
overridden, including forcing the log file to be the standard output or standard error file
streams. An environment variable specifying a default directory in which to place log files
can also be set.

• Options exist to log details of every memory allocation, reallocation or deallocation when
they occur. A function exists to log the details of any memory allocation to the mpatrol
log file.

• Options exist to halt the program at a specific memory allocation, reallocation or deallo-
cation when running the program within a debugger. These options have no effect when
running the program without a debugger.

• An option exists to enable memory allocation profiling, which forces a summary of all
memory allocation statistics to be written to a specified file for later use by a profiling
command. The profiling file can also be written at a specified frequency. An environment
variable specifying a default directory in which to place profiling output files can also be
set.

• A profiling command is provided which reads a profiling output file produced by the mpatrol
library and displays a set of tables based on the accumulated data. The profiling information
includes summaries of all of the memory allocations listed by size and the function that
allocated them and a list of memory leaks with the call stack of the allocating function.
It also includes a graph of all memory allocations listed in tabular form, and an optional
graph specification file for later processing by the dot graph visualisation package.

• An option exists to enable memory allocation tracing, which forces certain details for every
memory allocation event to be written to a specified file for later use by a tracing command.
The tracing file is written in a concise encoded form so as to keep the size of the file down.
An environment variable specifying a default directory in which to place tracing output files
can also be set.

• A tracing command is provided which reads a tracing output file produced by the mpatrol
library and displays the memory allocation events in tabular or graphical form. It also
displays any relevant statistics that could be calculated, and has options to write out the
trace in HATF format or write out a trace-driven memory allocation simulation program
as C source code.

• On UNIX platforms, the mmap() function can optionally be used to allocate user memory
instead of the sbrk() function, but only if the system supports it. If mmap() is supported
then internal mpatrol library memory is normally allocated with this function in order to
segregate it from user memory but this behaviour can be swapped around.

• On non-UNIX platforms where the mpatrol library overrides malloc() without requiring
the inclusion of ‘mpatrol.h’, versions of the UNIX functions brk() and sbrk() are provided
for compatibility with certain libraries. These should not be called by user code as they
have only limited functionality.

• All newly-allocated memory that is not allocated by the calloc() or recalloc() functions
will be pre-filled with a non-zero value in order to catch out programs that wrongly assume
that all newly-allocated memory is zeroed. This value can be modified at run-time.

• Can automatically check to see if there have been any illegal writes to bytes located just
before and after every memory allocation through the use of overflow buffers. The size of
such overflow buffers and the value to pre-fill them with can be modified at run-time. The
checks will be performed before every memory allocation call to ensure that nothing has
overwritten the overflow buffers, but a function is also provided to perform additional checks



10 mpatrol

under the programmer’s control and an option exists to specify a range and frequency in
which checks will be performed.

• On systems that support them, watch point areas can be used instead of overflow buffers so
that every read and write to memory is checked to ensure that it is not within an overflow
buffer.

• Supports the ‘-fcheck-memory-usage’ option of gcc to check all heap memory accesses
in programs that were compiled with that option. Currently this only supports checking
that memory accesses do not overflow heap allocations or access free memory, rather than
keeping records of individual memory accesses that GNU Checker does.

• Can automatically check to see if there have been any illegal writes to free memory blocks.
The value to pre-fill free memory blocks with can be modified at run-time. The check will
be performed before every memory allocation call to ensure that nothing has overwritten
the free memory block, but a function is also provided to perform additional checks under
the programmer’s control and an option exists to specify a range in which checks will be
performed.

• On systems that support memory protection, every memory allocation can optionally be
allocated at least one page of memory. That way, any free memory blocks can be made
read and write protected so that nothing can access free memory on the heap. An option
is provided to specify whether all memory allocations should be allocated at the start or at
the end of such pages, and the bytes left over within the pages become overflow buffers.

• All freed memory allocations can optionally be prevented from being returned to the free
memory pool. This is useful for detecting if use is being made of freed memory just after
a memory allocation has been freed. The contents of the memory allocation can either be
preserved or can be pre-filled with a value in order to detect illegal writes to the freed mem-
ory allocation. In addition, only a specified number of recently-freed memory allocations
can be prevented from being returned to the free memory pool. Any older freed memory
allocations will then eventually be reused.

• The alloca(), strdupa() and strndupa() functions are implemented so that the tempo-
rary stack-based allocations that they would normally make are now temporary heap-based
allocations that can be traced by mpatrol. Such allocations will be implicitly freed when
the function that allocated them returns, but a function also exists to explicitly free them
as well.

• Calls to memory operation functions (such as memset() or memcpy()) have their arguments
checked to ensure that they do not pass null pointers or attempt to read or write memory
straddling the boundary of a previously allocated memory block, although an option exists
to turn such an error into a warning so that the operation can still be performed. Tracing
from all such functions can also optionally be written to the log file.

• The internal data structures used by the library are kept separate from the rest of the
memory allocations. On systems that support memory protection, all of these internal data
structures will be write-protected in order to prevent corruption by the calling program.
This feature can be overridden at run-time as it can slow the program down.

• Certain signals can be saved and restored on entry to each library function and errno is set
to ENOMEM if memory cannot be allocated, except for the ANSI C++ operators which throw
the std::bad_alloc exception instead.

• On systems that support memory protection, the library attempts to detect any illegal
memory accesses and display as much information as it can obtain about the address in
question and where the illegal memory access occurred.

• A call stack traceback from any function performing a memory allocation is stored if the
library supports this feature on the system it is being run on. This information can then be
displayed when information about a specific memory allocation is required. Many different
call stack traceback implementations are provided for different platforms. A function is also
provided to write the current call stack to the mpatrol log file.



Chapter 2: Features 11

• Symbol table details from executable files and shared libraries are automatically read on
systems that support this feature in order to make the call stack tracebacks more meaningful.
An option also exists to display a complete list of the symbols that were read by the library
at program termination. A function is also provided to return symbolic information about
any code address.

• Compiler-generated line number tables from any debugging sections that exist in executable
files and shared libraries can also be used by the mpatrol library in order to provide more
meaningful information in call stack tracebacks. An external command is also provided to
make use of a debugger to get such information if one is available.

• If the library is unable to automatically determine a program’s executable filename to read
symbols from then an option exists to specify the full path to the program’s executable file.

• Options are provided to edit and list a source file at a specific line number when a warning or
error occurs due to that source line. An external command which provides this functionality
outwith the mpatrol library is included, and functions are provided to do this from within
user code.

• An option exists to change the default alignment used for general-purpose memory alloca-
tions.

• Contains support for a user-defined limit to available memory which can be useful for stress-
testing a program in simulated low memory conditions.

• Contains a feature to randomly fail a specific frequency of memory allocations which can
be useful for stress-testing error recovery code in a program.

• An option exists to display a complete memory map of the heap at program termination.
A function to do this is also available to call at any point during program execution.

• A function is provided to take a snapshot of the heap at the current point in execution.
The value returned by this function can then be used to pinpoint the differences in heap
allocation details between that point and a later point in the program.

• Functions are provided to iterate across all of the current heap allocations and call a user-
defined callback function for each one they find.

• A leak table is provided, which records a flat profile of memory allocation behaviour between
two points in a program and is keyed by source file location. Memory allocation events can
either be recorded in the leak table automatically via a run-time option or the leak table
can be manipulated through several functions.

• Functions are provided to write user-defined information directly to the mpatrol log file, as
well as hexadecimal memory dumps of any memory location.

• Options exist to display all freed and unfreed memory allocations at program termination
in order to detect memory leaks, as well as all free memory blocks. A separate program is
also provided for locating memory leaks in unfinished log files.

• An option exists to abort the program with a failure condition if there are more than a
specified number of unfreed memory allocations at program termination. This could be
useful for batch testing in order to check that all tests free up most of their allocated
memory.

• Memory allocations can be marked to indicate to the mpatrol library that they should
remain allocated for the lifetime of the program and should not be freed or be listed as a
memory leak.

• Functions always report if their arguments are illegal in order to pinpoint any errors, and
options exist to perform rigorous checking of arguments when allocating, reallocating and
freeing memory. In addition, checking is performed to ensure that memory allocated by
operator new[] is not freed with free() for example.

• The type of function performing a memory allocation is always stored along with the al-
location, as well as the file and line number it was called from. If compiled with gcc,



12 mpatrol

the function name will also be stored and the thread identifier will be stored if using the
thread-safe library.

• The library uses a header file to redefine the memory allocation functions as macros in
order to obtain more information about where they were called from. This is not strictly
required on UNIX and Windows platforms (and AmigaOS when using gcc), since the library
automatically redefines the default system memory allocation functions. All redefinitions
in the header can also be disabled by defining the NDEBUG preprocessor macro, which also
disables the effect of calling any mpatrol library function.

• A command is supplied to run a program that was linked with the mpatrol library with any
specified options on the command line. On some UNIX platforms, an option also exists to
override the default memory allocation routines for any dynamically-linked program that
was not previously linked with the mpatrol library.

• The mpatrol library can be built to liaise with Parasoft Inuse, a commercial graphical
memory usage tool that can display the current memory map of a running process. Inuse
is supplied with Parasoft Insure++.

• Comes with a library of tools that are built on top of the mpatrol library and can be used
to extend it for specific applications.

• An automake macro is provided to ease the integration of mpatrol into a new or existing
project.

• A small tool is provided to read a dictionary file and display all of the words that can
be represented in hexadecimal form. Such hexadecimal constants can be used to initialise
variables in user programs in order to aid debugging.

• The library and tools can be built using the GNU autoconf, automake and libtool utilities.
Build scripts are also supplied to build both installation packages and binary distributions.
A Linux Software Map file is also provided.

• A small test suite is provided in order to test basic features.
• User documentation is currently available in TEXinfo format as well as UNIX manual pages

and a quick reference card. The source code for the library and tools can also be formatted
for a printed manual.



Chapter 3: Installation 13

3 Installation

The mpatrol library was initially developed on an Amiga 4000/040 running AmigaOS 3.1. I
then installed Red Hat Linux 5.1 on my Amiga and added support for Linux/m68k. I’ve now
just recently purchased a Dell Inspiron 7500 Notebook PC and put my Amiga in retirement,
so development will now continue on Red Hat Linux 6.2 and above on the Intel platform. I’ve
tried my best to make it as easy as possible to build and install mpatrol on any system, but it
isn’t likely to run smoothly for everybody. However, there shouldn’t be any major problems if
you perform the following steps.

Note that if you want to check the integrity of the files that came with the mpatrol distribution
you can use the ‘CHECKSUMS’ file in the ‘mpatrol’ base directory. You must have the md5sum
command installed on your system in order to make use of this file.

If you wish to use GNU autoconf, automake and libtool to build and install mpatrol you
may do so by entering the ‘pkg/auto’ directory and typing ‘./setup’. This will construct the
directory structure that is required by these tools and will also create a ‘configure’ script.
Please see the ‘INSTALL’ file in that directory for information on how to proceed. Note that you
can clean up the ‘pkg/auto’ directory by typing ‘make distclean’ (if the ‘configure’ script has
already been run) followed by ‘./cleanup’.

For a manual installation, perform the following steps.
1. Go into the ‘build’ directory and then into the appropriate subdirectory for your system.
2. Edit the ‘Makefile’ in that directory and check that it is using the appropriate compiler

and build tools. The CC macro specifies the compiler1, the AR macro specifies the tool
used to build the archive library and the LD macro specifies the tool to build the shared
library. The CFLAGS macro specifies compiler options that are always to be used, the OFLAGS
macro specifies optimisation options for the compiler, the SFLAGS macro specifies options
to be passed to the compiler when building a shared library and the TFLAGS macro specifies
options to be passed to the compiler when building a thread-safe library. You may also
need to change the library names and library build commands on different systems.
Note that the generic UNIX ‘Makefile’ contains a macro called GUISUP which is set to
false by default. If it is set to true then the mptrace command will be built with GUI
support enabled. However, your system must contain the correct header files and libraries
in order to support this.

3. Use the make command (or equivalent) to build the mpatrol library in archive form.
The ‘all’ target builds all possible combinations of the mpatrol library for your system.
The ‘clean’ target removes all relevant object files from the current directory, while the
‘clobber’ target also removes all libraries that have been built from the current directory.
On some UNIX platforms, the ‘lint’ target will build a lint library for the mpatrol library.

4. If the mpatrol library is to be built with support for Parasoft Inuse then the MP_INUSE_
SUPPORT preprocessor macro must be defined in the CFLAGS portion of the ‘Makefile’ before
building. This will ensure that Inuse will be notified of every memory allocation, reallocation
and deallocation, but the Insure++ runtime library will also have to be linked in with any
program that uses mpatrol.

5. Copy all of the libraries that have been built into your local library directory. If there
were symbolic links created in the ‘build’ directory then these should be recreated in the
local library directory rather than simply copying them. You may need to run a command
such as ldconfig in order for the system to recognise the newly-installed libraries, and you
may also need to add the filename of the directory containing the newly-installed libraries
to an environment variable such as LD_LIBRARY_PATH if you installed the libraries in a
non-standard location.

1 On many systems this actually a C++ compiler by default, and should be a C++ compiler if you wish to use
the C++ operators.



14 mpatrol

6. Copy the mpatrol, mprof, mptrace and mleak programs that have been built into your
local bin directory. You may also wish to copy the mpsym, mpedit and hexwords commands
to your local bin directory as well if your system supports Bourne shell scripts.

7. Go up two directory levels into the ‘src’ directory and copy the ‘mpatrol.h’, ‘mpalloc.h’
and ‘mpdebug.h’ header files into your local include directory.

8. Go up one directory level into the ‘tools’ directory and copy all of the header files into the
‘mpatrol’ subdirectory (which you’ll need to create) in your local include directory.

9. On UNIX platforms, go up one directory level into the ‘man’ directory and copy the ‘man1’
and ‘man3’ subdirectories to your local man directory. Unfortunately, the location for man-
ual pages varies from system to system so you may or may not also be able to copy the
‘cat1’ and ‘cat3’ subdirectories as well. The ‘man*’ subdirectories contain the unformatted
manual pages while the ‘cat*’ subdirectories contain the formatted manual pages.

10. Go up one directory level into the ‘doc’ directory and examine the files located there. The
‘mpatrol.texi’ file contains the TEXinfo source for this manual and can be translated into
a wide variety of documentation formats. The ‘refcard.tex’ file contains the LaTEX source
for the quick reference card and can be translated into formats suitable for printing onto
a few pages. There should already be translated files in the ‘doc’ directory, but if not you
will have to generate them yourself using the ‘Makefile’ provided. You can then install or
print these documents.
The mpatrol library source code can also be formatted for a printed manual for later perusal.
The ‘source’ target in the ‘Makefile’ within the ‘doc’ directory can be used to build the
source code documentation in DVI, postscript and PDF formats, but be prepared for a
large number of pages!
If you are not installing on a system that supports UNIX manual pages then you should
also check in the ‘man’ directory to ensure that there are alternative formats for the mpatrol
manual pages that you can install. If not, you will have to generate them yourself using the
‘Makefile’ provided.

Alternatively, the ‘pkg’ directory contains files that can be used to automatically generate a
package in a specific format suitable for installation on a system. Four package formats (PKG,
SD/UX, RPM and Debian) and three archive formats are currently supported (generic tape
archive, LhA and ZIP).

The first package format is generally used on UNIX SVR4 systems, while the second is used
on HP/UX systems. The RPM and Debian package formats were introduced by Red Hat and
Debian respectively for use in their Linux distributions.

The generic tape archive can be used as a distribution for UNIX systems where no package
format is supported, but it does not contain information on how to install the files on the
system once they have been extracted from the distribution. The LhA and ZIP formats are also
roughly the same, but the LhA format is intended for Amiga systems and is used for Aminet
distributions, while the ZIP format is intended for Windows systems and is used for WinSite
distributions.

You should really know what you are doing before you attempt to build a package, and you
should also be aware that some of the package files may need to be modified before you begin.

In addition, a Linux Software Map index file exists in the ‘pkg/lsm’ directory.
Note that the ‘extra’ directory that comes with the mpatrol distribution contains several

prototype configuration files for certain third-party programs. These files should be examined
so that you can decide whether to integrate their contents into your existing configuration files.
The purpose of each file is described in the relevant sections of this manual.



Chapter 4: Integration 15

4 Integration

This section describes how to go about adding or removing the mpatrol library from your
code. There are several levels for each category so it is worth reading about each before pro-
ceeding.

4.1 Adding mpatrol

The following steps should allow you to easily integrate the mpatrol library into an existing
application, although some of them may not be available to do on many platforms. They are
listed in the order of number of changes required to modify existing code — the last step will
require a complete recompilation of all your code.
1. This step is currently only available on DYNIX/ptx, FreeBSD, IRIX, Linux, NetBSD,

OpenBSD, Solaris and Tru64 platforms and on DG/UX 4.20MU071 or later platforms with
the LD_PRELOAD feature.
If your program or application has been dynamically linked with the system C library
(‘libc.so’) or an alternative malloc shared library then you can use the ‘--dynamic’ option
to the ‘mpatrol’ command to override the default definitions of malloc(), etc. at run-time
without having to relink your program. If your program is multithreaded then you must
also add the ‘--threads’ option to pick up the multithreaded shared libraries instead.
For example, if your program’s executable file is called ‘testprog’ and it accepts an option
specifying an input file, you can force the system’s dynamic linker to use mpatrol’s versions
of malloc(), etc. instead of the default versions by typing:

mpatrol --dynamic ./testprog -i file

The resulting log file should be called ‘mpatrol.<procid>.log’ by default (where procid is
the current process id), but if no such file exists after running the ‘mpatrol’ command then
it will not be possible to force the run-time linking of mpatrol functions to your program
and you will have to proceed to the next step. Note that the mpatrol command overrides
any previous setting of the MPATROL_OPTIONS environment variable.

2. This step is currently only available on UNIX and Windows platforms (and AmigaOS when
using gcc).
You should be able to link in the mpatrol library when linking your program without having
to recompile any of your object files or libraries, but this will only be worthwhile on systems
where stack tracebacks are supported, otherwise you should proceed to the next step since
there will not be enough information for you to tell where the calls to dynamic memory
allocation functions took place.
Information on how to link the mpatrol library to an application is given at the start of the
examples (see Chapter 16 [Examples], page 95), but you should note that if your program
does not directly call any of the functions in the mpatrol library then it will not be linked in
and you will not see a log file being generated when you run it. You can force the linking of
the mpatrol library by causing malloc() to be undefined on the link line, usually through
the use of the ‘-u’ linker option.
If your program is multithreaded then you must use the thread-safe version of the mpatrol
library and possibly also link in the system threads library as well. Not doing this will
usually result in your program failing somewhere in the mpatrol library code.

3. All of the following steps will require you to recompile some or all of your code so that your
code calls dynamic memory allocation functions from the mpatrol library rather than the
system C library.

1 Also available on DG/UX 4.20MU05 with patch dgux R4.20MU05.p59 and DG/UX 4.20MU06 with patch
dgux R4.20MU06.p08.



16 mpatrol

This first step is only available when using gcc.
You can make use of the gcc option ‘-fcheck-memory-usage’ which instructs the compiler
to place calls to error-checking functions before each access to memory. This can result
in a dramatic slowdown of your code so you may wish to limit the use of this option to
a few source files, but it does provide a very thorough method of ensuring that you do
not access memory beyond the bounds of a memory allocation or attempt to access free
memory. However, be aware that the checks are only placed in the bodies of functions that
have been compiled with this option and are missing from all functions that have not. You
must link in the mpatrol library when using this option, otherwise you will get linker errors.
The ‘-fcheck-memory-usage’ option was added to gcc to support GNU Checker, which
can be considered to be the run-time system for this option. GNU Checker also includes
the ability to detect reads from uninitialised memory, something that mpatrol does not
currently support, and deals with stack objects as well. GNU Checker cannot be used in
conjunction with mpatrol.

4. For this step, if you have a rough idea of where the function calls lie that you would like
to trace or test, you need only recompile the relevant source files. You should modify these
source files to include the ‘mpatrol.h’ header file before any calls to dynamic memory
allocation or memory operation functions.
However, you should take particular care to ensure that all calls to memory allocation func-
tions in the mpatrol library will be matched by calls to memory reallocation or deallocation
functions in the mpatrol library, since if they are unmatched then the log file will either fill
up with errors complaining about trying to free unknown allocations, or warnings about
unfreed memory allocations at the end of execution.

5. This step requires you to recompile all of your source files to include the ‘mpatrol.h’ header
file. Obviously, this will take the longest amount of time to integrate, but need not require
you to change any source files if the compiler you are using has a command line option to
include a specific header file before any source files.
For example, gcc comes with a ‘-include’ option which has this feature, so if you had
to recompile a source file called ‘test.c’ then the following command would allow you to
include ‘mpatrol.h’ without having to modify the source file:

gcc -include /usr/local/include/mpatrol.h -c test.c

In all cases, it will be desirable to compile your source files with compiler-generated debugging
information since that may be able to be used by the ‘USEDEBUG’ option or the mpsym command.
In addition, more symbolic information will be available if the executable files have not had their
symbol tables stripped from them, although mpatrol can also fall back to using the dynamic
symbol table from dynamically linked executable files.

Note that an automake macro is now provided to allow you to integrate mpatrol into a
new or existing project that uses the GNU autoconf and automake tools. It is located in
‘extra/mpatrol.m4’, which should be copied to the directory containing all of the local autoconf
and automake macros on your system, usually ‘/usr/local/share/aclocal’. The automake
macro it defines is called AM_WITH_MPATROL, which should be added to the libraries section in
the ‘configure.in’ file for your project. It takes one optional parameter specifying whether
mpatrol should be included in the project (‘yes’) or not (‘no’). This can also be specified as
‘threads’ if you wish to use the threadsafe version of the mpatrol library. You can override the
value of the optional parameter with the ‘--with-mpatrol’ option to the resulting ‘configure’
shell script.

If you are using the AM_WITH_MPATROL automake macro then you may wish to use the
‘mpdebug.h’ header file instead of ‘mpatrol.h’. This ensures that the MP_MALLOC() family
of functions are always defined, even if libmpatrol or libmpalloc are unavailable. It makes use of
the HAVE_MPATROL and HAVE_MPALLOC preprocessor macros that are controlled by the automake
macro, but in other respects behaves in exactly the same way as ‘mpatrol.h’.



Chapter 4: Integration 17

4.2 Removing mpatrol

Once you have ironed out all of the problems in your code with the help of the mpatrol library,
there will come a time where you wish to build your program without any of its debugging
features, either to improve the speed that it runs at, or perhaps even for a release. Choose one
of the following steps to help you remove the mpatrol library from your program (you only need
to perform them if you linked your program with the mpatrol library).
1. The quickest way to remove the mpatrol library from your application is to link with

libmpalloc instead of libmpatrol. This contains replacements for all of the mpatrol library
functions, either implementing memory allocation or memory operation functions with the
system C library, or doing nothing in the functions which perform debugging, profiling or
tracing. This method is a very quick way to remove the mpatrol library but will not result
in very efficient code.

2. The next option is to recompile all of the source files which include the ‘mpatrol.h’ header
file, but this time define the NDEBUG preprocessor macro. This automatically disables the
redefinition of malloc(), etc. and prevents calls being made to any mpatrol library func-
tions. Obviously, this option is the most time-consuming of the two, but will result in the
complete removal of all references to the mpatrol library.

3. The final option is to guard all of the mpatrol-specific code in your program with a prepro-
cessor macro, possibly called HAVE_MPATROL, and then recompiling all of your source code
with this macro undefined. This is the best option but relies on you having originally made
these changes when you first started integrating the mpatrol library into your program.

Note that if you used the AM_WITH_MPATROL automake macro as detailed in the previous
section to build your application then you should perform a clean recompilation using the
‘--without-mpatrol’ option to the ‘configure’ shell script in order to completely remove the
mpatrol library.

Note also that if you used the ‘-fcheck-memory-usage’ option of the GNU compiler to check
all memory accesses then you must recompile without that option in order for your program to
run at a reasonable speed.



18 mpatrol



Chapter 5: Memory allocations 19

5 Memory allocations

In the C and C++ programming languages there are generally three different types of memory
allocation that can be used to hold the contents of variables. Other programming languages such
as Pascal, BASIC and FORTRAN also support some of these types of allocation, although their
implementations may be slightly different.

5.1 Static memory allocations

The first type of memory allocation is known as a static memory allocation, which corresponds
to file scope variables and local static variables. The addresses and sizes of these allocations
are fixed at the time of compilation1 and so they can be placed in a fixed-sized data area which
then corresponds to a section within the final linked executable file. Such memory allocations
are called static because they do not vary in location or size during the lifetime of the program.

There can be many types of data sections within an executable file; the three most common
are normal data, BSS data and read-only data. BSS data contains variables and arrays which
are to be initialised to zero at run-time and so is treated as a special case, since the actual
contents of the section need not be stored in the executable file. Read-only data consists of
constant variables and arrays whose contents are guaranteed not to change when a program
is being run. For example, on a typical SVR4 UNIX system the following variable definitions
would result in them being placed in the following sections:

int a; /* BSS data */
int b = 1; /* normal data */
const int c = 2; /* read-only data */

In C the first example would be considered a tentative declaration, and if there was no
subsequent definition of that variable in the current translation unit then it would become a
common variable in the resulting object file. When the object file gets linked with other object
files, any common variables with the same name become one variable, or take their definition
from a non-tentative definition of that variable. In the former case, the variable is placed in the
BSS section. Note that C++ has no support for tentative declarations.

As all static memory allocations have sizes and address offsets that are known at compile-
time and are explicitly initialised, there is very little that can go wrong with them. Data can be
read or written past the end of such variables, but that is a common problem with all memory
allocations and is generally easy to locate in that case. On systems that separate read-only data
from normal data, writing to a read-only variable can be quickly diagnosed at run-time.

5.2 Stack memory allocations

The second type of memory allocation is known as a stack memory allocation, which corre-
sponds to non-static local variables and call-by-value parameter variables. The sizes of these
allocations are fixed at the time of compilation but their addresses will vary depending on when
the function which defines them is called. Their contents are not immediately initialised, and
must be explicitly initialised by the programmer upon entry to the function or when they become
visible in scope.

Such memory allocations are placed in a system memory area called the stack, which is
allocated per process2 and generally grows down in memory. When a function is called, the
state of the calling function must be preserved so that when the called function returns, the
calling function can resume execution. That state is stored on the stack, including all local
variables and parameters. The compiler generates code to increase the size of the stack upon

1 Or more accurately, at link time.
2 Or per thread on some systems.



20 mpatrol

entry to a function, and decrease the size of the stack upon exit from a function, as well as
saving and restoring the values of registers.

There are a few common problems using stack memory allocations, and most generally involve
uninitialised variables, which a good compiler can usually diagnose at compile-time. Some
compilers also have options to initialise all local variables with a bit pattern so that uninitialised
stack variables will cause program faults at run-time. As with static memory allocations, there
can be problems with reading or writing past the end of stack variables, but as their sizes are
fixed these can usually easily be located.

5.3 Dynamic memory allocations

The last type of memory allocation is known as a dynamic memory allocation, which corre-
sponds to memory allocated via malloc() or operator new[]. The sizes, addresses and contents
of such memory vary at run-time and so can cause a lot of problems when trying to diagnose a
fault in a program. These memory allocations are called dynamic memory allocations because
their location and size can vary throughout the lifetime of a program.

Such memory allocations are placed in a system memory area called the heap, which is
allocated per process on some systems, but on others may be allocated directly from the system
in scattered blocks. Unlike memory allocated on the stack, memory allocated on the heap is not
freed when a function or scope is exited and so must be explicitly freed by the programmer. The
pattern of allocations and deallocations is not guaranteed to be (and is not really expected to
be) linear and so the functions that allocate memory from the heap must be able to efficiently
reuse freed memory and resize existing allocated memory on request. In some programming
languages there is support for a garbage collector, which attempts to automatically free memory
that has had all references to it removed, but this has traditionally not been very popular
for programming languages such as C and C++, and has been more widely used in functional
languages like ML3.

Because dynamic memory allocations are performed at run-time rather than compile-time,
they are outwith the domain of the compiler and must be implemented in a run-time package,
usually as a set of functions within a linker library. Such a package manages the heap in such a
way as to abstract its underlying structure from the programmer, providing a common interface
to heap management on different systems. However, this malloc library must decide whether to
implement a fast memory allocator, a space-conserving memory allocator, or a bit of both. It
must also try to keep its own internal tables to a minimum so as to conserve memory, but this
means that it has very little capability to diagnose errors if any occur.

In some compiler implementations there is a builtin function called alloca(). This is a
dynamic memory allocation function that allocates memory from the stack rather than the
heap, and so the memory is automatically freed when the function that called it returns. This is
a non-standard feature that is not guaranteed to be present in a compiler, and indeed may not
be possible to implement on some systems4. However, the mpatrol library provides a debugging
version of this function (and a few other related functions) on all systems, so that they make
use of the heap instead of the stack.

As can be seen from the above paragraphs, dynamic memory allocations are the types of
memory allocations that can cause the most problems in a program since almost nothing about
them can be used by the compiler to give the programmer useful warnings about using unini-
tialised variables, using freed memory, running off the end of a dynamically-allocated array, etc.
It is these types of memory allocation problems that the mpatrol library loves to get its teeth
into!

3 There is currently at least one garbage collection package available for C and C++ (see Appendix K [Related
software], page 213).

4 Some compilers now support variable length arrays which provide roughly the same functionality.



Chapter 6: Operating system support 21

6 Operating system support

Beneath every malloc library’s public interface there is the underlying operating system’s
memory management interface. This provides features which can be as simple as giving processes
the ability to allocate a new block of memory for themselves, or it can offer advanced features
such as protecting areas of memory from being read or written. Some embedded systems have
no operating systems and hence no support for dynamic memory allocation, and so the malloc
library must instead allocate blocks of memory from a fixed-sized array. The mpatrol library
can be built to support all of the above types of system, but the more features an operating
system can provide it with, the more it can do.

On operating systems such as UNIX and Windows, all dynamic memory allocation requests
from a process are dealt with by using a feature called virtual memory. This means that a process
cannot perform illegal requests without them being denied, which protects the other running
processes and the operating system from being affected by such errors. However, on AmigaOS
and Netware platforms there is no virtual memory support and so all processes effectively share
the same address space as the operating system and any other running processes. This means
that one process can accidentally write into the data structures of another process, usually
causing the other process to fail and bring down the system. In addition, a process which
allocates a lot of memory will result in there being less available memory for other running
processes, and in extreme cases the operating system itself.

6.1 Virtual memory

Virtual memory is an operating system feature that was originally used to provide large
usable address spaces for every process on machines that had very little physical memory. It is
used by an operating system to fool1 a running process into believing that it can allocate a vast
amount of memory for its own purposes, although whether it is allowed to or not depends on
the operating system and the permissions of the individual user.

Virtual memory works by translating a virtual address (which the process uses) into a physical
address (which the operating system uses). It is generally implemented via a piece of hardware
called a memory management unit, or MMU. The MMU’s primary job is to translate any
virtual addresses that are referred to by machine instructions into physical addresses by looking
up a table which is built by the operating system. This table contains mappings to and from
pages2 rather than bytes since it would otherwise be very inefficient to handle mappings between
individual bytes. As a result, every virtual memory operation operates on pages, which are
indivisible and are always aligned to the system page size.

Even though each process can now see a huge address space, what happens when it attempts
to allocate more pages than actually physically exist, or allocate an additional page of memory
when all of the physical pages are in use by it and other processes? This problem is solved by
the operating system temporarily saving one or more of the least-used pages (which might not
necessarily belong that that process) to a special place in the file system called a swap file, and
mapping the new pages to the physical addresses where the old pages once resided. The old
pages which have been swapped out are no longer currently accessible, but their location in the
swap file is noted in the translation table.

However, if one of the pages that has been swapped out is accessed again, a page fault occurs
at the instruction which referred to the address and the operating system catches this and reloads
the page from the swap file, possibly having to swap out another page to make space for the

1 Well, perhaps that’s too harsh a word, but it will certainly seem that way to a process running on a 32-bit
UNIX system with only 4 megabytes of physical memory, and yet it will be able to read from and write to
over 4 gigabytes of virtual memory!

2 The size of a page varies between operating systems and processor architectures, but they are generally around
4 or 8 kilobytes in size, and are always a power of two.



22 mpatrol

new one. If this occurs too often then the operating system can slow down, having to constantly
swap in and swap out the same pages over and over again. Such a problem is called thrashing
and can only really be overcome by using less virtual memory or buying more physical memory.

It is also possible to take advantage of the virtual memory system’s interaction between
physical memory and the file system in program code, since mapping an existing file to memory
means that the usual file I/O operations can be replaced with memory read and write operations.
The operating system will work out the optimum way to read and write any buffers and it means
that only one copy of the file exists in both physical memory and the file system. Note that
this is how shared libraries3 on UNIX platforms are generally implemented, with each individual
process that uses the shared library having it mapped to somewhere in its address space.

Another major feature of virtual memory is its ability to read protect and write protect
individual pages of process memory. This means that the operating system can control access
to different parts of the address space for each process, and also means that a process can read
and/or write protect an area of memory when it wants to ensure that it won’t ever read or write
to it again. If an illegal memory access is detected then a signal will be sent to the process,
which can either be caught and handled or will otherwise terminate the process. Note that as
with all virtual memory operations, this ability to protect memory only applies to pages, so that
it is not possible to protect individual bytes.

However, some versions of UNIX have programmable software watch points which are imple-
mented at operating system level. These are normally used by debuggers to watch a specified
area of memory that is expected to be read from or written to, but can just as easily be used
to implement memory protection at byte level. Unfortunately, as this feature is implemented in
software4 rather than in hardware, watch points tend to be incredibly slow, mainly as a result of
the operating system having to check every instruction before it is executed. In addition, some
UNIX platforms only allow a certain number of software watch points to be in use at any one
time, so even if your system supports them you may not be able to use them with the mpatrol
library if there are many memory allocations in use at one time.

There is also an additional problem when using watch points, which is due to misaligned
reads from memory. These can occur with compiler-generated code or with optimised library
routines where memory read, move or write operations have been optimised to work at word
level rather than byte level. For example, the memcpy() function would normally be written to
copy memory a byte at a time, but on some systems this can be improved by copying a word
at a time. Unfortunately, care has to be taken when reading and writing such words as the
equivalent bytes may not be aligned on word boundaries. Technically, reading additional bytes
before or after a memory allocation when they share the same word is legal, but when using
watch points such errors will be picked up. The mpatrol library replaces most of the memory
operation functions provided by the system libraries with safer versions, although they may not
be as efficient.

An operating system with virtual memory is usually going to run ever so slightly slower
than an operating system without it5, but the advantages of virtual memory far outweigh the
disadvantages, especially when used for debugging purposes.

6.2 Call stacks and symbol tables

As stated in the section on stack memory allocations (see Section 5.2 [Stack memory allo-
cations], page 19), when a function is called, a copy of the caller’s state information (including

3 DLLs on Windows platforms.
4 The operating system is still considered software.
5 Due to the overhead of having to translate every address and swap in and out pages — although memory

mapped files will usually be more efficient than using normal file operations on a system without virtual
memory.



Chapter 6: Operating system support 23

local variables and registers) is saved on the stack so that it can be restored when the called
function returns. On many operating systems there is a calling convention6 which defines the
layout of such stack entries so that code compiled in different languages and with different com-
pilers can be intermixed. This usually specifies at which stack offsets the stack pointer, program
counter and local variables for the calling function can be found, although on some processor
architectures the function calling conventions are specified by the hardware and so the operating
system must use these instead.

On systems that have consistent calling conventions, it is usually possible to perform call
stack tracebacks from within the current function in order to determine the stack of function
calls that led to the current function. This is extremely useful for debugging purposes and is
done by examining the current stack frame to see if there is a pointer to the previous stack
frame. If there is, then it can be followed to find out all of the state information about the
calling function. This can be repeated until there are no more stack frames7. This is generally
how this information is determined by debuggers when a call stack traceback is requested.

In addition to the pointer to the previous stack frame, the saved state information also always
contains the saved program counter register, which contains either the address of the instruction
that performed the function call, or the address of the instruction at which to continue execution
when the called function returns8. This information can be used to identify which function
performed the call, since the address of the instruction must lie between the start and end of
one of the functions in the process.

There are several different ways to perform stack unwinding. The first requires compiler
support and uses builtin functions to determine the next stack frame and the return address.
The GNU C compiler, gcc, supports this but unfortunately the number of stack frames to
traverse must be known at compile-time rather than run-time. The second method requires
operating system support, with a library of routines provided to perform call stack traversal.
Unfortunately, such routines can be quite time consuming and may require a lot of resources, but
on the other hand they are likely to be very reliable at obtaining the necessary information. The
mpatrol library can be built to support either of these methods, with the MP_BUILTINSTACK_
SUPPORT and the MP_LIBRARYSTACK_SUPPORT preprocessor macros.

A third way to perform stack unwinding involves reading (or effectively disassembling) the
instructions that are being executed in order to determine the size of the stack frame being used
and the address of the instruction at which execution will resume when the function returns.
This can also be quite a reliable method of obtaining call stack information but is only likely to
be feasible on a processor architecture which has a very simple instruction set, such as a RISC9

architecture. MIPS processors are a good example of this.
The final method of stack unwinding requires that the frame pointer and return address are

both stored on the stack whenever a new function is called. The chain of frame pointers can
then be followed down the stack, and the return addresses can be read at a given offset from the
frame pointers. This is usually possible with CISC10 processor architectures that have dedicated
call instructions which automatically save such information on the stack, although some RISC
processors also save these as well. However, inline functions and compiler optimisations can
sometimes result in the frame pointer being omitted, usually resulting in an inability to walk
the stack.

However, in order to determine this symbolic information, it must be possible to find out
where the start and end addresses of all of the functions in the process are. This can usually
only be read from object files, since they contain the symbol tables that were used by the linker
to generate the final executable file for the program. The object file’s symbol tables normally

6 Usually part of the Application Binary Interface, or ABI.
7 A process also known as stack unwinding.
8 Also known as the return address.
9 Reduced Instruction Set Computer.

10 Complex Instruction Set Computer.



24 mpatrol

contain information about the start address, size, name and visibility of every symbol that was
defined, but this depends on the format of the object file and if the symbol tables have been
stripped from the final executable file.

If the object file was created by a compiler then it may also contain debugging information
that was generated by the compiler for use with a debugger. Such information may include a
mapping of code addresses to source lines11, and this information can be used by the mpatrol
library to provide more meaningful information in call stack tracebacks.

On systems that support shared libraries, additional work must be done to determine the
symbolic information for all of the functions which have been defined in them. The symbols
for functions that are defined in shared libraries normally appear as undefined symbols in the
executable file for the program and so must be searched in the system in order to get the necessary
information. It is usually necessary to liaise with the dynamic linker12 on many systems.

6.3 Threads

On systems with virtual memory, such as UNIX and Windows, user programs are run as
processes which have their own address space and resources. If a process needs to create sub-
processes to perform other tasks it must call fork() or spawn() to create new processes, but
these new processes do not share the same address space or resources as the parent process. If
processes need to share memory they must either use a message passing interface or explicitly
mark a range of memory as shareable.

Traditionally, this was not too much of a handicap as parallel processing was an expensive
luxury and could only be made use of by the kernel of such systems. However, with the birth of
fast processors and parallel programming, programs could be made to run more efficiently and
faster on multi-processor systems by having more than one thread of control. This was achieved
by allowing processes to have more than one program counter through which the processor could
execute instructions, and if one thread of control stalled for a particular reason then another
could continue without stalling the entire process.

Such multithreaded programs allow parallel programming and implicit shared memory be-
tween threads since all threads in a process share the same address space and resources. This
is similar to operating systems that have no virtual memory, such as AmigaOS and Netware13,
except that once a process terminates, all threads terminate as well and all of its resources are
still reclaimed.

Multithreaded programming generally needs no compiler support, but does require some
primitive operations to be supported by the operating system for a threads library to call. The
functions that are available in the threads library provide the means for a process to create and
destroy threads. There are currently several popular threads libraries available, although the
POSIX threads standard remains the definitive implementation.

It is always important to remember when programming a multithreaded application that
because all threads in a process share the same address space, measures must be taken to
prevent threads reading and writing global data in a haphazard fashion. This can either be
done by locking with semaphores and mutexes, or can be performed by using stack variables
instead of global variables since every thread has its own local stack. Care must be taken to
write re-entrant functions — i.e. a function will give exactly the same result with one thread as
it will with multiple threads running it at the same time.

The mpatrol library can be built as a thread-safe library with support for multi-threaded
programs. When this library is linked with your program, only one thread at a time can
allocate, reallocate or deallocate dynamic memory, or perform a memory operation via memcpy(),

11 Generally known as a line number table.
12 Which is the part of the operating system that performs the run-time linking of shared libraries.
13 Where the kernel is effectively a single process running all user programs as threads.



Chapter 6: Operating system support 25

memset(), etc. This does not take full advantage of the potential concurrency in the library,
but at least it will allow the debugging of multi-threaded programs.

The process of making the mpatrol library thread-safe was made more complicated by the
fact that the mutexes protecting the library’s data structures had to be recursive, since some
of the functions that the library will call may call malloc() and free() or any other functions
redefined by the library. If this was to happen with non-recursive mutexes then the recursive
call would result in the thread attempting to lock a mutex that it already owned. However,
implementing recursive mutexes was only half the problem.

The other problem with writing a thread-safe malloc library is that it must be initialised
before the program becomes multi-threaded. If the library is initialised when there are multiple
threads running then one thread may be attempting to initialise the mutexes whilst another
thread may be attempting to lock an uninitialised mutex. Ideally, the best place to initialise
the library would be at the start of main() but there is currently no way to do this other than
getting users to explicitly plant calls to initialise the library in their code. This is not a very
satisfactory solution if all we want to do is link in the replacement malloc library without any
need for recompilation.

Fortunately, there are some ways to plant initialisation calls before main() is called, but
they all have some drawbacks. The first way is to use a static file-scope constructor in C++,
which will then initialise the mutexes and the library data structures before the code in main()
is executed. However, on many systems this will require the final link to be performed by the
C++ compiler that built the library. That may not be desirable or even possible in many cases.
Unfortunately, this drawback appears in the second method, which involves using the GNU C
compiler to compile the library. This compiler has an extension which allows functions to be
specified as constructors which will be called before main(), but means that any program which
is linked with the resulting library must be linked with the GNU C compiler driver. However,
many systems are now GNU-based which would mean that this would happen anyway.

The final way of initialising the mutexes and the library data structures is to plant a call
to the initialisation routines from a special section which the system will call before main()
is called. This section is called the ‘.init’ section on ELF-based platforms, but may exist in
another form on other platforms too. This has the advantage that the system linker can be used
to link the final program, but a possible disadvantage is that the library may be initialised too
early, possibly before the environment or file streams have been set up. You may find that if
one of the above methods does not work for you then perhaps another one will.



26 mpatrol



Chapter 7: Using mpatrol 27

7 Using mpatrol

This chapter contains a general description of all of the features of mpatrol and how to use
them effectively. You’ll also find a complete reference for mpatrol in the appendices, but you
may wish to try out the examples (see Chapter 16 [Examples], page 95) and the tutorial (see
Chapter 17 [Tutorial], page 129) before reading further.

7.1 Library behaviour

Most of the behaviour of the mpatrol library can be controlled at run-time via options
which are read from the MPATROL_OPTIONS environment variable. This prevents you having to
recompile or relink each time you want to change a library setting, and so makes it really easy
to try out different settings to locate a particular bug. You should know how to set the value of
an environment variable on your system before you read on.

By default, the mpatrol library will attempt to determine the minimum required alignment
for any generic memory allocation when it first initialises itself. This may be affected by the
compiler and its settings when the library was built but it should normally reflect the minimum
alignment required by the processor on your system. If you would prefer a larger (or perhaps
even smaller) default alignment you may change it at run-time using the ‘DEFALIGN’ option.
The value you supply must be in bytes, must be a power of two, and should not be larger that
the system page size. If you encounter bus errors due to misaligned memory accesses then you
should increase this value.

On systems that have virtual memory the library will attempt to write-protect all of its
internal structures when user code is being run. This ensures that it is nearly impossible for a
program to corrupt any mpatrol library data. However, unprotecting and then protecting the
structures at every library call has a slight overhead so you may prefer to disable this behaviour
by using the ‘NOPROTECT’ option. This has no effect on systems that have no virtual memory.

Usually it is desirable for many system library routines to be protected from being interrupted
by certain signals since they may themselves be called from signal handlers. If this is not the
case then it may be possible to interrupt the program from within such routines, perhaps causing
problems if their global variables are left in an undefined state. As the mpatrol library replaces
some of these system library routines it is also possible to specify that they are protected from
certain interrupt signals using the ‘SAFESIGNALS’ option. However, this can sometimes result in
it being hard to interrupt the program from the keyboard if a lot of processor time is spent in
mpatrol routines, which is why this behaviour is disabled by default1.

On UNIX platforms, the fork() function can cause problems if it is used to make a copy
of the parent process without immediately calling one of the exec() family of functions. This
is because the child process inherits all of the memory allocations of the parent process, but
also inherits the log, profile and trace files as well. If both the parent and child processes make
subsequent memory allocations there will be multiple entries with the same allocation indices
written to the log, profile or trace files. This can be most confusing when processing these files
afterwards! As a workaround, the mpatrol library will always check the current process identifier
every time one of its functions is called if the ‘CHECKFORK’ option is used and will open new log,
profile or trace files if it has determined that the process has been forked. If the ‘CHECKFORK’
option is not used then a call to __mp_reinit() should be added as the first function call in
the child process in order to duplicate the behaviour of the ‘CHECKFORK’ option.

On UNIX systems, the usual way for malloc libraries to allocate memory from the process
heap is through the sbrk() system call. This allocates memory from a contiguous heap, but
has the disadvantage in that other library functions may also allocate memory using the same
function, thus creating holes in the heap. This is not a problem for mpatrol, but you may have

1 In mpatrol release 1.0 it was enabled by default.



28 mpatrol

a suspicion that your bug is due to a function from another library corrupting your data so you
may wish to use the ‘USEMMAP’ option. This is only available on systems that have the mmap()
system call and allows mpatrol to allocate all of its memory from a part of the process heap
that is non-contiguous (i.e. each call to mmap() may return a block of memory that is completely
unrelated to that returned by the previous call). It may also be required on some systems in
order for the mpatrol library to implement memory protection.

Beginning with release 1.3.3, the mpatrol library now allocates its internal memory in the
opposite way to user memory on UNIX systems that support the mmap() system call. This means
that by default, user memory is allocated with sbrk() whereas internal memory is allocated
with mmap(), and this behaviour is reversed when the ‘USEMMAP’ option is used. This was done
to segregate user memory from internal memory, and was especially required for the mptrace
command’s graphical display.

The ‘CHECK’ option allows you to specify that every time an mpatrol library function is called
the library will automatically check the freed memory and overflow buffers of every memory
allocation, although this can slow program execution down, especially if you suspect the error
you are looking for occurs at the 1000th memory allocation, for example. You can therefore
use the ‘CHECK’ option to specify a range of memory allocations at which the mpatrol library
will automatically check the freed memory and overflow buffers. All other allocations that fall
outside this range will not be checked. You can also specify an optional frequency at which this
checking should be performed. No such checking is performed by default in mpatrol release 1.4.0
and onwards — you must specify ‘CHECK=-’ to get the original behaviour.

On UNIX systems, the mpatrol library can also invoke the mpedit command to edit source
files that show up in any warnings or error messages that it generates. This can only happen
if the diagnostic message can be traced back to a specific source line in the program; in many
cases this is not possible. If editing the files is not required, a context listing of the appropriate
source line can be generated instead. The ‘EDIT’ option specifies that files are to be edited and
the ‘LIST’ option specifies that a context listing is to be generated. These options are mutually
exclusive.

If the mpatrol library that was built for your system supports reading symbolic information
from a program’s executable file, but it cannot locate the executable file, or you wish to specify an
alternative, you can use the ‘PROGFILE’ option to do this. All this does is instruct the mpatrol
library to read symbols from this file instead. Note that on systems that support dynamic
linking, the library can also read symbols from a dynamically linked executable file that has had
its normal symbol table stripped.

Finally, a list of all of the recognised options in the mpatrol library can be displayed to the
standard error file stream by using the ‘HELP’ option. This will not affect the settings of the
library in any way, so you should be able to use other options at the same time.

7.2 Logging and tracing

If you would like to see a complete log of all of the memory allocations, reallocations and
deallocations performed by your program, use the ‘LOGALL’ option. This provides detailed tracing
for each of the mpatrol library functions, and a full description of the format of such tracing is
given in Example 1 (see Section 16.1 [Example 1], page 96). Alternatively, you may select one
or more types of functions to be traced using the ‘LOGALLOCS’, ‘LOGREALLOCS’, ‘LOGFREES’ and
‘LOGMEMORY’ options if you feel that the log file is too large when ‘LOGALL’ is used. By default
all diagnostics from the mpatrol library get sent to ‘mpatrol.log’ in the current directory, but
this can be changed using the ‘LOGFILE’ option. In fact, you can also specify a directory where
all log files from the mpatrol library will get placed by setting the LOGDIR environment variable.

On systems that support it, every log entry also contains a call stack traceback that may also
include the names of the symbols that appear on the call stack. If the object file access library
that mpatrol was built with has support for reading line number tables from object files then



Chapter 7: Using mpatrol 29

the ‘USEDEBUG’ option will also try to determine the file name and line number for each entry
in the call stack, but only if the object files contain the relevant debugging information. This
information will only be available before program termination and so any call stack tracebacks
that appear after the library summary will not be displayed with their corresponding file name
and line number. This option will also slow down program execution since a search through the
line number tables will have to be made every time a call stack is displayed. Alternatively, the
mpsym command may be used to process an mpatrol log file with a debugger in order to obtain
symbol names and source level information for any call stacks.

Because the alloca(), strdupa() and strndupa() functions automatically free their alloca-
tions when the calling function returns, the log entries for these types of memory allocation are
slightly different. The actual memory allocation will have an entry similar to malloc(), etc.,
but the memory deallocation will be marked as being done by alloca() and will occur at the
next call to an mpatrol library function after the calling function has returned. However, any
such allocations that are explicitly deallocated with the dealloca() function will be marked as
being done by dealloca().

The mpatrol library will always try to display as much useful information as possible in this
log file, and will always display a summary of library settings and statistics when your program
terminates successfully. If you don’t get this then your program did not call exit() and either
called abort() or was terminated by the operating system instead. In such cases, either use a
debugger to see where your program crashed or use the ‘LOGALL’ option to see the last successful
library call in the log file so that you have a rough idea of where your program crashed.

It is also possible to get mpatrol to write more summary information to the log file af-
ter it writes out its settings and statistics at program termination. Use the ‘SHOWFREED’ and
‘SHOWUNFREED’ options to display a list of freed and unfreed memory allocations. The former
will only be displayed if the ‘NOFREE’ option is used, but the latter can be useful for detecting
memory leaks. The ‘SHOWFREE’ option can be used to display a summary of any free memory
blocks.

The ‘SHOWMAP’ option will display a memory map of the heap that was valid when the process
terminated, and the ‘SHOWSYMBOLS’ option will display any symbolic information that the mpa-
trol library managed to obtain from any executable files and libraries that were relevant to the
program being tested. All of the above five options can be selected with the ‘SHOWALL’ option.

For the purpose of detecting memory leaks, you can instruct the mpatrol library to automat-
ically log every memory allocation event into a special hash table called the leak table with the
‘LEAKTABLE’ option. This option will then cause the mpatrol library to display a sorted sum-
mary of all of the memory leaks or unfreed memory allocations to the mpatrol log file when the
program terminates. The leak table is indexed by the source file and line number where memory
allocation events occur, but if this information is not available then either the function name or
the return address will be used instead. Note that this option differs from the ‘SHOWUNFREED’
option in that it will summarise where the leaks came from rather than show the full details of
each individual unfreed memory allocation.

Because the log file can contain verbose information about memory allocations, reallocations,
deallocations and operations, it can end up being too large if all such information is being logged
for a large program. To get around this, it is possible to trace all memory allocation, reallocation
and deallocation events in a concise way, to be stored in a separate file for later processing by
the mptrace command. By default, no such tracing is performed but it can be enabled with
the ‘TRACE’ option. The default tracing output file is ‘mpatrol.trace’, but this can be changed
using the ‘TRACEFILE’ option. As with the ‘LOGFILE’ option, you can also specify a directory
where all tracing output files from the mpatrol library will get placed by setting the TRACEDIR
environment variable.



30 mpatrol

7.3 General errors

By default, the mpatrol library follows the guidelines for ANSI C and C++ regarding the
behaviour of the dynamic memory allocation and memory operation functions it replaces. This
means that calling malloc() with a size of zero is allowed, for example. However, warnings can be
generated for all of these types of calls by using the ‘CHECKALL’ option. The ‘CHECKALLOCS’ option
warns only about calls to malloc() and similar functions with a size of zero, the ‘CHECKREALLOCS’
option warns only about calls to realloc() and similar functions with either a null pointer or a
size of zero, and the ‘CHECKFREES’ option warns only about calls to free() and similar functions
with a null pointer. The ‘CHECKMEMORY’ option gives an error if a zero-size memory operation is
performed on a ‘NULL’ pointer — this is normally allowed by default.

All newly-allocated memory can be pre-filled with a specified byte by using the ‘ALLOCBYTE’
option. This can be used to catch out code that expects newly-allocated memory to be zeroed,
although this option will have no effect on memory that was allocated with calloc(). All free
memory can also be pre-filled with a different specified byte by using the ‘FREEBYTE’ option.
This will catch out code that expects to be able to use the contents of freed memory. Note
that you may wish to change these options from their default values on your system so that
the contents can be filled with values that are least likely to be used at run-time. For example,
ensuring that the pointer representation of the value can never be a valid pointer, or that the
floating point representation will always be invalid. These values will vary across operating
systems and processor architectures.

Alternatively, the mpatrol library can be instructed to keep all (or a certain number of recent)
freed memory allocations so that its diagnostics can be clearer about which freed allocation a
piece of code is erroneously trying to access. This is controlled with the ‘NOFREE’ option, which
accepts an argument specifying the maximum number of recently-freed memory allocations
to prevent being reused. If the argument is zero then all freed memory allocations will be
immediately reused by the mpatrol library. If the argument is non-zero then the mpatrol library
will use up more memory than usual since it has to keep all of the freed memory allocations
lying around until their lifetime has expired. Note that this option distinguishes between free
memory and freed memory. Free memory is unallocated memory that has been taken from the
system heap. Freed memory is a freed memory allocation, with all of the original details of the
allocation preserved.

Normally, the ‘NOFREE’ option will fill the freed allocation with the free byte so that any code
that accesses it will hopefully fall over. However, the original contents can be preserved using
the ‘PRESERVE’ option in case you need to see what the contents were just before it was freed.
The ‘NOFREE’ option is also affected by the ‘PAGEALLOC’ option, since then the freed allocation
will have its contents both read and write protected so that nothing can access them. If the
‘PRESERVE’ option is used in this case then the freed allocation will only be made write-protected
so that the original contents can be read from but not written to.

Note that if the argument specified with the ‘NOFREE’ option is non-zero then the mpatrol
library will store all recently-freed memory allocations in a queue. Once the queue has filled to
the point specified with the ‘NOFREE’ option then all subsequent calls to free memory will result
in the most recently-freed memory allocation being placed at the end of the queue and the freed
memory allocation at the beginning of the queue will be returned to the free memory pool for
later reuse. Obviously, the larger the freed queue size, the better chance of detecting attempts
to access previously-freed memory, but unfortunately more memory will be used up and the
mpatrol library will have to keep track of a larger number of memory allocations.

7.4 Overwrites and underwrites

Once a block of memory has been allocated, it is imperative that the program does not
attempt to write any data past the end of the block or write any data just before the beginning
of the block. Even writing a single byte just beyond the end of an allocation or just before



Chapter 7: Using mpatrol 31

the beginning of an allocation can cause havoc. This is because most malloc libraries store the
details of the allocated block in the first few words before the beginning of the block, such as its
size and a pointer to the next block. The mpatrol library does not do this, so a program which
failed using the normal malloc library and worked when the mpatrol library was linked in is a
possible candidate for turning on overflow buffers.

Such memory corruption can be extremely difficult to pinpoint as it is unlikely to show itself
until the next call is made to the malloc library, or if the internal malloc library blocks were not
overwritten, the next time the data is read from the block that was overwritten. If the former
is the case then the next library call will cause an internal error or a crash, but only when the
memory block that was affected is referenced. This is likely to disappear when using the mpatrol
library since it keeps its internal structures separate, and write-protects them on systems that
support memory protection.

In order to identify such errors, it is possible to place special buffers2 on either side of every
memory allocation, and these will be pre-filled with a specified byte. Before every mpatrol
library call, the library will check the integrity of every such overflow buffer in order to check for
a memory underwrite or overwrite. Depending on the number of allocations and size of these
buffers, this can take a noticable amount of time (which is why overflow buffers are disabled
by default), but can mean that these errors get noticed sooner. The option which governs
this is ‘OFLOWSIZE’. The byte with which they get pre-filled can be changed with ‘OFLOWBYTE’.
Depending on what gets written, it might only be possible to see such errors when a different
size of buffer or a different pre-fill byte is used.

Note that you may wish to change the ‘OFLOWBYTE’ from its default value on your system
so that the contents can be filled with values that are least likely to be used at run-time. For
example, ensuring that the pointer representation of the value can never be a valid pointer,
or that the floating point representation will always be invalid. These values will vary across
operating systems and processor architectures, but may also vary depending on the datatypes
that you will be expecting to store in the memory allocations.

A worse situation can occur when it is only reads from memory that overflow or underflow;
i.e. with the faulty code reading just before or just past a memory allocation. These cannot be
detected by overflow buffers as it is not possible using conventional means to interrupt every
single read from memory. However, on systems with virtual memory, it is possible to use the
memory protection feature to provide an alternative to overflow buffers, although at the added
expense of increased memory usage.

The ‘PAGEALLOC’ option turns on this feature and automatically rounds up the size of every
memory allocation to a multiple of the system page size. It also rounds up the size of every
overflow buffer to a multiple of the system page size so that every memory allocation occupies
its own set of pages of virtual memory and no two memory allocations occupy the same page
of virtual memory. The overflow buffers are then read and write protected so that any memory
accesses to them will generate an error3. Following on from the previous section, the ‘PAGEALLOC’
option also causes free memory to be read and write protected as well since that will also occupy
non-overlapping virtual memory pages.

The remaining memory that is left over within an allocation’s pages is effectively turned into
traditional overflow buffers, being pre-filled with the overflow byte and checked periodically by
the mpatrol library to ensure that nothing has written into them. However, because of this
remaining memory, the library has a choice of where to place the memory allocation within its
pages. If it places the allocation at the very beginning then it will catch memory underwrites,
but if it places the allocation at the very end then it will catch memory overwrites. Such a
choice can be controlled at run-time by supplying an argument to the ‘PAGEALLOC’ option. If
‘PAGEALLOC=LOWER’ is used then every allocation will be placed at the very beginning of its pages

2 Commonly known as overflow buffers or fence posts.
3 This is a feature that was first used by Electric Fence (see Appendix K [Related software], page 213) to track

down memory corruption.



32 mpatrol

and if ‘PAGEALLOC=UPPER’ is used then the placement will be at the very end of its pages. This
is probably better explained in Example 3 (see Section 16.3 [Example 3], page 106) where the
problems with ‘PAGEALLOC=UPPER’ and alignment are also discussed.

Obviously, there are still some deficiencies when using ‘PAGEALLOC’ since it can use up a huge
amount of memory (especially with ‘NOFREE’) and the overflow buffers within an allocation’s
pages can still be read without causing an immediate error. Both of these deficiencies can be
overcome by using the ‘OFLOWWATCH’ option to install software watch points instead of overflow
buffers, but there are still very few systems that support software watch points at the moment,
and it can slow a program’s execution speed down by a factor of around 10,000. The reason
for this is that software watch points instruct the operating system to check every read from
and write to memory, which means that it has to single-step through a process checking every
instruction before it is executed. However, this is a very thorough way of checking for overflows
and is unlikely to miss anything, although there may be problems with misaligned memory
accesses when using watch points (see Section 6.1 [Virtual memory], page 21).

Note that from release 1.1.0 of mpatrol, the library comes with replacement functions for
many memory operation functions, such as memset() and memcpy(). These new functions
provide additional checks to ensure that if a memory operation is being performed on a memory
block, the operation will not read or write before or beyond the boundaries of that block.

Normally, if an error is discovered in the call to such functions, the mpatrol library will report
the error but prevent the operation from being performed before continuing execution. If the
error was that the range of memory being operated on overflowed the boundaries of an existing
memory allocation then the ‘ALLOWOFLOW’ option can be used to turn the error into a warning
and force the operation to continue. This behaviour can be desirable in certain cases where
third-party libraries are being used that make such calls but the end result does not overflow
the allocation boundary.

From release 1.3.3 of mpatrol, the library comes with functions that interface to the
‘-fcheck-memory-usage’ option of the GNU compiler. This option instructs the compiler to
place error-checking calls before each read or write to memory. The functions that are called
then check to ensure that the memory access does not overflow a heap memory allocation or
access free memory. This can be a very useful way to go through your code looking for errors
with a fine tooth-comb, but be aware that it does slow down execution by a large factor. It also
only affects functions that were compiled with this option, so if the problem lies in a function
that was not recompiled with ‘-fcheck-memory-usage’ then it won’t do much good.

To conclude, if you suspect your program has a piece of code which is performing illegal
memory underwrites or overwrites to a memory allocation you turn on the ‘CHECK=-’ option and
you should use each of the following options in sequence, but only if your system supports them.
If all else fails and you are using the GNU compiler then you could try recompiling some or all
of your code with the ‘-fcheck-memory-usage’ option.
1. ‘OFLOWSIZE=8’
2. ‘OFLOWSIZE=32’
3. ‘OFLOWSIZE=1’ ‘PAGEALLOC=LOWER’
4. ‘OFLOWSIZE=1’ ‘PAGEALLOC=UPPER’
5. ‘OFLOWSIZE=8’ ‘OFLOWWATCH’
6. ‘OFLOWSIZE=32’ ‘OFLOWWATCH’

7.5 Using with a debugger

If you would like to use mpatrol to pause at a specific memory allocation, reallocation or
deallocation in a debugger then this section will describe how to go about it. Unfortunately,
debuggers vary widely in function and usage and are normally very system-dependent. The



Chapter 7: Using mpatrol 33

example below will use gdb as the debugger, but as long as you know how to set a breakpoint
within a debugger, any one will do.

First of all, decide where you would like the mpatrol library to pause when running your pro-
gram within the debugger. You can choose one allocation index to break at using the ‘ALLOCSTOP’
option, or you can choose to break at a specific reallocation of that allocation by also using the
‘REALLOCSTOP’ option. If you use ‘REALLOCSTOP’ without using ‘ALLOCSTOP’ then you will break
at the first memory allocation that has been reallocated the specified number of times. You can
also choose to break at the point in your program that frees a specific allocation index by using
the ‘FREESTOP’ option.

The normal process for determining where you would like to pause your program in the
debugger is by using the ‘LOGALL’ option and examining the log file produced by mpatrol. If
your program crashed then you should look at the last entry in the log file to see what the
allocation index (and possibly also the reallocation index) of the last successful call was. You
can then decide which of the above options to use. Note that the debugger will break at a point
before any work is done by the mpatrol library for that allocation index so that you can see if
it was the last successful operation that caused the damage.

Having decided which combination of mpatrol options to use, you should set them in the
MPATROL_OPTIONS environment variable before running the debugger on your program. Alter-
natively, your debugger may have a command that allows you to modify your environment
during debugging, but you’re just as well setting the environment variable before you run the
debugger as it shouldn’t make any difference4.

After you get to the debugger command prompt, you should set a breakpoint at the __mp_
trap() function. This is the function that gets called when the specified allocation index and/or
reallocation index appears and so when you run your program under the debugger the mpatrol
library will call __mp_trap() and the debugger will stop at that point. If you are not running
your program within a debugger, or if you haven’t set the breakpoint, then __mp_trap() will
still be called, but it won’t do anything. Note that there may be some naming issues on some
platforms where the visible name of a global function gets an underscore prepended to it. You
may have to take that into account when setting the breakpoint on such systems.

Now that you have set the MPATROL_OPTIONS environment variable and have set the debugger
to break at __mp_trap(), all that is required is for you to run your program. Hopefully, the
debugger should stop at __mp_trap(). If it doesn’t then you may have to check your environment
variable settings to ensure that they are the same as when you ran the program outwith the
debugger, although obviously with the addition of ‘ALLOCSTOP’, etc. Once the program has been
halted by the debugger, you can then single-step through your code until you see where it goes
wrong. If this is near the end of your program then you’ll have saved yourself a lot of time by
using this method.

The following example will be used to illustrate the steps involved in using the ‘ALLOCSTOP’,
‘REALLOCSTOP’ and ‘FREESTOP’ options. However, it is only for tutorial purposes and the same
effect could easily be achieved by breaking at line 18 in a debugger because in this case it is
obvious from the code and the mpatrol log file where it is going wrong. In real programs this is
hardly ever the case5.

1 /*
2 * Allocates 1000 blocks of 16 bytes, freeing each block immediately
3 * after it is allocated, and freeing the last block twice.
4 */

4 Unless you’ve linked the debugger with the mpatrol library.
5 The other reason that this program is simple is because a proper example would generally involve crashing

the program, but on AmigaOS and Netware that would also involve crashing the system — not something
you’d want to do whilst trying this out.



34 mpatrol

7 #include "mpatrol.h"

10 int main(void)
11 {
12 void *p;
13 int i;

15 for (i = 0; i < 1000; i++)
16 if (p = malloc(16))
17 free(p);
18 free(p);
19 return EXIT_SUCCESS;
20 }

Compile this example code with debugging information enabled and link it with the mpatrol
library, then set MPATROL_OPTIONS to ‘LOGALL’ and run the resulting program. If you examine
‘mpatrol.log’ you will see the following near the bottom of the file.

...

ALLOC: malloc (1000, 16 bytes, 4 bytes) [main|test.c|16]
0x08049449 main+57
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

returns 0x080620E8

FREE: free (0x080620E8) [main|test.c|17]
0x08049470 main+96
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

0x080620E8 (16 bytes) {malloc:1000:0} [main|test.c|16]
0x08049449 main+57
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

FREE: free (0x080620E8) [main|test.c|18]
0x08049491 main+129
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

ERROR: [NOTALL]: free: 0x080620E8 has not been allocated

...

In this example, we’ll want to use ‘ALLOCSTOP’ to halt the program at the 1000th mem-
ory allocation so that we can step through it with a debugger. So, set MPATROL_OPTIONS to
‘ALLOCSTOP=1000’ and load the program into the debugger. If you are using gdb you can now
do the following steps, but if you are not you will have to use the equivalent commands in your
debugger. Note that ‘(gdb)’ is the debugger command prompt and so anything that appears
on that line after that should be typed as a command.



Chapter 7: Using mpatrol 35

(gdb) break __mp_trap
Breakpoint 1 at 0x804ee83
(gdb) run
Starting program: a.out
Breakpoint 1, 0x804ee83 in __mp_trap()
(gdb) backtrace
#0 0x804ee83 in __mp_trap()
#1 0x804c61b in __mp_getmemory()
#2 0x8049894 in __mp_alloc()
#3 0x8049449 in main() at test.c:16
(gdb) finish
Run till exit from #0 0x804ee83 in __mp_trap()
0x804c61b in __mp_getmemory()
(gdb) finish
Run till exit from #0 0x804c61b in __mp_getmemory()
0x8049894 in __mp_alloc()
(gdb) finish
Run till exit from #0 0x8049894 in __mp_alloc()
0x8049449 in main() at test.c:16
16 if (p = malloc(16))
(gdb) step
17 free(p);
(gdb) step
15 for (i = 0; i < 1000; i++)
(gdb) step
18 free(p);
(gdb) quit
The program is running. Exit anyway? (y or n) y

After setting the breakpoint and running the program, the debugger halts at __mp_trap().
Because __mp_trap() is a function within the mpatrol library, you don’t want to bother stepping
through any of the library functions, and in this case you can’t since the mpatrol library was
not compiled with debugging information enabled. So, after returning from all of the library
functions, the source line becomes line 16 because that was the location of the 1000th memory
allocation. Single-stepping twice gets us to line 18 which is our destination. Note that the file
‘extra/.gdbinit’ included in the mpatrol distribution contains predefined commands which
make setting the allocation index to stop at much easier.

Sometimes it is useful to be able to see information about a memory allocation whilst running
a program from within a debugger. The __mp_printinfo() function is provided for that purpose
and takes a heap address as its only argument. Using the above example, it would have been
possible to print out information about the pointer ‘p’ at line 17 from within gdb:

(gdb) call __mp_printinfo(p)
address 0x080620E8 located in allocated block:

start of block: 0x080620E8
size of block: 16 bytes
stored type: <unknown>
stored type size: <unknown>
user data: 0x00000000
allocated by: malloc
allocation index: 1000
reallocation index: 0
modification event: 1999



36 mpatrol

flags: none
calling function: main
called from file: test.c
called at line: 16
function call stack:

0x08049449 main
0x4007C9CB __libc_start_main
0x08049381 _start

Some debuggers, such as gdb, also allow you to define your own commands for use in a
debugging session. The following example defines a new gdb command called ‘printalloc’
which calls __mp_printinfo()6:

(gdb) define printalloc
Type commands for definition of "printalloc".
End with a line saying just "end".
>call __mp_printinfo($arg0)
>end
(gdb) document printalloc
Type documentation for "printalloc".
End with a line saying just "end".
>Displays information about an address in the heap.
>end

7.6 Testing

The mpatrol library has several features that make it useful when testing a program’s dynamic
memory allocations. These are features that do not help in fixing an existing bug, but rather
help to identify additional bugs that may be lurking in your code.

It is possible to set a simulated upper limit on the amount of heap memory available to a
process with the ‘LIMIT’ option, which accepts a size in bytes, but will be disabled when it is
zero. This can be extremely useful for testing a program under simulated low memory conditions
to see how it handles such errors. Of course, you should set the heap limit to a value less than
the amount of actual available memory otherwise this option will have no effect. Note that the
mpatrol library may use up a small amount of heap memory when it initialises itself7 so the
value passed to the ‘LIMIT’ option may need to be set slightly higher than you would normally
expect.

It is also possible to instruct the mpatrol library to randomly fail a certain number of memory
allocations so that you can further test error handling code in a program. The frequency at which
failures occur can be controlled with the ‘FAILFREQ’ option, where a value of zero means that
no failures will occur, but any other value will randomly cause failures. For example, a value of
‘10’ will cause roughly one in ten failures and a value of ‘1’ will cause every memory allocation
to fail. The random sequence can be made predictable by using the ‘FAILSEED’ option. If this is
non-zero then the same program run with the same failure frequency and same failure seed will
fail on exactly the same memory allocations. If this is zero then the failure seed will itself be set
randomly, but you can see its value when the summary is displayed at program termination.

When running batch tests8 it is sometimes useful to be able to detect if there have been
any memory leaks. Such leaks should normally be distinguished from code which has purposely
not freed the memory that it allocated, so there may be a certain expected number of unfreed

6 A sample GDB command file for use with mpatrol can be found in ‘extra/.gdbinit’.
7 Actually, it’s not really the mpatrol library that uses the memory but the object file access libraries since they

call malloc() to allocate any memory that they require.
8 A set of tests that run without user intervention.



Chapter 7: Using mpatrol 37

allocations at program termination. It may be that you would like to highlight any additional
unfreed allocations since they may be due to real memory leaks, so the ‘UNFREEDABORT’ option
can be set to a threshold number of expected unfreed allocations. If the library detects a number
of unfreed allocations higher than this then it will abort the program at termination so that it
fails. All tests that fail in this way can then be examined after the test suite finishes.

7.7 Library functions

Along with the standard set of C and C++ dynamic memory allocation functions, the mpatrol
library also comes with an additional set of functions which can be used to provide additional in-
formation to your program, and which can be called at various points in your code for debugging
purposes. You must always include the ‘mpatrol.h’ header file in order to use these functions,
but you can check for a specific version of the mpatrol library by checking the MPATROL_VERSION
preprocessor macro. You can check the version of the mpatrol library that a program was linked
with by calling the __mp_libversion() function.

Certain mpatrol library options can be set after the library has been initialised with the
__mp_setoption() function. This allows you to override the default options or those specified
in the MPATROL_OPTIONS environment variable from within your code. Not all options can be
overridden, however, since they would require a complete reinitialisation of the library — the
__mp_setoption() function returns a failure indicator in these cases. You can read the setting
of any mpatrol library option with the corresponding function, __mp_getoption().

On systems that support it, global functions (with C linkage) in an executable file or shared
library whose names begin with ‘__mp_init_’ will be noted when the mpatrol library first starts
up and is reading the symbols. Such functions will then be called as soon as the mpatrol
library is initialised, which can be useful if the initialisation occurs before main() is called.
These functions must accept no arguments and must return no value. Similar behaviour exists
for global functions whose names begin with ‘__mp_fini_’, except that such functions will be
executed when the mpatrol library terminates. Note that this feature will have no effect if the
symbol table is stripped from the executable file or shared library before the program is run,
and the order in which such functions will be called if there are more than one is unspecified.
The __mp_atexit() function can also be used to register functions that should be called when
the mpatrol library terminates.

It is possible to obtain a great deal of information about an existing memory allocation or
free block using the __mp_info() function. This takes an address as an argument and fills in
any details about its corresponding memory allocation in a supplied structure. The following
example illustrates this (it can be found in ‘tests/pass/test4.c’).

23 /*
24 * Demonstrates and tests the facility for obtaining information
25 * about the allocation a specific address belongs to.
26 */

29 #include "mpatrol.h"
30 #include <stdio.h>

33 void display(void *p)
34 {
35 __mp_allocstack *s;
36 __mp_allocinfo d;
37 __mp_symbolinfo i;



38 mpatrol

39 if (!__mp_info(p, &d) || !d.allocated)
40 {
41 fprintf(stderr, "nothing known about address 0x%0*lX\n",
42 sizeof(void *) * 2, p);
43 return;
44 }
45 fprintf(stderr, "block: 0x%0*lX\n", sizeof(void *) * 2, d.block);
46 fprintf(stderr, "size: %lu\n", d.size);
47 fprintf(stderr, "type: %s\n", __mp_function(d.type));
48 fprintf(stderr, "alloc: %lu\n", d.alloc);
49 fprintf(stderr, "realloc: %lu\n", d.realloc);
50 fprintf(stderr, "thread: %lu\n", d.thread);
51 fprintf(stderr, "event: %lu\n", d.event);
52 fprintf(stderr, "func: %s\n", d.func ? d.func : "<unknown>");
53 fprintf(stderr, "file: %s\n", d.file ? d.file : "<unknown>");
54 fprintf(stderr, "line: %lu\n", d.line);
55 for (s = d.stack; s != NULL; s = s->next)
56 {
57 fprintf(stderr, "\t0x%0*lX", sizeof(void *) * 2, s->addr);
58 if (__mp_syminfo(s->addr, &i))
59 {
60 if (i.name != NULL)
61 fprintf(stderr, " %s", i.name);
62 if ((i.addr != NULL) && (i.addr != s->addr))
63 fprintf(stderr, "%+ld",
64 (char *) s->addr - (char *) i.addr);
65 if (i.object != NULL)
66 fprintf(stderr, " [%s]", i.object);
67 }
68 else if (s->name != NULL)
69 fprintf(stderr, " %s", s->name);
70 fputc(’\n’, stderr);
71 }
72 fprintf(stderr, "typestr: %s\n",
73 d.typestr ? d.typestr : "<unknown>");
74 fprintf(stderr, "typesize: %lu\n", d.typesize);
75 fprintf(stderr, "userdata: 0x%0*lX\n", sizeof(void *) * 2, d.userdata);
76 fputs("flags: ", stderr);
77 if (!d.freed && !d.marked && !d.profiled && !d.traced && !d.internal)
78 fputs(" none\n", stderr);
79 else
80 {
81 if (d.freed)
82 fputs(" freed", stderr);
83 if (d.marked)
84 fputs(" marked", stderr);
85 if (d.profiled)
86 fputs(" profiled", stderr);
87 if (d.traced)
88 fputs(" traced", stderr);
89 if (d.internal)



Chapter 7: Using mpatrol 39

90 fputs(" internal", stderr);
91 fputc(’\n’, stderr);
92 }
93 }

96 void func2(void)
97 {
98 void *p;

100 if (p = malloc(16))
101 {
102 display(p);
103 free(p);
104 }
105 display(p);
106 }

109 void func1(void)
110 {
111 func2();
112 }

115 int main(void)
116 {
117 func1();
118 return EXIT_SUCCESS;
119 }

When this is compiled and run, it should give the following output, although the pointers
are likely to be different.

block: 0x0806A0E8
size: 16
type: malloc
alloc: 52
realloc: 0
thread: 0
event: 97
func: func2
file: test4.c
line: 100

0x0804A743 func2+35 [./a.out]
0x0804A790 func1+8 [./a.out]
0x0804A79C main+8 [./a.out]
0x4007C9CB __libc_start_main+255 [/lib/libc.so.6]
0x0804A3E1 _start+33 [./a.out]

typestr: <unknown>
typesize: 0
userdata: 0x00000000
flags: none



40 mpatrol

nothing known about address 0x0806A0E8

As you can see, anything that the mpatrol library knows about any memory allocation can
be obtained for use in your own code, which can be very useful if you need to write handlers
to keep track of memory allocations, etc. for debugging purposes. It can also be useful to
have this information when running your program within a debugger, so you can use the __mp_
printinfo() function to display information about a heap address if your debugger supports
calling functions from the command prompt. Note that the textual representation of the type
field returned by the __mp_info() function can be obtained by calling __mp_function().

The mpatrol library records the error code from the most recently encountered warning or
error in the __mp_errno global variable. This variable can be read and compared with the
known error codes listed in ‘mpatrol.h’. It can also be reset to MP_ET_NONE before calling any
mpatrol library function in order to check to see if a warning or error was encountered during
the call. A string representation of the error message corresponding to any mpatrol error code
can be obtained by calling the __mp_strerror() function with the specific code.

The userdata field shown in the previous example can be set for any memory allocation with
the __mp_setuser() function. This can have any value and is not interpreted by the mpatrol
library. It was added for user code to associate its own data with memory allocations.

The marked field that is also shown in the previous example indicates if a memory allocation
has been marked to indicate that it should never be freed. This can only be performed from
the source code by calling __mp_setmark() with the address of the memory allocation. Such
a memory allocation can be reallocated but never freed, and will not contribute to the list of
memory leaks. It will also be profiled and traced as freed by the end of program execution if
memory allocation profiling or tracing is enabled.

You may also have noticed the use of __mp_syminfo() in the above example. This function
is very similar to the __mp_info() function except that instead of looking for the details of
a memory allocation at a specific address, it looks for the details of a function symbol at that
address. This provides user access to the data obtained by the mpatrol symbol handler, including
line number information if the ‘USEDEBUG’ option is supported and used.

It is also possible for you to be able to intercept calls to allocate, reallocate and deallocate
memory for your own purposes. You can install prologue and epilogue functions that the mpatrol
library will call before and after every time one of its functions is called. These can be used for
additional tracing or simply to add extra checks to your code. The following code is an example
of this and can be found in ‘tests/pass/test2.c’.

23 /*
24 * Demonstrates and tests the facility for specifying user-defined
25 * prologue and epilogue functions.
26 */

29 #include "mpatrol.h"
30 #include <stdio.h>

33 __mp_prologuehandler old_prologue;
34 __mp_epiloguehandler old_epilogue;

37 void prologue(MP_CONST void *p, size_t l, size_t m, MP_CONST char *s,
38 MP_CONST char *t, unsigned long u, MP_CONST void *a)
39 {
40 if (old_prologue != NULL)



Chapter 7: Using mpatrol 41

41 old_prologue(p, l, m, s, t, u, a);
42 if (p == (void *) -1)
43 fprintf(stderr, "allocating %lu bytes\n", l);
44 else if (l == (size_t) -1)
45 fprintf(stderr, "freeing allocation 0x%0*lX\n", sizeof(void *) * 2, p);
46 else if (l == (size_t) -2)
47 fprintf(stderr, "duplicating string ‘%s’\n", p);
48 else
49 fprintf(stderr, "reallocating allocation 0x%0*lX to %lu bytes\n",
50 sizeof(void *) * 2, p, l);
51 }

54 void epilogue(MP_CONST void *p, MP_CONST char *s, MP_CONST char *t,
55 unsigned long u, MP_CONST void *a)
56 {
57 if (p != (void *) -1)
58 fprintf(stderr, "allocation returns 0x%0*lX\n", sizeof(void *) * 2, p);
59 if (old_epilogue != NULL)
60 old_epilogue(p, s, t, u, a);
61 }

64 int main(void)
65 {
66 void *p, *q;

68 old_prologue = __mp_prologue(prologue);
69 old_epilogue = __mp_epilogue(epilogue);
70 if (p = malloc(16))
71 if (q = realloc(p, 32))
72 free(q);
73 else
74 free(p);
75 if (p = (char *) strdup("test"))
76 free(p);
77 __mp_prologue(old_prologue);
78 __mp_epilogue(old_epilogue);
79 return EXIT_SUCCESS;
80 }

Once again, if you compile and run the above code, you should see the following output.
allocating 16 bytes
allocation returns 0x0806A0E8
reallocating allocation 0x0806A0E8 to 32 bytes
allocation returns 0x0806A0E8
freeing allocation 0x0806A0E8
duplicating string ‘test’
allocation returns 0x0806A0E5
freeing allocation 0x0806A0E5

Note that in the above code, the previous prologue and epilogue functions were recorded and
called. If this is not done then your prologue and epilogue functions will completely override all



42 mpatrol

others, which is not usually the expected behaviour. In case you’re wondering what the last four
arguments of the prologue and epilogue handlers are, they are the function name, file name, line
number and call address of the function that called malloc() or a related function. These can
be used in the handlers to see where they were called from.

Along with being able to install prologue and epilogue functions, you can also install a low-
memory handler with the __mp_nomemory() function, which will be called by the mpatrol library
if it ever runs out of memory during the call to a memory allocation function. This gives you
the opportunity to use that handler to either free up any unneeded memory or simply to abort,
thus removing the need to check for failed allocations. Note that the low-memory handler also
accepts the same four common arguments that the prologue and epilogue handlers do.

It is also possible to iterate over all of the allocated and freed memory allocations that are
currently in the heap at any point in a program. This is done by invoking the __mp_iterate()
function with a callback function which is called once per allocation with the start address of the
memory block being passed as the argument to the callback function. Any further information
about the memory allocation can then be obtained via the __mp_info() function. Note that
the __mp_iterateall() function does the same as the __mp_iterate() function except that it
also includes all free memory blocks and memory allocations that are internal to the mpatrol
library.

Differences in the heap allocations (their details, not their contents) between a previous
point in a program’s execution and the current point of execution can be determined by calling
the __mp_snapshot() function and then invoking __mp_iterate() with that snapshot value
as its second argument at a later point in execution. The callback function passed to __mp_
iterate() will then only be invoked with the start address of any memory allocation that has
been allocated or reallocated (or freed if the ‘NOFREE’ option is being used) since the snapshot
point. This makes it possible to detect localised memory leaks very easily, as the following
example (found in ‘tests/pass/test10.c’) shows.

23 /*
24 * Demonstrates and tests the facility for obtaining information on
25 * local memory leaks. Will also edit or list the location of each
26 * leak if the EDIT or LIST option is in effect.
27 */

30 #include "mpatrol.h"
31 #include <stdio.h>

34 int callback(MP_CONST void *p, void *t)
35 {
36 __mp_allocstack *s;
37 __mp_allocinfo d;

39 if (!__mp_info(p, &d) || !d.allocated)
40 {
41 fprintf(stderr, "nothing known about address 0x%0*lX\n",
42 sizeof(void *) * 2, p);
43 return -1;
44 }
45 if (!d.freed)
46 {
47 fprintf(stderr, "0x%0*lX", sizeof(void *) * 2, d.block);
48 fprintf(stderr, " %s", d.func ? d.func : "<unknown>");



Chapter 7: Using mpatrol 43

49 fprintf(stderr, " %s", d.file ? d.file : "<unknown>");
50 fprintf(stderr, " %lu", d.line);
51 for (s = d.stack; s != NULL; s = s->next)
52 {
53 if (s == d.stack)
54 fputs(" (", stderr);
55 else
56 fputs("->", stderr);
57 if (s->name != NULL)
58 fprintf(stderr, "%s", s->name);
59 else
60 fprintf(stderr, "0x%0*lX", sizeof(void *) * 2, s->addr);
61 if (s->next == NULL)
62 fputc(’)’, stderr);
63 }
64 fputc(’\n’, stderr);
65 if ((d.file != NULL) && (d.line != 0))
66 __mp_view(d.file, d.line);
67 *((unsigned long *) t) = *((unsigned long *) t) + d.size;
68 return 1;
69 }
70 return 0;
71 }

74 void func2(unsigned long n)
75 {
76 void *p;

78 p = malloc((n * 10) + 1);
79 if (n % 13)
80 free(p);
81 }

84 void func1(void)
85 {
86 void *p;
87 size_t i, n;
88 unsigned long s, t;

90 p = malloc(16);
91 s = __mp_snapshot();
92 for (i = 0; i < 128; i++)
93 func2(i);
94 free(p);
95 t = 0;
96 if (n = __mp_iterate(callback, &t, s))
97 fprintf(stderr, "Detected %lu memory leaks (%lu bytes)\n", n, t);
98 if ((n != 10) || (t != 5860))
99 fputs("Expected 10 memory leaks (5860 bytes)\n", stderr);



44 mpatrol

100 }

103 int main(void)
104 {
105 void *p;

107 p = malloc(16);
108 func1();
109 free(p);
110 return EXIT_SUCCESS;
111 }

Compiling this example with mpatrol and then running it will produce the following list
of memory leaks that were located between the points of calling __mp_snapshot() and __mp_
iterate().

0x0806A108 func2 test10.c 78 (func2->func1->main->_start)
0x0806A674 func2 test10.c 78 (func2->func1->main->_start)
0x0806A6F8 func2 test10.c 78 (func2->func1->main->_start)
0x0806A800 func2 test10.c 78 (func2->func1->main->_start)
0x0806A988 func2 test10.c 78 (func2->func1->main->_start)
0x0806AB94 func2 test10.c 78 (func2->func1->main->_start)
0x0806AE20 func2 test10.c 78 (func2->func1->main->_start)
0x0806B130 func2 test10.c 78 (func2->func1->main->_start)
0x0806B4C0 func2 test10.c 78 (func2->func1->main->_start)
0x0806B8D4 func2 test10.c 78 (func2->func1->main->_start)
Detected 10 memory leaks (5860 bytes)

The ‘tools’ directory in the mpatrol distribution contains two files called ‘heapdiff.c’ and
‘heapdiff.h’ which demonstrate the use of __mp_snapshot() and __mp_iterate() to find
localised memory leaks. Have a look at these files to see a further example of using these
functions, or perhaps even add these files to your application for debugging purposes. Note that
it is perfectly safe to allocate memory in the callback function used by __mp_iterate(), and
such allocations can be freed as well. The only restriction is that the callback function should
never free a memory allocation that it has not allocated itself.

An alternative way to detect differences in the heap between two points in a program’s
execution is to make use of the leak table. This is a hash table that stores the number and
size of memory allocations and deallocations referenced by the source file and line number
where they occur9. The leak table can be cleared with a call to __mp_clearleaktable() and
can be displayed with a call to __mp_leaktable(), which will display a sorted summary of
the allocated, freed or unfreed memory entries stored in the leak table. Memory allocation
events can be automatically logged in the leak table by calling __mp_startleaktable() but
this behaviour can be disabled by calling __mp_stopleaktable(). Additional entries can be
manually added to the leak table with __mp_addallocentry() and __mp_addfreeentry().

If you wish to write your own diagnostics to the mpatrol log file from within your source
code then you can do so with the __mp_printf() and __mp_vprintf() functions, which are
the functional equivalents of printf() and vprintf(). They prefix every line written to the
log file with ‘>’, partly for making it clear where user diagnostics occur and partly to avoid
problems with external utilities that parse the mpatrol log file. The __mp_locprintf() and
__mp_vlocprintf() functions are equivalent functions that also display the source file and line
number from where they were called along with a stack trace, if available.

9 If that information is not available then the function name or return address will be used instead.



Chapter 7: Using mpatrol 45

It is also possible to write out a memory dump in hexadecimal format, a stack trace at the
current point in execution and details of a memory allocation to the log file in standard format
using the __mp_logmemory(), __mp_logstack() and __mp_logaddr() functions respectively.

You can also take advantage of the mpedit command from within the mpatrol library with
the __mp_edit(), __mp_list() and __mp_view() functions. The first invokes a text editor on a
specified file and line number, while the second displays a context listing of a file at a given line
number. The third function performs either or neither depending on the setting of the ‘EDIT’
or ‘LIST’ options.

Finally, there are four functions which affect the mpatrol library globally. The first, __mp_
check(), allows you to force an internal check of the mpatrol library’s data structures at any
point during program execution and also to free up any out of scope memory allocations made
by the alloca() family of functions. The __mp_memorymap() function allows you to force the
generation of a memory map at any point in your program, in much the same way as it would
normally be displayed at the end of program execution if the ‘SHOWMAP’ option was used. The __
mp_summary() function writes library statistics to the mpatrol log file, while the __mp_stats()
function fills in a data structure with selected statistics for examination in user code.

7.8 Leak table

The mpatrol library provides a hash table called a leak table that can be used to record
memory allocations and deallocations for the purpose of detecting memory leaks. It can be
fully controlled from the source code of a program by calling the appropriate mpatrol library
functions, but the mpatrol library can also be instructed to automatically enter the details of
each memory event into the leak table by using the ‘LEAKTABLE’ option.

The leak table records a flat profile of memory allocation behaviour between two points in
a program and is keyed by source file location. What that means is, it contains an entry for
each source file and line number that allocated memory, and if more than one memory allocation
event occurred at that point then the entry will summarise the total events that occurred at that
point. In many cases, the source file and line number is not available for a memory allocation
event, in which case either the function name or the return address can be used instead.

The following example shows the use of the leak table manipulation functions.
1 /*
2 * Illustrates the explicit and implicit manipulation of the
3 * leak table.
4 */

7 #include "mpatrol.h"

10 int main(void)
11 {
12 void *p, *q;
13 int r;

15 __mp_clearleaktable();
16 __mp_addallocentry("file.c", 1, 1);
17 __mp_addfreeentry("file.c", 1, 1);
18 __mp_addallocentry("file.c", 1, 2);
19 __mp_addfreeentry("file.c", 1, 2);
20 __mp_addallocentry("file.c", 1, 3);



46 mpatrol

21 __mp_addfreeentry("file.c", 1, 3);
22 __mp_addallocentry("function", 0, 8);
23 __mp_addfreeentry("function", 0, 4);
24 __mp_addallocentry("function", 0, 16);
25 __mp_addfreeentry("function", 0, 12);
26 __mp_addallocentry(NULL, 0x40000000, 8);
27 r = __mp_startleaktable();
28 if (p = malloc(16))
29 if (q = realloc(p, 32))
30 free(q);
31 else
32 free(p);
33 if (r == 0)
34 __mp_stopleaktable();
35 __mp_leaktable(0, MP_LT_ALLOCATED, MP_LT_BOTTOM);
36 __mp_printf("\n");
37 __mp_leaktable(0, MP_LT_FREED, MP_LT_COUNTS);
38 __mp_printf("\n");
39 __mp_leaktable(0, MP_LT_UNFREED, 0);
40 __mp_printf("\n");
41 return EXIT_SUCCESS;
42 }

The output that appears in ‘mpatrol.log’ should look similar to this.

bottom 5 allocated memory entries in leak table:

bytes count location
-------- ------ --------

6 3 file.c line 1
8 1 0x40000000
16 1 test.c line 28
24 2 function
32 1 test.c line 29
86 8 total

top 4 freed memory entries in leak table:

count bytes location
------ -------- --------

3 6 file.c line 1
2 16 function
1 32 test.c line 29
1 16 test.c line 28
7 70 total

top 2 unfreed memory entries in leak table:

bytes count location
-------- ------ --------

8 1 0x40000000
8 0 function
16 1 total



Chapter 7: Using mpatrol 47

Line 15 of the above program clears the leak table. This can be done as many times as
necessary during the execution of the program, but note that there is only one leak table so
this will affect the ‘LEAKTABLE’ option. The following 6 lines then add matching allocation and
deallocation entries to the leak table corresponding to a source location of line 1 in a file called
‘file.c’. Any deallocation entries must match the source position of the original allocation due
to the nature of the leak table. Note that these 6 lines correspond to an allocation of 1 byte,
followed by two reallocations of 2 and 3 bytes respectively, followed by a final deallocation.

Lines 22-23 allocate 8 bytes from a function called function() but only free 4 bytes, resulting
in a memory leak of 4 bytes. Lines 24-25 do the same but allocate 16 bytes and free 12. The
next line allocates 8 bytes from a code address of ‘0x40000000’ but does not free it, resulting in
a memory leak of 8 bytes. Note that if the line number is specified as ‘0’ then the filename will
be taken as a function name, and if the filename is specified as ‘NULL’ then the line number will
be taken as a return address. If neither are specified then the number of bytes will be added or
subtracted from the ‘unknown’ location.

Line 27 instructs mpatrol to automatically record any subsequent memory allocation events
in the leak table, while line 34 does the opposite. The __mp_startleaktable() function returns
‘1’ if automatic leak table recording was turned on and ‘0’ otherwise, so we check in line 33 to see
if we should turn off automatic recording by examining the previous state. Lines 28-32 allocate,
reallocate and free some memory just to demonstrate this.

Finally, lines 35-40 display the contents of the memory leak table that have been recorded
since the call to __mp_clearleaktable(). Three different types of display can be generated:
allocated memory allocations, freed memory allocations and unfreed memory allocations. They
can also be sorted by the total number of calls instead of the total number of bytes (MP_LT_
COUNTS) or in reverse order with the smallest first (MP_LT_BOTTOM). The count of ‘0’ in the last
table indicates that there were a matching number of calls to allocate and free memory within
function() but the number of bytes freed was less than the number of bytes allocated. This can
only happen if the entries were added by __mp_addallocentry() and __mp_addfreeentry()
and is usually an indication that something is wrong when making these calls.

The leak table is a useful tool to manipulate when debugging your application to check
for memory leaks, but it is not as detailed as full memory allocation profiling which is con-
trolled by the ‘PROF’ option. It is probably better at summarising unfreed allocations than the
‘SHOWUNFREED’ option but does not show the call stack for each allocation.

In addition, the __mp_iterate() function can be used within user code to obtain details
about changes in the heap since a certain point in a program’s execution. However, it can only
provide details about freed memory allocations if the ‘NOFREE’ option is used. The leak table
will provide less details on freed memory allocations but its advantage is that it does not require
the use of the ‘NOFREE’ option.



48 mpatrol



Chapter 8: Tools 49

8 Tools

The ‘tools’ directory that comes with the mpatrol distribution contains the source code for
tools that are built on top of the mpatrol library. The functions that are defined in these files
are intended to be useful for specific applications as well as providing real-world examples of
how to extend mpatrol. If you wish to use one of the source files in the ‘tools’ directory then
you should first compile it and then link it into your program along with the mpatrol library.

Alternatively, if you’ve already installed mpatrol on your system then there should be an
‘mpatrol’ subdirectory within the include directory where ‘mpatrol.h’ is installed that contains
all of the header files in the ‘tools’ directory. There should also be a libmptools library within
the library directory where libmpatrol is installed that contains an object file for each of the
source files in the ‘tools’ directory. You can then make use of a particular tool by including its
header file from the ‘mpatrol’ include subdirectory and then linking with the libmptools library.

If you’ve written a useful extension to mpatrol then you might wish to submit it for inclusion
in the next release of mpatrol. Even if it’s just for a specific application, there might be other
users out there that may benefit from it. You’ll even get a credit in the manual! Note that any
documentation should also be written in the associated header file.

8.1 Dbmalloc-compatible functions

This file provides Dbmalloc1-compatible functions which are built on top of the mpatrol
library. They are compatible with the last known public release of Dbmalloc (patch level 14),
but only the Dbmalloc-specific functions are defined here, leaving the overriding of standard
functions up to the mpatrol library. As the mpatrol library does not currently override the C
library string functions and the X toolkit heap allocation functions, neither does this file.

The dbmallopt() function does not support the setting of all of the Dbmalloc options. In
fact, most of them do not make sense when applied to the mpatrol library. Some of them have
slightly changed behaviour due to the mapping process and some of them cannot be implemented
due to the mpatrol library having been initialised beforehand.

The malloc_dump() function does not support the full recognition of the ‘MALLOC_DETAIL’
option in that it does not display the additional columns and summary that the Dbmalloc
library does. This is because this would make no sense when applied to the mpatrol library, but
it does still affect whether freed allocations are shown in the listing (although the details for
such allocations are slightly different, and there are no entries displayed for free memory blocks).

The output for the malloc_dump() and malloc_list() functions is almost identical to that
of the Dbmalloc library except for a slight change in the pointer format when displaying the
address of each memory allocation. The stack information is obtained differently as well, since
the mpatrol library records symbolic stack tracebacks for each memory allocation. As a result,
malloc_enter() and malloc_leave() do nothing and the return address in a stack frame is
displayed if no associated symbol name, file and line number could be determined. Parentheses
are not printed at the end of symbol names so that they can be processed properly by a C++
demangler if necessary. Passing a file descriptor of ‘0’ to malloc_dump() or malloc_list()
results in the output being sent to the mpatrol log file.

The malloc_size() and malloc_mark() functions do not give an error message if the pointer
passed in does not correspond to a heap allocation. Neither of these functions automatically
perform an integrity check of the heap. Note that the malloc_chain_check() function will
never return a non-zero value — it always terminates with an error message in the mpatrol log
file whenever it detects heap corruption. As a result, the malloc_abort() function is not used.

This file is initialised via the mpatrol library’s initialiser function feature, which means that
if the __mp_init_dbmalloc() function is noted by the mpatrol symbol manager then it will be

1 Dbmalloc is copyright c© 1990-1992 Conor P. Cahill.



50 mpatrol

called when the mpatrol library is being initialised. If this feature is not supported then the
dbmallinit() function must be called as early on as possible, otherwise this file will not be
initialised until one of its functions are called.

8.2 Dmalloc-compatible functions

This file provides Dmalloc2-compatible functions which are built on top of the mpatrol library.
They are compatible with the 4.8.2 release of Dmalloc, but only the Dmalloc-specific functions
are defined here, leaving the overriding of standard functions up to the mpatrol library. As the
mpatrol library does not currently override the C library string functions, neither does this file.
In addition, the Dmalloc distribution comes with definitions for xmemalign(), xvalloc() and
xrecalloc(), neither of which are defined by this file or by the mpatrol library.

This module is intended to work with the existing dmalloc command, which sets the con-
tents of the DMALLOC_OPTIONS environment variable according to any specified command line
options. The four documented Dmalloc global variables are also defined, although the two ad-
dress variables are not acted upon and changing the dmalloc_logpath variable has no effect
yet. The dmalloc_errno variable is mapped onto the __mp_errno variable and so the dmalloc_
strerror() function always returns strings that are specific to the mpatrol library. Note that
unlike the actual Dmalloc library, this file is not threadsafe, and the ‘lockon’ option has no
effect. In addition, the start option ignores the ‘file:line’ syntax and uses allocation indices
rather than events.

The dmalloc_debug() function does not support the setting of all of the Dmalloc flags,
although this file defines preprocessor macros for each of them, something which is not currently
done in the ‘dmalloc.h’ file in the Dmalloc distribution. In fact, many of them do not make
sense when applied to the mpatrol library. Some of them have slightly changed behaviour due
to the mapping process and some of them cannot be implemented due to the mpatrol library
having been initialised beforehand.

The dmalloc_verify() and dmalloc_examine() functions do not give an error message if
the pointer passed in does not correspond to a heap allocation, and the latter function does not
automatically perform an integrity check of the heap. The malloc_verify() function has not
been included in this implementation since it is functionally identical to dmalloc_verify().
Note that the dmalloc_verify() function will only ever return DMALLOC_VERIFY_ERROR if the
pointer to be checked is not null and is invalid — it always terminates with an error message
in the mpatrol log file whenever the pointer to be checked is null and it has detected heap
corruption.

The dmalloc_log_heap_map() and dmalloc_log_stats() functions map on to the __mp_
memorymap() and __mp_summary() functions and so have entirely different display formats. The
dmalloc_log_unfreed() and dmalloc_log_changed() functions have similar display formats
to the original Dmalloc library, but the summary tables are displayed differently and will dis-
play symbol names if they are available and filename and line number information isn’t. The
dmalloc_message() and dmalloc_vmessage() functions write tracing to the mpatrol log file
prefixed by three fields of optional information, which can be controlled by the ‘LOG_*’ macros
when building this module.

This file is initialised via the mpatrol library’s initialiser function feature, which means that
if the __mp_init_dmalloc() function is noted by the mpatrol symbol manager then it will be
called when the mpatrol library is being initialised. If this feature is not supported then the
dmalloc_init() function must be called as early on as possible, otherwise this file will not be
initialised until one of its functions are called.

2 Dmalloc is copyright c© 1992-2001 Gray Watson.



Chapter 8: Tools 51

8.3 Determining heap differences

This file defines heapdiffstart() and heapdiffend(), which must be called in matching
pairs. They both take a heapdiff object as their first parameter, which must still be in scope
when the matching call to heapdiffend() is made. The heapdiff object is initialised at the call
to heapdiffstart() and is finalised when heapdiffend() is called. It must not be modified
in between and should be treated as an opaque type. heapdiffend() can only be called once
per heapdiff object before requiring that the heapdiff object be reinitialised through a call
to heapdiffstart().

The second parameter to heapdiffstart() specifies a set of flags that can be used to control
what is written to the mpatrol log. A list of all unfreed memory allocations can be logged with
the HD_UNFREED flag and a list of all freed memory allocations can be logged with the HD_FREED
flag, although the latter makes use of the ‘NOFREE’ option and can incur a large performance
and space penalty, and also relies on the ‘NOFREE’ option being unmodified between the calls to
heapdiffstart() and heapdiffend(). Note that marked allocations are not normally logged
but this can be changed by adding the HD_MARKED flag.

By default, only a minimal amount of detail is logged for each allocation, but this can be
changed with the HD_FULL flag to log full details for each allocation. If the filename and line
number for an allocation is known and the ‘EDIT’ or ‘LIST’ option is being used then using
HD_VIEW will edit or list the relevant source file at the correct line number, but only if the ‘EDIT’
or ‘LIST’ options are supported.

If the HD_CONTENTS flag is specified then the contents of all current memory allocations will
be written to files and then compared with their subsequent contents when heapdiffend() is
called. If the heap is large then this option can require a substantial amount of disk space. All of
the allocation contents files will be deleted when the matching call to heapdiffend() is made.

8.4 Memory allocation gauge

This file defines mgaugestart(), mgaugeend(), mgaugeon() and mgaugeoff() which produce
and control a simple memory allocation gauge in a terminal window. The gauge is displayed
in textual form using the standard I/O library rather than using a graphics library. Since it
is updated in real-time, it makes no sense to send the output of the gauge to a file. Only one
gauge can be in use at any one time.

The first argument to mgaugestart() is the filename of the file to write the gauge to. As
mentioned before, this should be a terminal file that can be displayed in real-time, such as
‘/dev/pts*’ on UNIX systems or ‘CON:#?’ on AmigaOS. If it is a null pointer then the standard
error file stream will be used.

The second argument to mgaugestart() specifies the character that will be used to represent
allocated memory. If this is given as whitespace, ‘|’ or ‘+’ then ‘#’ will be used instead. The
third argument specifies the number of bytes that the gauge represents. If the total allocated
memory exceeds this then ‘+’ will be appended to the gauge. The final argument specifies the
frequency of memory allocation events at which the gauge should be updated. If it is specified
as zero then all events will cause the gauge to be updated.

8.5 Memory allocation tracing

This file defines mtrace() and muntrace(), two functions which enable and disable memory
allocation tracing respectively. These should be called in matching pairs but will have no effect
unless the MALLOC_TRACE environment variable is set to the filename of the trace file to use. The
resulting trace files can be processed by the mtrace perl script which is distributed with the
GNU C library.



52 mpatrol



Chapter 9: Utilities 53

9 Utilities

Several external programs are supplied with the mpatrol distribution in the form of commands
that can be used to enhance the functionality of the mpatrol library. Each command comes with
its own UNIX manual page (although they also support the ‘--help’ and ‘--version’ options),
but a few of the commands are written as UNIX shell scripts and so will not work on non-
UNIX platforms. Note that the mprof command is documented in the profiling chapter (see
Chapter 10 [Profiling], page 59) and the mptrace command is documented in the tracing chapter
(see Chapter 11 [Tracing], page 73).

9.1 The mpatrol command

A command is provided with the mpatrol distribution which can run programs that have been
linked with the mpatrol library, using a combination of mpatrol options that can be set via the
command line. Most of these options map directly onto their equivalent environment variable
settings and exist mainly so that the user does not have to manually change the MPATROL_
OPTIONS environment variable.

The main option that is the exception to this is the ‘--dynamic’ option, which can be used to
run a program under the control of the mpatrol library, even if it wasn’t originally linked with
the mpatrol library. This can only be done on systems that support dynamic linking and where
the dynamic linker recognises the LD_PRELOAD or _RLD_LIST environment variables. Even then,
it can only be used when the program that is being run has been dynamically linked with the
system C library, rather than statically linked.

The reason for all of these limitations is that some SVR4 UNIX platforms have a special
feature in the dynamic linker which can be told to override the symbols from one shared library
using the symbols from another shared library at run-time. In this case, it involves replacing
the symbols for malloc(), etc., in the system C library with the mpatrol versions, but only if
they were marked as undefined in the original executable file and would therefore have to have
been loaded from ‘libc.so’.

However, if a program qualifies for use with the ‘--dynamic’ option, it means that you can
trace all of its dynamic memory allocations as well as running it with any of the mpatrol library’s
debugging options. This is mainly a toy feature which allows you to view and manipulate the
dynamic memory allocations of programs that you don’t have the source for, but in theory it
could be quite useful if you need to debug a previously released executable and are unable to
recompile or relink it. Note that if the program being run is multithreaded then you must add
the ‘--threads’ option as well.

Note that the mpatrol command must be set up to use the correct object file format access
libraries that are required for your system if you wish to use the ‘--dynamic’ option. If the
mpatrol library was built with FORMAT=FORMAT_COFF or FORMAT=FORMAT_XCOFF support then it
must be told to preload the COFF access library (normally ‘libld.so’). If it was built with
FORMAT=FORMAT_ELF32 or FORMAT=FORMAT_ELF64 support then it must be told to preload the
ELF access library (normally ‘libelf.so’)1. If it was built with FORMAT=FORMAT_BFD support
then it must be told to preload the GNU BFD access libraries (normally ‘libbfd.so’ and
‘libiberty.so’)2. However, if these libraries only exist on your system in archive form then
you must build ‘libmpatrol.so’ with these extra libraries incorporated into it so that there are
no dependencies on them at run-time. However, there may well be problems if the resulting
shared library contains position-dependent code from the archive libraries you incorporated.
The only way to find out is for you to try it and see.

1 A freely available version of the ELF access library, libelf, can be downloaded from
ftp://sunsite.unc.edu/pub/Linux/libs/.

2 The GNU BFD access library can be downloaded from ftp://ftp.gnu.org/.

ftp://sunsite.unc.edu/pub/Linux/libs/
ftp://ftp.gnu.org/


54 mpatrol

If you have access to the GNU linker on your system then there may be a way to convert
archive libraries into shared libraries if position-independent code is not necessarily required for
building shared libraries on your system. If you use the ‘--whole-archive’ and ‘--shared’
linker options then the GNU linker will read the entire contents of one or more archive libraries
before writing out a shared library. All going well, you should be able to use the new shared
library in conjunction with the ‘--dynamic’ mpatrol option.

In order to build a shared version of the mpatrol library with embedded object file format
access libraries, you must first modify the ‘Makefile’ you would normally use to build the
mpatrol library. At the lines where the linker is invoked to build the shared library, you must
explicitly add any object file format access libraries that you want to use at the end of the linker
command line. This ensures that all references to such libraries will be resolved at link time
rather than run time. You must then edit the file ‘src/config.h’ and remove all of the libraries
that you embedded from the definitions of the MP_PRELOAD_LIBS and ‘MP_PRELOADMT_LIBS’
preprocessor macros. Finally, rebuild the shared version of the mpatrol library and the mpatrol
command and see if your efforts were worth it.

Because the mpatrol command sets the MPATROL_OPTIONS environment variable for each of
the programs it runs, it does not affect the value of the environment variable for the current
process (except on AmigaOS and Netware where all processes share the same environment).
However, if you wish to use the mpatrol command to set MPATROL_OPTIONS in the current
process environment then you can use its ‘--show-env’ option to help you do so. This option will
apply all of the mpatrol command line options to the MPATROL_OPTIONS environment variable
and then display its value on the standard output without actually running any programs. You
can then manually set the environment variable with the output from the mpatrol command.

If you wish the MPATROL_OPTIONS environment variable to be set in the current shell process
automatically with the mpatrol command then you must use some shell trickery. The following
script excerpts can be found in ‘extra/.profile’, ‘extra/.cshrc’ and ‘extra/.gdbinit’ and
can be inserted into your ksh/bash, csh/tcsh and gdb configuration files respectively. They each
provide the mallopt command, which takes mpatrol command options and sets the MPATROL_
OPTIONS environment variable in the current shell or debugger process.

# mallopt for ksh/bash

function mallopt()
{

export MPATROL_OPTIONS=‘mpatrol --show-env "$@"‘
echo "$MPATROL_OPTIONS"

}

# mallopt for csh/tcsh

alias mallopt ’setenv MPATROL_OPTIONS "‘mpatrol --show-env \!*‘";
echo "$MPATROL_OPTIONS"’

# mallopt for gdb

define mallopt
printf "Enter mpatrol library options: "
shell read arg; echo set environment MPATROL_OPTIONS

‘mpatrol --show-env $arg‘ >/tmp/mpatrol.gdb
source /tmp/mpatrol.gdb
shell rm -f /tmp/mpatrol.gdb
show environment MPATROL_OPTIONS
end



Chapter 9: Utilities 55

document mallopt
Sets mpatrol library options in the current process environment.
end

9.2 The mleak command

Another utility program that is provided is called mleak and is useful for detecting memory
leaks in log files produced by the mpatrol library. This program should be used if the mpatrol
library could not finish writing the log file due to abnormal program termination (which would
prevent the ‘SHOWUNFREED’ option from working), but note that some of the unfreed allocations
might have been freed if the program had terminated successfully.

The mleak command scans through an mpatrol log file looking for lines beginning with
‘ALLOC:’ and ‘FREE:’ but ignores lines beginning with ‘REALLOC:’, so only the ‘LOGALLOCS’ and
‘LOGFREES’ options are necessary when running a program linked with the mpatrol library. Note
that as a result of this, no attempt is made to account for resizing of memory allocations and
so the total amount of memory used by the resulting unfreed allocations may not be entirely
accurate.

This command will also read the unfreed allocations table produced by the ‘SHOWUNFREED’
option in the log file if one is present. The entries in the table will be compared with the
currently allocated entries and will be added if not already present. However, this behaviour
can be disabled by supplying the ‘--ignore’ option to the mleak command.

The mleak command can also be instructed to limit the number of lines of stack tracing
information that it will display for each unfreed memory allocation. This is controlled by the
‘--max-stack’ option which takes the maximum number of stack trace lines to display as an
argument. If the number of lines is given as ‘0’ (the default) then there will be no limit to the
length of each stack trace.

The mleak command takes one optional argument which must be a valid mpatrol log filename
but if it is omitted then it will use ‘mpatrol.log’ as the name of the log file to use. The mleak
command makes two passes over the log file so the file must be randomly-accessible. If the
filename argument is given as ‘-’ then the standard input file stream will be used as the log file.
Note also that the mleak command supports the ‘--help’ and ‘--version’ options in common
with the other mpatrol command line tools.

Note that mpatrol patch 5 (which can be downloaded from
http://www.cbmamiga.demon.co.uk/mpatrol/patches/mpatrol_patch5.tar.gz)
contains the source code to a FORTRAN 90 program called condenseleaklog which offers
similar facilities to the mleak command, as well as the ability to trim and filter stack traces.

9.3 The mpsym command

Another utility program that is provided is called mpsym, which is used to parse a log file
produced by the mpatrol library and uses a debugger to append symbol names and source level
information to code addresses in stack tracebacks. This should be used if the ‘USEDEBUG’ option
is not supported on a particular platform or does not work properly with a specific program. It
will replace all existing symbols and source level information associated with the stack tracebacks
in the mpatrol log file and will display the resulting log file on the standard output file stream.

The first argument to mpsym must be the filename of the executable file that produced the
mpatrol log file but if it is omitted then mpsym will use ‘a.out’ as the name of the executable
file to use. The mpsym command will read the symbol table and debugging sections from this file
in order to map the code addresses that appear in the mpatrol log file into symbol names and
source level information. If the executable file does not contain a symbol table then no symbol
names will be available and if it does not contain the appropriate debugging sections then no

http://www.cbmamiga.demon.co.uk/mpatrol/patches/mpatrol_patch5.tar.gz


56 mpatrol

source level information will be available either. Obviously, if the executable file is not the same
as the one that created the mpatrol log file then the final output will be wrong.

The second argument to mpsym must be a valid mpatrol log filename but if it is omitted then
mpsym will use ‘mpatrol.log’ as the name of the log file to use, or ‘progfile.log’ if it can’t
find that. The mpsym command makes two passes over the log file so the file must be randomly-
accessable. Note also that the mpsym command supports the ‘--help’ and ‘--version’ options
in common with the other mpatrol command line tools.

If the mpatrol library cannot determine the name of a symbol for display in the log file then
it will mark the symbol as ‘???’. If the debugger that is being used by mpsym also has problems
determining the name of the symbol then you can pass the ‘--skip’ option to mpsym to instruct
it to skip any symbols marked as ‘???’ in the log file.

The mpsym command currently uses gdb as the debugger with which to obtain the additional
information about the code addresses in the mpatrol log file. It also makes use of several UNIX
text processing commands, including perl if it is installed, in order to extract information from
the debugger’s output and from the log file. As a result, the mpsym command is only likely to
work on UNIX platforms or on systems which have the necessary commands installed.

9.4 The mpedit command

Yet another utility program that is provided is called mpedit, which is used to invoke a text
editor on a given source file and optionally jump to a specific line number. It is used as a support
command by the mpatrol library when the ‘EDIT’ or ‘LIST’ options are used but it can quite
easily be used as a command in its own right if properly configured. Because it is a shell script
it can be easily configured to support other editors, but this unfortunately limits it to UNIX
platforms at the moment.

The first argument to mpedit must be the filename of the source file to be edited or listed. If
the source file does not exist then the contents of the MPATROL_SOURCEPATH environment variable
will be used to help locate the source file, even if the filename contained an absolute or relative
path component. This environment variable should consist of a colon-separated list of directory
names which may contain absolute paths or be relative to the current directory; the first directory
in the list will be searched first. If the MPATROL_SOURCEPATH environment variable is not set then
only the current directory will be searched. You can also use the ‘--source-dir’ option to add
directories to the search path used to locate the source file. Multiple ‘--source-dir’ options
may be given, and each will be prepended to the MPATROL_SOURCEPATH environment variable in
the order given on the command line.

If the second argument specifying the line number is omitted then it is assumed to be ‘1’.
The text editor will attempt to jump to the specified line after opening the source file. The text
editor that mpedit uses is controlled by setting the EDITOR environment variable. This can be
set to the full pathname of the text editor to use or it can be set to the command that would
normally be used to invoke the text editor, but it cannot also contain command line options.
You can also use the ‘--editor’ option to specify the text editor on the command line instead
of using the value in the EDITOR environment variable.

The currently supported editors are vi, vim, elvis, emacs, xemacs, pico and nano, and if
the EDITOR environment variable is not set then the default will be vi. Selecting an unsupported
text editor will result in an error. However, you can edit the mpedit file to add support for your
own favourite text editor as long as it supports a way to immediately jump to a specific line
number when it is first started up. Note that the text editor must also open a new window to
edit the source file so that it does not obscure any mpatrol diagnostic messages, and if it does
not support this then a new terminal window must be opened for it to use.

If the ‘--listing’ option is given on the command line then the mpedit command will display
a context listing of the source file at the specified line number to the standard error output stream
instead of invoking the text editor. The listing will be annotated with line numbers and will



Chapter 9: Utilities 57

also show the contents of the five lines before and after the specified line if possible. Note also
that the mpedit command supports the ‘--help’ and ‘--version’ options in common with the
other mpatrol command line tools.

9.5 The hexwords command

The final utility program that is provided is called hexwords, which is used to generate
hexadecimal constants from a dictionary of known words. Such numerical constants can be used
in source files for a variety of debugging problems, and problems with uninitialised variables are
especially relevant since these special numbers will stand out if seen from within a debugger.
For example, here are some common (and some not-so-common) 32-bit hexadecimal constants
that can be used as debugging aids:
word hex constant
addedbad 0xaddedbad
allocate 0xa110ca7e
badlabel 0xbad1abe1
baseball 0xba5eba11
codebabe 0xc0debabe
codedbad 0xc0dedbad
deadbeef 0xdeadbeef
deadcode 0xdeadc0de
failsafe 0xfa115afe
feedface 0xfeedface
freedata 0xf4eeda7a
goodcode 0x600dc0de

As can be seen above, many decimal digits can be used to represent the letters that they
most closely resemble, along with the hexadecimal digits ‘A’ through ‘F’. This provides a much
larger selection of words that can be matched, although the digits ‘3’ and ‘8’ cannot be used due
to the lack of any similar-looking letters. The digits and their corresponding letters are given in
the following table.
digit letter
‘0’ O, o or Q
‘1’ I, i or l
‘2’ Z or z
‘3’ -
‘4’ q or R
‘5’ S or s
‘6’ G
‘7’ J or T
‘8’ -
‘9’ g
‘A-F’ A-F
‘a-f’ a-f

The argument to hexwords must be a valid dictionary filename but if it is omitted then
hexwords will use ‘/usr/dict/words’ as the name of the dictionary file to use. If that cannot
be found then hexwords will try ‘/usr/lib/dict/words’ and ‘/usr/share/dict/words’. The
dictionary file must be a plain text file that contains one word per line, otherwise few to no
words will be matched.

The words that are matched from the dictionary file can be controlled by using the ‘--match’
option, which sets the type of case-sensitivity to use. A setting of ‘exact’ performs a case-
sensitive comparison of all of the words in the dictionary file and the hexadecimal digits, whereas
a setting of ‘any’ does not. The ‘lower’ and ‘upper’ settings convert the words in the dictionary



58 mpatrol

file to lower and upper case respectively before performing a case-sensitive comparison. The
default case-sensitivity is ‘exact’.

The minimum and maximum number of letters that are matched are controlled by the
‘--minimum’ and ‘--maximum’ options. None of the hexadecimal numbers displayed will have
any less or more digits that those specified with these options. The default minimum is ‘4’
digits and the default maximum is ‘8’ digits. Note also that the hexwords command supports
the ‘--help’ and ‘--version’ options in common with the other mpatrol command line tools.

The hexwords command currently makes use of several UNIX text processing commands
in order to extract the words and their hexadecimal equivalents. As a result, the hexwords
command is only likely to work on UNIX platforms or on systems which have the necessary
commands installed.



Chapter 10: Profiling 59

10 Profiling

The mpatrol library has the capability to summarise the information it accumulated about
the behaviour of dynamic memory allocations and deallocations over the lifetime of any program
that it was linked and run with. This summary shows a rough profile of all memory allocations
that were made, and is hence called profiling. There are several other different kinds of profiling
provided with most compilation tools, but they generally profile function calls or line numbers
in combination with the time it takes to execute them.

Memory allocation profiling is useful since it allows a programmer to see which functions
directly allocate memory from the heap, with a view to optimising the memory usage or perfor-
mance of a program. It also summarises any unfreed memory allocations that were present at
the end of program execution, some of which could be as a result of memory leaks. In addition,
a summary of the sizes and distribution of all memory allocations and deallocations is available.

A memory allocation call graph is also available for the programmer to be able to see the
caller and callee relationships for all functions that allocated memory, either directly or indi-
rectly. This graph is shown in a tabular form similar to that of gprof, but it can also be
written to a graph specification file for later processing by dot. The dot and dotty com-
mands are part of GraphViz, an excellent graph visualisation package that was developed at
AT&T Bell Labs and is available for free download for UNIX and Windows platforms from
http://www.research.att.com/sw/tools/graphviz/.

Only allocations and deallocations are recorded, with each reallocation being treated as a
deallocation immediately followed by an allocation. For full memory allocation profiling support,
call stack traversal must be supported in the mpatrol library and all of the program’s symbols
must have been successfully read by the mpatrol library before the program was run. The library
will attempt to compensate if either of these requirements are not met, but the displayed tables
may contain less meaningful information. Cycles that appear in the allocation call graph are
due to recursion and are currently dealt with by only recording the memory allocations once
along the call stack.

Memory allocation profiling is disabled by default, but can be enabled using the ‘PROF’ option.
This writes all of the profiling data to a file called ‘mpatrol.out’ in the current directory at
the end of program execution, but the name of this file can be changed using the ‘PROFFILE’
option and the default directory in which to place these files can be changed by setting the
PROFDIR environment variable. Sometimes it can also be desirable for the mpatrol library to
write out the accumulated profiling information in the middle of program execution rather than
just at the end, even if it is only partially complete, and this behaviour can be controlled with
the ‘AUTOSAVE’ option. This can be particularly useful when running the program from within
a debugger, when it is necessary to analyse the profiling information at a certain point during
program execution.

When profiling memory allocations, it is necessary to distinguish between small, medium,
large and extra large memory allocations that were made by a function. The boundaries which
distinguish between these allocation sizes can be controlled via the ‘SMALLBOUND’, ‘MEDIUMBOUND’
and ‘LARGEBOUND’ options, but they default to 32, 256 and 2048 bytes respectively, which should
suffice for most circumstances.

The mprof command is a tool designed to read a profiling output file produced by the mpa-
trol library and display the profiling information that was obtained. The profiling information
includes summaries of all of the memory allocations listed by size and the function that allocated
them and a list of memory leaks with the call stack of the allocating function. It also includes a
graph of all memory allocations listed in tabular form, and an optional graph specification file
for later processing by the dot graph visualisation package.

The mprof command also attempts to calculate the endianness of the processor that produced
the profiling output file and reads the file accordingly. This means that it is possible to use mprof
on a SPARC machine to read a profiling output file that was produced on an Intel 80x86 machine,

http://www.research.att.com/sw/tools/graphviz/


60 mpatrol

for example. However, this will only work if the processor that produced the profiling output
file has the same word size as the processor that is running the mprof command. For example,
reading a 64-bit profiling output file on a 32-bit machine will not work.

In addition, the profiling output file also contains the version number of the mpatrol library
which produced it. If the major version number that is embedded in the profiling output file
is newer that the version of mpatrol that mprof came with then mprof will refuse to read the
file. You should download the latest version of mpatrol in that case. The reason for storing the
version number is so that the format of the profiling output file can change between releases of
mpatrol, but also allow mprof to cope with older versions.

Along with the options listed below, the mprof command takes one optional argument
which must be a valid mpatrol profiling output filename but if it is omitted then it will use
‘mpatrol.out’ as the name of the file to use. If the filename argument is given as ‘-’ then the
standard input file stream will be used as the profiling output file. Note also that the mprof
command supports the ‘--help’ and ‘--version’ options in common with the other mpatrol
command line tools.

‘--addresses’
Specifies that different call sites from within the same function are to be differen-
tiated and that the names of all functions should be displayed with their call site
offset in bytes. This affects the direct allocation and memory leak tables, as well as
the allocation call graph and the graph specification file.

‘--call-graph’
Specifies that the allocation call graph should be displayed. This is not displayed
by default as it can get very large for even a moderately sized profiling output file.

‘--counts’
Specifies that certain tables should be sorted by the number of allocations or deallo-
cations rather than the total number of bytes allocated or deallocated. This affects
the direct allocation and memory leak tables, as well as the allocation call graph
and the graph specification file.

‘--graph-file’ <file>
Specifies that the allocation call graph should also be written to a graph specification
file for later visualisation with dot. If file is given as ‘stdout’ or ‘stderr’ then the
corresponding file stream will be used as the target for the graph specification file.

‘--leaks’ Specifies that memory leaks rather than memory allocations are to be written to the
graph specification file. This option only affects the output from the ‘--graph-file’
option.

‘--stack-depth’ <depth>
Specifies the maximum stack depth to use when calculating if one call site has the
same call stack as another call site. This also specifies the maximum number of
functions to display in a call stack. If depth is ‘0’ then the call stack depth will be
unlimited in size. The default call stack depth is ‘1’. This affects the memory leak
table.

We’ll now look at an example of using the mpatrol library to profile the dynamic memory
allocations in a program. However, remember that this example will only fully work on your
machine if the mpatrol library supports call stack traversal and reading symbols from executable
files on that platform. If that is not the case then only some of the features will be available.

The following example program performs some simple calculations and displays a list of
numbers on its standard output file stream, but it serves to illustrate all of the different features
of memory allocation profiling that mpatrol is capable of. The source for the program can be
found in ‘tests/profile/test1.c’.



Chapter 10: Profiling 61

23 /*
24 * Associates an integer value with its negative string equivalent in a
25 * structure, and then allocates 256 such pairs randomly, displays them
26 * then frees them.
27 */

30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>

35 typedef struct pair
36 {
37 int value;
38 char *string;
39 }
40 pair;

43 pair *new_pair(int n)
44 {
45 static char s[16];
46 pair *p;

48 if ((p = (pair *) malloc(sizeof(pair))) == NULL)
49 {
50 fputs("Out of memory\n", stderr);
51 exit(EXIT_FAILURE);
52 }
53 p->value = n;
54 sprintf(s, "%d", -n);
55 if ((p->string = strdup(s)) == NULL)
56 {
57 fputs("Out of memory\n", stderr);
58 exit(EXIT_FAILURE);
59 }
60 return p;
61 }

64 int main(void)
65 {
66 pair *a[256];
67 int i, n;

69 for (i = 0; i < 256; i++)
70 {
71 n = (int) ((rand() * 256.0) / (RAND_MAX + 1.0)) - 128;
72 a[i] = new_pair(n);
73 }



62 mpatrol

74 for (i = 0; i < 256; i++)
75 printf("%3d: %4d -> \"%s\"\n", i, a[i]->value, a[i]->string);
76 for (i = 0; i < 256; i++)
77 free(a[i]);
78 return EXIT_SUCCESS;
79 }

After the above program has been compiled and linked with the mpatrol library, it should
be run with the ‘PROF’ option set in the MPATROL_OPTIONS environment variable. Note that
‘mpatrol.h’ was not included as it is not necessary for profiling purposes.

If all went well, a list of numbers should be displayed on the screen and a file called
‘mpatrol.out’ should have been produced in the current directory. This is a binary file con-
taining the total amount of profiling information that the mpatrol library gathered while the
program was running, but it contains concise numerical data rather than human-readable data.
To make use of this file, the mprof command must be run. An excerpt from the output produced
when running mprof with the ‘--call-graph’ option is shown below1.

ALLOCATION BINS

(number of bins: 1024)

allocated unfreed
-------------------------------- --------------------------------

size count % bytes % count % bytes %

2 9 1.76 18 0.61 9 3.52 18 1.95
3 105 20.51 315 10.61 105 41.02 315 34.16
4 121 23.63 484 16.30 121 47.27 484 52.49
5 21 4.10 105 3.54 21 8.20 105 11.39
8 256 50.00 2048 68.96 0 0.00 0 0.00

total 512 2970 256 922

DIRECT ALLOCATIONS

(0 < s <= 32 < m <= 256 < l <= 2048 < x)

allocated unfreed
-------------------------- --------------------------
bytes % s m l x bytes % s m l x count function

2970 100.00 %% 922 100.00 %% 512 new_pair

2970 %% 922 %% 512 total

MEMORY LEAKS

(maximum stack depth: 1)

unfreed allocated
---------------------------------------- ----------------

% bytes % count % bytes count function

1 The ‘--call-graph’ option is only needed to display the allocation call graph table, which is not normally
displayed by default.



Chapter 10: Profiling 63

100.00 922 31.04 256 50.00 2970 512 new_pair

922 31.04 256 50.00 2970 512 total

ALLOCATION CALL GRAPH

(number of vertices: 3)

allocated unfreed
--------------------- ---------------------

index bytes s m l x bytes s m l x function
-------------------------------------------------
[1] _start [1]

2970 %% 922 %% main [3]
-------------------------------------------------

2970 %% 922 %% main [3]
[2] new_pair [2]
-------------------------------------------------

2970 %% 922 %% _start [1]
[3] main [3]

2970 %% 922 %% new_pair [2]

The first table shown is the allocation bin table which summarises the sizes of all objects
that were dynamically allocated throughout the lifetime of the program. In this particular
case, counts of all allocations and deallocations of sizes 1 to 1023 bytes were recorded by the
mpatrol library in their own specific bin and this information was written to the profiling output
file. Allocations and deallocations of sizes larger than or equal to 1024 bytes are counted as
well and the total number of bytes that they represent are also recorded. This information
can be extremely useful in understanding which sizes of data structures are allocated most
during program execution, and where changes might be made to make more efficient use of the
dynamically allocated memory.

As can be seen from the allocation bin table, 9 allocations of 2 bytes, 105 allocations of 3
bytes, 121 allocations of 4 bytes, 21 allocations of 5 bytes and 256 allocations of 8 bytes were
made during the execution of the program. However, all of these memory allocations except the
8 byte allocations were still not freed by the time the program terminated, resulting in a total
memory leak of 922 bytes.

The next table shown is the direct allocation table which lists all of the functions that
allocated memory and how much memory they allocated. The ‘s m l x’ columns represent
small, medium, large and extra large memory allocations, which in this case are 0 bytes is less
than a small allocation, which is less than or equal to 32 bytes, which is less than a medium
allocation, which is less than or equal to 256 bytes, which is less than a large allocation, which
is less than or equal to 2048 bytes, which is less than an extra large allocation. The numbers
listed under these columns represent a percentage of the overall total and are listed as ‘%%’ if
the percentage is 100% or as ‘.’ if the percentage is less than 1%. Percentages of 0% are not
displayed.

The information displayed in the direct allocation table is useful for seeing exactly which
functions in a program directly perform memory allocation, and can quickly highlight where
optimisations can be made or where functions might be making unnecessary allocations. In the
example, this table shows us that 2970 bytes were allocated over 512 calls by new_pair() and
that 922 bytes were left unfreed at program termination. All of the allocations that were made
by new_pair() were between 1 and 32 bytes in size.

We could now choose to sort the direct allocation table by the number of calls to allocate
memory, rather than the number of bytes allocated, with the ‘--counts’ option to mprof, but



64 mpatrol

that is not relevant in this example. However, we know that there are two calls to allocate
memory from new_pair(), so we can use the ‘--addresses’ option to mprof to show all call
sites within functions rather than just the total for each function. This option does not affect the
allocation bin table so the new output from mprof with the ‘--call-graph’ and ‘--addresses’
options looks like:

DIRECT ALLOCATIONS

(0 < s <= 32 < m <= 256 < l <= 2048 < x)

allocated unfreed
-------------------------- --------------------------
bytes % s m l x bytes % s m l x count function

2048 68.96 69 0 0.00 256 new_pair+20
922 31.04 31 922 100.00 %% 256 new_pair+140

2970 %% 922 %% 512 total

MEMORY LEAKS

(maximum stack depth: 1)

unfreed allocated
---------------------------------------- ----------------

% bytes % count % bytes count function

100.00 922 100.00 256 100.00 922 256 new_pair+140

922 31.04 256 50.00 2970 512 total

ALLOCATION CALL GRAPH

(number of vertices: 4)

allocated unfreed
--------------------- ---------------------

index bytes s m l x bytes s m l x function
-------------------------------------------------
[1] _start+100 [1]

2970 %% 922 %% main+120 [4]
-------------------------------------------------

2048 %% 0 main+120 [4]
[2] new_pair+20 [2]
-------------------------------------------------

922 %% 922 %% main+120 [4]
[3] new_pair+140 [3]
-------------------------------------------------

2970 %% 922 %% _start+100 [1]
[4] main+120 [4]

2048 %% 0 new_pair+20 [2]
922 %% 922 %% new_pair+140 [3]



Chapter 10: Profiling 65

The names of the functions displayed in the above tables now have a byte offset appended
to them to indicate at what position in the function a call to allocate memory occurred2. Now
it is possible to see that the first call to allocate memory from within new_pair() has had all
of its memory freed, but the second call (from strdup()) has had none of its memory freed.

This is also visible in the next table, which is the memory leak table and lists all of the
functions that allocated memory but did not free all of their memory during the lifetime of the
program. The default behaviour of mprof is to show only the function that directly allocated the
memory in the memory leak table, but this can be changed with the ‘--stack-depth’ option.
This accepts an argument specifying the maximum number of functions to display in one call
stack, with zero indicating that all functions in a call stack should be displayed. This can
be useful for tracing down the functions that were indirectly responsible for the memory leak.
The new memory leak table displayed by mprof with the ‘--addresses’ and ‘--stack-depth
0’ options looks like:

MEMORY LEAKS

(maximum stack depth: 0)

unfreed allocated
---------------------------------------- ----------------

% bytes % count % bytes count function

100.00 922 100.00 256 100.00 922 256 new_pair+140
main+120
_start+100

922 31.04 256 50.00 2970 512 total

Now that we know where the memory leak is coming from, we can fix it by freeing the string
as well as the structure at line 77. A version of the above program that does not contain the
memory leak can be found in ‘tests/profile/test2.c’.

The final table that is displayed is the allocation call graph, which shows the relationship
between a particular function in the call graph, the functions that called it (parents), and the
functions that it called (children). Every function that appears in the allocation call graph is
displayed with a particular index that can be used to cross-reference it. The functions which
called a particular function are displayed directly above it, while the functions that the function
called are displayed directly below it. In the above example, _start() called main(), which
then called new_pair() which allocated the memory.

The memory that has been allocated by a function (either directly, or indirectly by its chil-
dren) for its parents is shown in the details for the parent functions, showing both a breakdown
of the allocated memory and a breakdown of the unfreed memory. This also occurs for the child
functions. If a function does not directly allocate memory then the total memory allocated for
its parents will equal the total memory allocated by its children. However, if a parent or child
function is part of a cycle in the call graph then a ‘(*)’ will appear in the leftmost column of the
call graph. In that case the total incoming memory may not necessarily equal the total outgoing
memory for the main function.

In the example above when the ‘--addresses’ option is used, it should be clear that new_
pair()+20 allocates 2048 bytes for main(), while new_pair()+140 allocates 922 bytes for
main(). The main() function itself allocates 2970 bytes for _start() overall via the new_
pair() function.

2 If no symbols could be read from the program’s executable file, or if the corresponding symbol could not be
determined, then the function names will be replaced with the code addresses at which the calls took place.



66 mpatrol

It is also possible to view this information graphically if you have the GraphViz package
mentioned above installed on your system. The ‘--graph-file’ option can be used to write a
dot graph specification file that can be processed by the dot or dotty commands that come with
GraphViz. The resulting graphs will show the relationships between each function, its parents
and its children, and will also show the number of bytes that were allocated along the edges of
the call graph, but this can be changed to the number of calls if the ‘--counts’ option is used3.
A call graph showing unfreed memory instead of allocated memory can be generated by adding
the ‘--leaks’ option. The following graph illustrates the use of these options with the above
example. It was generated using the ‘--addresses’ and ‘--graph-file’ options.

START

_start+100

2970

main+120

2970

new_pair+20

2048

new_pair+140

922

ALLOC

2048 922

As a final demonstration of mpatrol’s profiling features we will attempt to profile a real
application in order to see where the memory allocations come from. Since all of the following
steps were performed on a Solaris machine, the ‘--dynamic’ option of the mpatrol command
was used to allow us to replace the system memory allocation routines with mpatrol’s routines
without requiring a relink. It also means that we can profile all of the child processes that were
created by the application as well.

The application that we are going to profile is the GNU C compiler, gcc (version 2.95.2),
which is quite a complicated and large program. The actual gcc command is really the compiler
driver which invokes the C preprocessor followed by the compiler, the assembler, the prelinker
and finally the linker (well, it does in this example). On Solaris, the gcc distribution uses the
system assembler and linker which come with no symbol tables in their executable files so we
will not be profiling them.

For the purpose of this demonstration we will only be looking at the graph files produced by
the ‘--graph-file’ option of the mprof command, but ordinarily you would want to look at
the tables that mprof produces as well. All of the command line examples use the bash shell
but in most cases these will work in other shells with a minimal amount of changes.

We will use ‘tests/profile/test2.c’ as the source file to compile with gcc and we’ll turn
on optimisation in order to cause gcc to allocate a bit more memory than it would normally.

3 Cycles in the graph are marked by dashed lines along the relevant edges instead of solid lines.



Chapter 10: Profiling 67

Note that use is also made of the format string feature of the ‘--log-file’ and ‘--prof-file’
options so that it is clear which mpatrol log and profiling output files belong to which processes.

bash$ mpatrol --dynamic --log-file=%p.log --prof-file=%p.out
--prof gcc -O -o test2 test2.c

bash$ ls *.log *.out
as.log cc1.out cpp.log gcc.out
as.out collect2.log cpp.out ld.log
cc1.log collect2.out gcc.log ld.out

As mentioned above, we’re not interested in the mpatrol log and profiling output files for as
and ld so we’ll delete them. We can now use mprof to create graph specification files for each of
the profiling output files produced. You can find these graph specification files and the profiling
output files used to generate them in the ‘extra’ directory in the mpatrol distribution.

bash$ rm as.log as.out ld.log ld.out
bash$ ls *.out
cc1.out collect2.out cpp.out gcc.out
bash$ for file in *.out
> do
> mprof --graph-file=‘basename $file .out‘.dot $file
> done >/dev/null
bash$ ls *.dot
cc1.dot collect2.dot cpp.dot gcc.dot

The graph specification files that have now been produced can be viewed and manipulated
with the dotty command, or they can be converted to various image formats with the dot
command. However, this presumes that you already have the GraphViz graph visualisation
package installed. If you have then you can convert the graph specification files to GIF and
postscript images using the following commands. If not, you can still view the graphs produced
in the following figures.

bash$ dot -Tgif -Gsize="6,3" -Gratio=fill -o gcc.gif gcc.dot
bash$ dot -Tgif -Gsize="6,3" -Gratio=fill -o cpp.gif cpp.dot
bash$ dot -Tgif -Gsize="7,4" -Gratio=fill -o cc1.gif cc1.dot
bash$ dot -Tgif -Gsize="4,3" -Gratio=fill -o collect2.gif collect2.dot
bash$ dot -Tps -Gsize="6,3" -Gratio=fill -o gcc.ps gcc.dot
bash$ dot -Tps -Gsize="6,3" -Gratio=fill -o cpp.ps cpp.dot
bash$ dot -Tps -Gsize="9,6" -Gratio=fill -Grotate=90 -o cc1.ps cc1.dot
bash$ dot -Tps -Gsize="4,3" -Gratio=fill -o collect2.ps collect2.dot



68 mpatrol

START

_start

34793

main

34793

xmalloc

2766

_obstack_begin

12216

process_command

695

add_prefix

170

concat

51

find_a_file

143read_specs

10866

lookup_compiler

20

do_spec

6946

_putenv

920

ALLOC

33575

1221648

save_string

26set_std_prefix

16458

107

translate_options

40

1612346

16

224

282update_path

122

46

translate_name

76

298

58get_key_value

18

18

40

856

3740

3669 set_spec

3457

336

3121

20

do_spec_1

6946

772

9

0

handle_braces

5239

make_temp_file

63

store_arg

132

execute

276

find_file

437

is_directory

18

5239

1611

63record_temp_file

132

132

276 437

18

920

The figure above shows the allocation call graph for the gcc compiler driver. From the graph
you can see that the vast majority of memory allocations appear to be required for reading the
driver specification file, which details default options and platform-specific features. Almost all
of the memory allocations go through the xmalloc() routine, which is an error-checking function
built on top of malloc()4. A large amount of memory is also allocated by the obstack module,
which provides a functionality similar to arenas for variable-sized data structures. You’ll see
extensive use of both of these types of routines throughout the following graphs.

START

_start

114042

main

114042

xmalloc

30365

initialize_builtins

687

make_definition

1305

make_assertion

225

xstrdup

59

new_include_prefix

1619

rescan

79702

write_output

80

ALLOC

104615

install

687

6618

do_define

1305

3627create_definition

4866

28

collect_expansion

4838

336xcalloc

4502

9094

do_assert

225

32read_token_list

102

assertion_install

91

102 91

59

1286

update_path

333

concat

159

translate_name

174

333

151 get_key_value

23

23

handle_directive

79702

7188

do_include

51254

do_xifdef

1816

do_if

18566

do_elif

234

do_else

644

1318 open_include_file

1248

finclude

77136

124848688

30193

108

conditional_skip

1708

3332 skip_if_group

588

1260

2212

eval_if_expression

16354

2304

expand_to_temp_buffer

14240

parse_c_expression

16

14240yyparse

16

16

28

206

644

80

As would be expected, in the above allocation call graph for the cpp C preprocessor, the
majority of memory allocations are used for macro processing, with a sizable chunk being allo-
cated for reading include files. You may also notice the dotted lines that connect the rescan(),
handle_directive(), do_include() and finclude() functions5. These show a cycle in the call
graph where each of these functions may have been involved in one or more recursive calls. The
labels for such dotted edges may not be entirely accurate since mprof will only count allocated
memory once for each recursive call chain.

4 The mpatrol version of xmalloc() was not used in this case since another version of xmalloc() was originally
statically linked into the program being run, and so could not be overridden.

5 You might also have noticed the dotted lines connecting do_spec_1() and handle_braces() in the previous
graph.



Chapter 10: Profiling 69

The following figure shows the allocation call graph for the cc1 compiler itself. As you would
expect, it’s a bit of a beast compared to the previous two graphs, and looks very hard to follow.
However, if you look closer you will notice that the various groups of functions that comprise
the compiler stand out due to their close association with one another. For example, you might
notice that the functions between cse_insn() and get_cse_reg_info() form a group that
allocates 9140 bytes overall. You can also see the parser module at the top left of the graph,
initiated with yyparse(), and the code generator module in the rest of the graph, initiated with
rest_of_compilation().



70 mpatrol

ST
A

R
T

_s
ta

rt54
07

76

m
ai

n54
07

76

co
m

pi
le

_f
ile

54
07

76

in
it_

ob
st

ac
ks24

43
2

xm
al

lo
c

29

in
it_

pa
rs

e

42 in
it_

rt
l

8

in
it_

de
cl

_p
ro

ce
ss

in
g

32
90

4

in
it_

op
ta

bs

17
37

6

in
it_

st
m

t

40
72

in
it_

ex
pr

_o
nc

e

12
21

6

in
it_

lo
op

40
72

in
it_

re
lo

ad

81
44

in
it_

al
ia

s_
on

ce

16

in
it_

fi
na

l

80

yy
pa

rs
e

41
69

13

w
ra

pu
p_

gl
ob

al
_d

ec
la

ra
tio

ns

40
72

la
ng

_i
ni

t

82
00

ou
tp

ut
_f

ile
_d

ir
ec

tiv
e

82
00

gc
c_

ob
st

ac
k_

in
it

24
43

2

_o
bs

ta
ck

_b
eg

in

61
08

0

77
29

6

A
L

L
O

C

50
60

21

in
it_

le
x42 42

8

pu
sh

le
ve

l

40

m
ak

e_
si

gn
ed

_t
yp

e

81
44

bu
ild

_a
rr

ay
_t

yp
e

40
72

bu
ilt

in
_f

un
ct

io
n

16
28

8

in
it_

fu
nc

tio
n_

fo
rm

at
_i

nf
o

28
8

in
it_

ite
ra

to
rs

40
72

m
ak

e_
bi

nd
in

g_
le

ve
l

16
0

16
0

m
ak

e_
no

de

81
44

_o
bs

ta
ck

_n
ew

ch
un

k

12
62

32

36
66

08

40
72

ge
t_

id
en

tif
ie

r

81
44

bu
ild

_d
ec

l

81
44

12
21

6

40
72

57
00

8

re
co

rd
_f

un
ct

io
n_

fo
rm

at

24
0

re
co

rd
_i

nt
er

na
tio

na
l_

fo
rm

at

48

24
0

48

40
72

in
it_

op
ta

b

12
00

0 in
it_

in
te

gr
al

_l
ib

fu
nc

s

50
40

in
it_

fl
oa

tin
g_

lib
fu

nc
s

33
6

12
00

0

in
it_

lib
fu

nc
s

50
40

13
04

ge
n_

rt
x_

fm
t_

s

40
72

ob
st

ac
k_

al
lo

c_
rt

x

81
44

52
93

6

33
6

40
72

ge
n_

rt
x_

R
E

G

12
21

6

ge
n_

rt
x_

fm
t_

i016
28

8

16
28

8

40
72

40
72

ge
n_

rt
x_

fm
t_

ee

40
72

40
72

sp
la

y_
tr

ee
_n

ew

16

17
6

80

12
0

yy
le

x

82
72

tr
ee

_c
on

s

57
00

8

st
ar

t_
de

cl

36
64

8 pu
sh

_p
ar

m
_d

ec
l

40
72

0
ge

t_
pa

rm
_i

nf
o

16
28

8

bu
ild

_t
re

e_
lis

t

20
36

0
m

ak
e_

po
in

te
r_

de
cl

ar
at

or

81
44

fi
ni

sh
_d

ec
l

40
72

bu
ild

_n
t40

72

c_
ex

pa
nd

_s
ta

rt
_c

on
d42

32

bu
ild

_f
un

ct
io

n_
ca

ll

40
72

fi
ni

sh
_f

un
ct

io
n

20
06

89

ex
pa

nd
_s

ta
rt

_b
in

di
ng

s

40
72

ex
pa

nd
_s

ta
rt

_l
oo

p_
co

nt
in

ue
_e

ls
ew

he
re

40
72

ite
ra

to
r_

ex
pa

nd

40
72

81
44

sk
ip

_w
hi

te
_s

pa
ce

12
8

ch
ec

k_
ne

w
lin

e

12
8

12
8

__
fi

lb
uf

82
00

_f
in

db
uf

82
00

16
40

0

81
44

0

pu
sh

de
cl81

44

gr
ok

de
cl

ar
at

or

28
50

4

bu
ild

_t
yp

e_
co

py

81
44

co
py

_n
od

e

81
44

81
44

48
86

4

bu
ild

_f
un

ct
io

n_
ty

pe

12
21

6 12
21

6

81
44

32
57

6

sa
ve

ab
le

_t
re

e_
co

ns

16
28

8

16
28

8

20
36

0

bu
ild

1

81
44

81
44

re
st

_o
f_

de
cl

_c
om

pi
la

tio
n

40
72

m
ak

e_
de

cl
_r

tl

40
72

40
72

40
72

16
0

ex
pa

nd
_s

ta
rt

_c
on

d

40
72

do
_j

um
p

40
72

0

ex
pa

nd
_e

xp
r

40
72

0

ex
pa

nd
_c

al
l

81
44

ex
pa

nd
_a

ss
ig

nm
en

t

0

em
it_

m
ov

e_
in

sn

40
72

em
it_

ca
ll_

1

40
72

em
it_

m
ov

e_
in

sn
_1

40
72

ge
n_

m
ov

si40
72

em
it_

in
sn

40
72

40
72

m
ak

e_
in

sn
_r

aw

81
44

rt
x_

al
lo

c

81
44

28
50

4

ge
n_

ca
ll

40
72

ge
n_

rt
x_

fm
t_

e

40
72

81
44

st
or

e_
ex

pr

40
72

40
72

co
nv

er
t_

ar
gu

m
en

ts

40
72

de
fa

ul
t_

co
nv

er
si

on

40
72

bu
ild

_u
na

ry
_o

p

40
72

bu
ild

_p
oi

nt
er

_t
yp

e

40
72

40
72

re
st

_o
f_

co
m

pi
la

tio
n

20
06

89

re
g_

sc
an

83
68

cs
e_

m
ai

n

17
44

4

pu
rg

e_
ad

dr
es

so
f

16
34

4

lif
e_

an
al

ys
is

40
72

0

co
m

bi
ne

_i
ns

tr
uc

tio
ns

28
79

2

re
gc

la
ss

10
80

0

lo
ca

l_
al

lo
c

24
30

gl
ob

al
_a

llo
c

40
33

5

re
lo

ad
_c

se
_r

eg
s

43
76

db
r_

sc
he

du
le

10
24

8

sh
or

te
n_

br
an

ch
es

56
57

lo
op

_o
pt

im
iz

e

10
49

5
fi

nd
_b

as
ic

_b
lo

ck
s

38
80

in
st

an
tia

te
_v

ir
tu

al
_r

eg
s

80
0

al
lo

ca
te

_r
eg

_i
nf

o

83
68

11
16

va
rr

ay
_i

ni
t

11
40

xc
al

lo
c

61
12

10
35

5

17
55

5

in
it_

al
ia

s_
an

al
ys

is

81
44

cs
e_

ba
si

c_
bl

oc
k

93
00

40
72

40
72

ob
al

lo
c

16
28

8

16
28

8

ne
w

_b
as

ic
_b

lo
ck

16
0

cs
e_

in
sn

91
40

16
0

ca
no

n_
ha

sh

28

ge
t_

cs
e_

re
g_

in
fo

12
80

in
va

lid
at

e

10
8

in
va

lid
at

e_
fo

r_
ca

ll

75
56

ca
no

n_
re

g

10
8

fo
ld

_r
tx

60

13
6

12
36

sp
la

y_
tr

ee
_i

ns
er

t

79
04

79
04

10
8

de
le

te
_r

eg
_e

qu
iv

75
56

75
56

10
8

0

60

ha
sh

_t
ab

le
_i

ni
t

16
34

4

ha
sh

_t
ab

le
_i

ni
t_

n

16
34

4 80
72

82
72

81
44

lif
e_

an
al

ys
is

_1

32
57

6

16
28

8

re
co

rd
_v

ol
at

ile
_i

ns
ns

81
44

pr
op

ag
at

e_
bl

oc
k

81
44

bi
tm

ap
_s

et
_b

it

81
44

81
44

m
ar

k_
se

t_
re

gs

81
44

m
ar

k_
se

t_
181

44

ge
n_

rt
x_

fm
t_

ue

81
44

81
44

tr
y_

co
m

bi
ne

24
72

0

re
co

rd
_d

ea
d_

an
d_

se
t_

re
gs

40
72

32

co
m

bi
na

bl
e_

i3
pa

t

16

re
co

g_
fo

r_
co

m
bi

ne

16

su
bs

t

83
68

ge
n_

rt
x_

fm
t_

E

40
72

rt
ve

c_
al

lo
c

12
21

6

16

16
64

0

si
m

pl
if

y_
rt

x

83
04

80

m
ak

e_
co

m
po

un
d_

op
er

at
io

n

82
24

80

0

ge
n_

rt
x_

co
m

bi
ne

81
44

81
44

40
72

12
21

6

no
te

_s
to

re
s

40
72

re
co

rd
_d

ea
d_

an
d_

se
t_

re
gs

_1

40
72

re
co

rd
_v

al
ue

_f
or

_r
eg

40
72

co
py

_r
tx

40
72

81
44

0

10
80

0

24
30

10
8

bu
ild

_i
ns

n_
ch

ai
n

20
36

0

re
lo

ad

19
86

7

ne
w

_i
ns

n_
ch

ai
n

16
28

8

bi
tm

ap
_c

op
y

40
72

16
28

8
40

72

15
75

5

in
it_

el
im

_t
ab

le

40

re
lo

ad
_a

s_
ne

ed
ed

40
72

40

em
it_

re
lo

ad
_i

ns
ns

40
72

ge
n_

re
lo

ad

40
72

ge
n_

m
ov

e_
in

sn

40
72

40
72

re
lo

ad
_c

se
_r

eg
s_

1

40
72

re
lo

ad
_c

om
bi

ne

30
4

40
72

30
4

40
72

in
it_

re
so

ur
ce

_i
nf

o

21
04

fi
ll_

ea
ge

r_
de

la
y_

sl
ot

s

40
72

21
04

fi
ll_

sl
ot

s_
fr

om
_t

hr
ea

d

40
72

40
72

56
57

40
72

sc
an

_l
oo

p

64
23

64
23

27
92

m
ak

e_
ed

ge
s

10
88

m
ak

e_
ed

ge

76
8

m
ak

e_
la

be
l_

ed
ge32

0

10
8832

0

in
st

an
tia

te
_v

ir
tu

al
_r

eg
s_

1

80
0

0

va
lid

at
e_

ch
an

ge

80
0

xr
ea

llo
c

80
0

80
0

em
it_

no
te

40
72

40
72

ex
pa

nd
_s

ta
rt

_l
oo

p

40
72

ge
n_

la
be

l_
rt

x

40
72

ge
n_

rt
x_

fm
t_

iu
ui

s0
0

40
72

40
72

ex
pa

nd
_s

tm
t_

w
ith

_i
te

ra
to

rs
_1

40
72

ex
pa

nd
_e

xp
r_

st
m

t

40
72 40

72

fi
ni

sh
_i

nc
om

pl
et

e_
de

cl

40
72

co
m

pl
et

e_
ar

ra
y_

ty
pe

40
72

bu
ild

_i
nd

ex
_t

yp
e

40
72

40
72

82
00

_f
pr

in
tf

82
00

_d
op

rn
t

82
00

82
00



Chapter 10: Profiling 71

START

_start

52168

main

52168

xcalloc

396

_obstack_begin

8144

prefix_from_env

2027

find_a_file

677

make_temp_file

64

do_tlink

40860

ALLOC

396

xmalloc

28396

43572

prefix_from_string

2027

863

add_prefix

1164

280 xstrdup

884

884

677

64

tlink_init

32660

dump_file

8200

8144

hash_table_init

24516

hash_table_init_n

24516

12108

_obstack_newchunk

12408

12408

__filbuf

8200

_findbuf

8200

8200

The allocation call graph for the prelinker, collect2, is a lot simpler than the previous
graphs. There are no cycles in the graph and most of the allocations are concerned with main-
taining hash tables. Once again, xmalloc() and _obstack_begin() are the two main sources
of memory allocation.

As can be seen, a lot of information about the memory allocation behaviour of a program can
be obtained by creating a visual image of the allocation call graph. In addition, different graphs
can be produced to show call counts instead of allocated bytes (via the ‘--counts’ option), and
graphs of unfreed memory can be produced to detect where memory leaks come from (via the
‘--leaks’ option).

Although mprof does not currently offer this facility, a small tool called profdiff which
reports differences between two mpatrol profiling output files can be downloaded from
http://www.cbmamiga.demon.co.uk/mpatrol/patches/mpatrol_patch3.tar.gz.

Much of the functionality of this implementation of memory allocation profiling is based upon
mprof by Benjamin Zorn and Paul Hilfinger, which was written as a research project and ran
on MIPS, SPARC and VAX machines. However, the profiling output files are incompatible, the
tables displayed have a different format, and the way they are implemented is entirely different.

http://www.cbmamiga.demon.co.uk/mpatrol/patches/mpatrol_patch3.tar.gz


72 mpatrol



Chapter 11: Tracing 73

11 Tracing

In addition to profiling, the mpatrol library also has the capability to concisely trace the
details of every dynamic memory allocation, reallocation and deallocation over the lifetime of any
program that it was linked and run with. This information can then be used to calculate trends
in a program’s memory allocation behaviour and provide details on the lifetimes of memory
allocations. In contrast to profiling, it can also be used to display a program’s memory allocation
behaviour in real-time, along with some useful information that can be displayed in graphical
or tabular form.

Only allocations, reallocations and deallocations are recorded. The intention of tracing is
to gather concise details about each memory allocation event rather than complete information
about some or all memory allocations. As a result, the mpatrol log files and profiling output
files contain more detailed information about individual memory allocations, whereas the tracing
output files contain a broader view of allocation behaviour throughout the entire program.

Memory allocation tracing is disabled by default, but can be enabled using the ‘TRACE’ option.
This writes all of the tracing data to a file called ‘mpatrol.trace’ in the current directory at the
end of program execution, but the name of this file can be changed using the ‘TRACEFILE’ option
and the default directory in which to place these files can be changed by setting the TRACEDIR
environment variable.

The mptrace command is a tool designed to read a tracing output file produced by the
mpatrol library and display the tracing information that was obtained. The tracing information
is a concise encoded trace of all of the memory allocation events that occurred during a program’s
execution, and can be decoded into tabular or graphical form, along with any relevant statistics
that can be calculated.

The mptrace command also attempts to calculate the endianness of the processor that pro-
duced the tracing output file and reads the file accordingly. This means that it is possible to use
mptrace on a SPARC machine to read a tracing output file that was produced on an Intel 80x86
machine, for example. However, this will only work if the processor that produced the tracing
output file has the same word size as the processor that is running the mptrace command. For
example, reading a 64-bit tracing output file on a 32-bit machine will not work.

In addition, the tracing output file also contains the version number of the mpatrol library
which produced it. If the major version number that is embedded in the tracing output file is
newer that the version of mpatrol that mptrace came with then mptrace will refuse to read the
file. You should download the latest version of mpatrol in that case. The reason for storing the
version number is so that the format of the tracing output file can change between releases of
mpatrol, but also allow mptrace to cope with older versions.

Along with the usual ‘--help’ and ‘--version’ options, the mptrace command accepts
several other options and takes one optional argument which must be a valid mpatrol tracing
output filename but if it is omitted then it will use ‘mpatrol.trace’ as the name of the file to
use. If the filename argument is given as ‘-’ then the standard input file stream will be used as
the tracing output file.

Normally, the mptrace command will simply read in the tracing output file and display
any statistics it has gathered. However, it can also be instructed to display a tracing table
which displays useful details for every event in the tracing output file. The tracing table can be
displayed with the ‘--verbose’ option. If the mpatrol library was able to obtain source-level
information for one or more memory events then this can be displayed in the tracing table by
adding the ‘--source’ option.

A C source file containing a trace-driven memory allocation simulation program can be
written with the ‘--sim-file’ option. This program will have the identical memory allocation
behaviour to the program which produced the original trace file. This option can be useful to use
if you wish to determine which malloc library is most suitable to use for a specific application.



74 mpatrol

A trace file in Heap Allocation Trace Format (HATF) can also be written out by the mptrace
command by using the ‘--hatf-file’ option. It takes the name of the HATF trace file to be
written as an argument and writes out the HATF version of the mpatrol tracing output file given
as input when it is being processed. The HATF file format is an attempt to standardise trace file
formats for memory allocation tracing, and is being developed by Benjamin Zorn, Richard Jones
and Trishul Chilimbi. There is a HATF DTD located in the ‘extra’ directory in the mpatrol
distribution.

The mptrace command will normally be built with GUI1 support on UNIX platforms that
are running X Windows. This means that a graphical memory map display of the heap will be
shown in a window every time mptrace is run with the ‘--gui’ option. This display is updated
every time a new event is read from the tracing output file and by default uses the colour red for
internal heap memory (used by the mpatrol library), blue for unallocated heap memory, black
for allocated memory and white for free memory. Options exist to change this colour scheme,
as well as the dimensions of the drawing area and the window.

By default, it is assumed that the start address of the first event that appears in the tracing
output file is the base address of the memory map displayed in the window. If the heap grows
downwards then this assumption will be incorrect (since nothing will be displayed) and so the
‘--base’ option must be used to specify a reasonable lower bound for the final memory map.
In addition, the visible address space displayed in the memory map is fixed to a certain size
(4 megabytes by default), but this can be changed with the ‘--space’ option. A small delay
can also be added after drawing each memory allocation event through the use of the ‘--delay’
option.

The following options are specific to the GUI version of mptrace and are read by the X
command line parser rather than directly by mptrace. As a result they are parsed according
to X toolkit rules and do not appear in the quick-reference option summary produced by the
‘--help’ option. The application class for setting mptrace X resources is called ‘MPTrace’.

‘--alloc’ <colour>
Specifies the colour to use for displaying allocated memory. The default colour is
‘black’.

‘--base’ <address>
Specifies the base address of the visible address space displayed in the memory
map. The default address is calculated at run-time from the start address of the
first memory allocation event in the tracing output file.

‘--delay’ <length>
Specifies that a small delay of a certain length should be added after drawing each
memory allocation event. The delay does not correspond to a specific unit of time,
but experimentation with the length should yield satisfactory results. The default
delay is ‘0’.

‘--free’ <colour>
Specifies the colour to use for displaying free memory. The default colour is ‘white’.

‘--height’ <size>
Specifies the height (in pixels) of the drawing area. The default height is ‘512’.

‘--internal’ <colour>
Specifies the colour to use for displaying internal heap memory. The default colour
is ‘red’.

‘--space’ <size>
Specifies the size (in megabytes) of the visible address space displayed in the memory
map. The default size is ‘4’.

1 Graphical User Interface.



Chapter 11: Tracing 75

‘--unalloc’ <colour>
Specifies the colour to use for displaying unallocated heap memory. The default
colour is ‘blue’.

‘--view-height’ <size>
Specifies the height (in pixels) of the window. The default height is ‘256’.

‘--view-width’ <size>
Specifies the width (in pixels) of the window. The default width is ‘256’.

‘--width’ <size>
Specifies the width (in pixels) of the drawing area. The default width is ‘512’.

We’ll now look at an example of using the mpatrol library to trace the dynamic memory
allocations in a program. As with the previous chapter we will attempt to trace a real application
in order to examine its memory allocation behaviour. Since all of the following steps were
performed on a Solaris machine, the ‘--dynamic’ option of the mpatrol command was used
to allow us to replace the system memory allocation routines with mpatrol’s routines without
requiring a relink. It also means that we can trace all of the child processes that were created
by the application as well.

The application that we are going to trace is the GNU C compiler, as before, and we will
discard the tracing information generated for the assembler and linker. All of the command line
examples use the bash shell but in most cases these will work in other shells with a minimal
amount of changes.

We will use ‘tests/profile/test2.c’ as the source file to compile with gcc and we’ll turn
on optimisation in order to cause gcc to allocate a bit more memory than it would normally.
Note that use is also made of the format string feature of the ‘--log-file’ and ‘--trace-file’
options so that it is clear which mpatrol log and tracing output files belong to which processes.

bash$ mpatrol --dynamic --log-file=%p.log --trace-file=%p.trace
--trace gcc -O -o test2 test2.c

bash$ ls *.log *.trace
as.log cc1.trace cpp.log gcc.trace
as.trace collect2.log cpp.trace ld.log
cc1.log collect2.trace gcc.log ld.trace

As mentioned above, we’re not interested in the mpatrol log and tracing output files for as
and ld so we’ll delete them. We can now use mptrace to decode each of the tracing output files
produced and write their contents in tabular form to the standard output file stream, which can
be redirected to a file for later viewing. You can find these tracing output files in the ‘extra’
directory in the mpatrol distribution.

Note that both the tracing files mentioned above and the examples below treat reallocations
as a deallocation followed by an allocation. This was the behaviour in older versions of the
mpatrol library and I haven’t bothered to update the files. However, it shouldn’t affect the final
outcome in any way. In addition, as the ‘mpatrol.h’ header file was not included by any of the
source files that comprise the compiler and its toolset, there was no source-level information for
memory events. If there was, the ‘--source’ option could have been used to display it.

bash$ rm as.log as.trace ld.log ld.trace
bash$ ls *.trace
cc1.trace collect2.trace cpp.trace gcc.trace
bash$ for file in *.trace
> do
> mptrace --verbose $file >‘basename $file .trace‘.res
> done
bash$ ls *.res
cc1.res collect2.res cpp.res gcc.res



76 mpatrol

For the purposes of this example we will only be looking at the tracing results for the cc1
compiler which are now decoded in the file ‘cc1.res’. If you examine this file you will see
something similar to the following. Note that the ‘...’ marks text that has been removed.

event type index allocation size life count bytes
------ ------ ------ ---------- -------- ------ ------ --------

internal 0x0024E000 32768
internal 0x00256000 32768
internal 0x0025E000 32768
reserve 0x00266000 8192
internal 0x00268000 32768
internal 0x00270000 32768
internal 0x00278000 32768
internal 0x00280000 32768
internal 0x00288000 32768
internal 0x00290000 32768

...
reserve 0x00308000 16384

1 alloc 19 0x00266568 4072 1 4072
2 alloc 21 0x0030A008 4072 2 8144
3 alloc 22 0x0030AFF0 4072 3 12216

reserve 0x0030C000 8192
4 alloc 23 0x0030BFD8 4072 4 16288
5 alloc 24 0x0030CFC0 4072 5 20360

reserve 0x0030E000 8192
6 alloc 25 0x0030DFA8 4072 6 24432
7 alloc 26 0x00267550 42 7 24474

...
1712 free 650 0x00373FF0 4072 827 398 321191
1713 free 649 0x00376FA8 4072 829 397 317119
1714 alloc 1074 0x00376FA8 4072 398 321191
1715 free 233 0x0031ED18 8200 1498 397 312991
1716 free 234 0x00320D20 8200 1498 396 304791
1717 free 299 0x00355CC8 620 1426 395 304171
1718 free 655 0x00353A28 1016 823 394 303155
1719 free 303 0x0035E000 5096 1424 393 298059
1720 free 653 0x00354E60 152 827 392 297907
1721 free 654 0x00354EF8 152 827 391 297755

memory allocation tracing statistics
------------------------------------
allocated: 1056 (540776 bytes)
freed: 665 (243021 bytes)
unfreed: 391 (297755 bytes)
peak: 489 (375169 bytes)
reserved: 48 (409600 bytes)
internal: 27 (884736 bytes)
total: 75 (1294336 bytes)

smallest size: 3 bytes
largest size: 8200 bytes
average size: 512 bytes



Chapter 11: Tracing 77

There are eight different columns of data displayed by the mptrace command when it decodes
the tracing output file and displays it in tabular format with the ‘--verbose’ option. Here is
an explanation for each of them.

‘event’ This contains the event number (or time line) for each memory allocation, realloca-
tion or deallocation (heap reservations are not considered events for this purpose).
Each memory allocation, reallocation or deallocation increases the current event
number, and this information is used to calculate the lifetime of a heap allocation.

‘type’ This contains the event type for each entry in the tracing output file. Memory
allocations, reallocations and deallocations are represented by ‘alloc’, ‘realloc’
and ‘free’ respectively. Normal heap reservations (that will be used for memory
allocations) are represented by ‘reserve’, while internal heap reservations (for use
by the mpatrol library itself) are represented by ‘internal’.

‘index’ This contains the allocation index that is used by the mpatrol library to keep track of
each unique memory allocation, and corresponds directly to any memory allocations
listed in the log file. In older tracing output files, memory allocation events that
reuse allocation indices represent a reallocation of the original allocation.

‘allocation’
This contains the start address of the memory allocation.

‘size’ This contains the size (in bytes) of the memory allocation.

‘life’ This contains the lifetime of a memory allocation and is displayed when it is is
freed. It is simply the difference between the current event number and the event
number at which the original allocation took place, but is useful for working out how
long a memory allocation is valid throughout a program’s execution. If a memory
allocation is reallocated, its lifetime will be calculated from the original time of
allocation, not the point at which it was reallocated.

‘count’ This contains a running total of the number of memory allocations currently in use.
The total is calculated after processing the current event.

‘bytes’ This contains a running total of the memory used by the current memory allocations.
The total is calculated after processing the current event.

The first few entries in the table show that the mpatrol library started by allocating memory
from the heap for its own purposes before reserving 8192 bytes for the memory allocations made
by the object file access library for reading the symbols from the executable file and shared
libraries2. Most of the further internal heap reservation events are due to the mpatrol library
having to store details for all of the relevant symbols that it could read at program startup.
The more symbols that there are, the more memory that must be used to store them. Note
that the heap reservation events are not really relevant to the analysis of the program’s memory
allocations but they are used when displaying the heap graphically.

The first few memory allocation events in the table show that several memory allocations
of 4072 bytes are being made along with several more heap reservations that are needed to
store them. The last events in the table are mainly all deallocation events of allocations that
were made quite early on in the program. The lifetime information for these events shows that
some of these allocations were made very near the beginning of the program, while the others
were made near the middle. None of them were very big and so would not be occupying much
memory.

The statistics that were gathered from the tracing output file are displayed after the trac-
ing table. The first group of entries summarise the heap memory that was used, with the
‘allocated’, ‘freed’ and ‘unfreed’ fields showing the total number of memory allocations that

2 The actual allocation events from this do not appear since they were internal memory allocations.



78 mpatrol

were made, the total number of memory allocations that were freed, and the total number of
unfreed memory allocations respectively. The ‘peak’ field shows the highest number of memory
allocations (and total number of bytes) that were in use at any one time. The ‘reserved’ and
‘internal’ fields show the total number of pages reserved from the system heap for user alloca-
tions and internal allocations respectively, and the ‘total’ field shows the total number of pages
that were used from the system heap.

The ‘smallest size’ and ‘largest size’ fields indicate the sizes of the smallest memory
allocation and the largest memory allocation respectively. The ‘average size’ field shows the
mean number of bytes that was allocated between each of the memory allocations.

If you were running a GUI version of mptrace, information about all of these events can be
displayed in graphical form inside a window if the ‘--gui’ option is used. The following screen-
shot shows the mptrace display window when it is run with the ‘--gui’ option and ‘cc1.trace’
as input. It was generated using the ‘--space 2’ option.

Areas coloured blue indicate heap memory that has not yet been used by the mpatrol library
(i.e. it has not currently been allocated from the system, or is currently being used by a part
of the program that is not being tracked by the mpatrol library). Areas coloured red indicated
heap memory that is being used internally by the mpatrol library. In this example, the reason
that there is so much internal memory being used is that there are a large number of symbols
that were read from the executable file and shared libraries. The narrow band of black and
white lines at the top of the memory map represents the memory that was used by the object
file access library when it was reading the symbols.



Chapter 11: Tracing 79

The large black bands in the middle of the memory map indicate memory that was still
allocated at program termination. While this is a substantial amount compared to the amount
of free memory, it does not necessary indicate memory leaks as the memory could be being used
right up until the end of the program, and is implicitly freed at program termination anyway.

Unlike memory allocation profiling which summarises all of the accumulated data, it is pos-
sible to trace memory allocation events in real-time as the program runs. This can currently be
done on UNIX platforms by piping the tracing output file from the program being run to the
mptrace command, which can be achieved in several ways depending on the UNIX system that
you are using. Both of the following methods are equivalent, where ‘testprog’ is the name of
the program that is being traced (and has previously been linked with the mpatrol library).

# This method specifies the standard output file stream as the
# destination for the tracing output file and then runs both
# commands in a shell command pipe. This has a disadvantage in
# that testprog must not write anything to stdout since that would
# be written out to the tracing output file. If stdout is not
# suitable then stderr could be used instead if you redirect it.

bash$ mpatrol --trace-file=stdout --trace ./testprog | mptrace --verbose -

# This method creates a named pipe called myfifo (but it could be
# called anything) and runs the program being traced and the mptrace
# command separately (perhaps in two separate windows). If the
# mkfifo command is not available on your system then try mknod.

bash$ mkfifo myfifo
bash$ mpatrol --trace-file=myfifo --trace ./testprog &
bash$ mptrace --verbose myfifo

The idea for graphically displaying a memory map of the heap comes from the xmem tool
supplied with the University of Toronto Computer Systems Research Institute malloc library,
written by Mark Moraes. However, the documentation for that tool remarks that it was written
as a quick and dirty hack. The mptrace command is hopefully more stable and contains a lot
more functionality.

The mpatrol library can also generate trace files in a format that is compatible with the
GNU mtrace() option. The code to do this is built on top of the mpatrol library and is in
‘tools/mtrace.c’ and ‘tools/mtrace.h’. Such trace files can then be processed by the GNU
mtrace command. The ‘tools/mgauge.c’ and ‘tools/mgauge.h’ files in the same directory
can be used to implement an allocated memory gauge which updates in real-time in a terminal
window. This can be used as an alternative to the window used by the mptrace command’s
‘--gui’ option for a simpler display.



80 mpatrol



Chapter 12: Heap corruption 81

12 Heap corruption

There can be many causes of heap corruption in a program and there can be many forms in
which it can appear. This chapter attempts to describe the most appropriate ways to narrow
down and remove the causes of the most common forms of heap corruption. Note that errors
such as freeing an allocated block twice are not considered in this chapter even though they
would result in heap corruption in a normal malloc library — the mpatrol library catches these
special cases so you know exactly where they occur.

The three forms of errors we are going to look at are heap corruption in free memory blocks,
freed memory blocks and overflow buffers. As you will soon see, the same piece of faulty code
can produce any one of these errors depending on which mpatrol library options you use. The
following discussion assumes that you have run your program with the mpatrol library and you
get an ‘ALLOVF’, ‘FRDCOR’, ‘FRDOVF’ or ‘FRECOR’ error in the mpatrol log file when your program
terminates. It also assumes that you haven’t set the MPATROL_OPTIONS environment variable
yet.

By default, the only times the mpatrol library will check the heap for memory corruption are
when it terminates or when __mp_check() is called (but the latter won’t be happening since you
won’t have modified your program yet). This isn’t good enough for errors such as these so we
need to instruct it to make checks whenever an mpatrol library function is called. The ‘CHECK’
option controls when such automated checks occur, and this can normally be set to ‘CHECK=-’
to check the heap whenever a call to an mpatrol library function is made.

However, in programs which take a long time to execute, or programs which make a large
number of memory allocations, this can slow the program down quite a bit so you might want
to try the optional ‘/freq’ argument to the ‘CHECK’ option. This simply instructs the mpatrol
library to make the checks every freq calls to the mpatrol library functions rather than every call.
For example, ‘CHECK=/10’ will make the checks every 10 calls, which will reduce the slowdown
in the program but will still help narrow down where the heap corruption is occurring.

We’ll use the following program as a running example for the discussions below, although
you’ll probably be following them using your program instead of this one. It contains a small
bug that doesn’t normally show up when using the system C library but causes a ‘FRECOR’ error
when linked with mpatrol.

1 /*
2 * A program which causes heap corruption.
3 */

6 #include <stdio.h>
7 #include "mpatrol.h"

10 int main(void)
11 {
12 char *p[128];
13 size_t i;

15 for (i = 0; i < 128; i++)
16 {
17 if ((p[i] = (char *) malloc(9)) == NULL)
18 {
19 fputs("out of memory\n", stderr);
20 exit(EXIT_FAILURE);
21 }



82 mpatrol

22 sprintf(p[i], "test%lu", i * 100);
23 puts(p[i]);
24 free(p[i]);
25 }
26 return EXIT_SUCCESS;
27 }

We get the following error in the mpatrol log file when we run with the above example linked
to the mpatrol library. The error occurs when the program returns from main() since that is
when the mpatrol library is terminating.

ERROR: [FRECOR]: free memory corruption at 0x0002A571
0x0002A571 00555555 555555 .UUUUUU

If we run with the ‘CHECK=-’ option then the above error occurs at line 24 when the variable
i is 100, which is slightly better since we’ve narrowed down where the fault is.

Assuming all goes well, your program should now also terminate at an earlier point, with
the mpatrol library still reporting the same heap corruption error in the log file. If not, it could
be that the heap is being corrupted after the last call to the mpatrol library is made, or if you
get a different error then the original heap corruption might have been as a result of the earlier
error. In either case you can still proceed with the following instructions.

If you look at the summary of statistics that were produced in the mpatrol log file before the
error was displayed you will see an entry for ‘allocation count’. The number following it is the
number of memory allocations that were made before the error occurred. Remember this number
because you can use this information with the ‘CHECK’ option so that checks for heap corruption
are only made after a certain number of memory allocations. However, you’ll probably want to
subtract a few allocations just to be sure (or in case you are running a multithreaded program
that does not produce the same allocation count every time it is run). That way, you don’t
need to check the entire heap. For example, if the allocation count was 178, try setting the
‘CHECK=170-190’ option so that your program will run at a reasonable speed up to that point
(although make sure that it still gives the same error at the same point). There is nothing worse
than debugging a problem that takes forever to reproduce.

In our example, the allocation count given is 123 (excerpt given below) and running with
‘CHECK=120-125’ gives the same behaviour as when we ran with ‘CHECK=-’ (except that we got
to the error slightly faster).

...

symbols read: 5059
autosave count: 0
freed queue size: 0
allocation count: 123
allocation peak: 8 (11117 bytes)
allocation limit: 0 bytes
allocated blocks: 7 (1374 bytes)

...

So we now have the allocation index of the last successful memory allocation before the heap
corruption occurred, and we can safely run the program without performing heap checks up to
that point. If the error was not ‘FRECOR’ then there will also be information displayed in the
mpatrol log file about the associated memory allocation that was corrupted. If the error was
‘FRECOR’ then quickly try to see if you can convert it to a ‘FRDCOR’ error or a ‘FRDOVF’ error by
also running with the ‘NOFREE’ option. You may have to use the relevant allocation index as an
argument to the ‘NOFREE’ option just in case it was the very first memory allocation that was
freed and corrupted, but remember that the ‘NOFREE’ option may cause your program to use up



Chapter 12: Heap corruption 83

a lot more memory and so it might be unfeasible to use. Running with the ‘NOFREE=123’ option
in our example has no effect.

One of the most common causes of heap corruption is to erroneously write beyond the bounds
of a memory allocation. This can corrupt the bytes directly before and/or after the allocated
bytes and can be detected by placing overflow buffers on either side of the memory allocation
with the ‘OFLOWSIZE’ option. By default, the mpatrol library does not make use of overflow
buffers so you have to explicitly turn them on, giving the number of bytes to use for each
overflow buffer (which must a be power of two) as the argument to the ‘OFLOWSIZE’ option.
In our example, if we use the ‘OFLOWSIZE=4’ option, the ‘FRECOR’ error turns into an ‘ALLOVF’
error, thus providing us with more information (and also that the heap corruption is due to a
write beyond the end of a memory allocation).

ERROR: [ALLOVF]: allocation 0x0002A5A0 has a corrupted overflow buffer at
0x0002A5A9

0x0002A5A9 00AAAAAA .

0x0002A5A0 (9 bytes) {malloc:123:0} [main|test.c|17]
0x0001372C main+88
0x000135A4 _start+100

Sometimes it’s not just a immediate overflow that can occur. For example, if not enough
memory has been allocated for a structure variable and then the last field of the structure is
assigned to, the memory corruption may occur much further away than the few bytes surrounding
the allocation. In this case it may be useful to try varying the argument given to the ‘OFLOWSIZE’
option since it is possible to convert otherwise unhelpful ‘FRECOR’ errors into ‘ALLOVF’, ‘FRDCOR’
or ‘FRDOVF’ errors which describe the memory allocation that was affected. Also, depending
on the bytes that are being written to corrupt the heap, you may find it helpful to change
the values of the free bytes and overflow bytes that the mpatrol library uses to perform heap
integrity checks, just in case there are illegal bytes being written that are going unnoticed when
the heap is being checked. In our example, if the ‘OFLOWBYTE=0’ option is used then the heap
corruption is hidden completely and we don’t get an error at all!

Hopefully, we now know as much as possible about where the heap corruption is happening
(i.e. the details of the allocated or freed memory block that is affected, or the free memory block
if we are unlucky) and also when it is happening (i.e. after which allocation index). We now
have several choices on how to narrow the problem down to a specific source line.

On systems with virtual memory we can make use of the ‘PAGEALLOC’ option in order to
write-protect a page of virtual memory on either side of each memory allocation. This option
takes up a lot more memory since each memory allocation will occupy at least 3 pages of virtual
memory no matter how small it is, and on systems with a page size of 8192 bytes that equates
to a minimum 24 kilobytes of memory per allocation! However, if that is still feasible for the
particular program that is causing the heap corruption then we can proceed by first setting the
‘PAGEALLOC=LOWER’ option. That aligns each memory allocation to a page boundary so that any
underwrites occurring before the allocation will be trapped and cause the program to crash. This
can be caught in a debugger which will show the exact source line that attempted to perform
the illegal write to memory (assuming it is a symbolic debugger and the program was compiled
with debugging information).

In our example, running with this option doesn’t provide us with any more information since
the heap corruption was occurring beyond the end of the memory allocation and not before
the start. In this case we need to use the ‘PAGEALLOC=UPPER’ option to align the end of each
memory allocation to a page boundary so that any overwrites occurring after the allocation will
be trapped and cause the program to crash. Unfortunately, using this option still doesn’t help
in our example, so what’s wrong?

The mpatrol library must align each new general-purpose memory allocation to an address
that allows the processor to access the datatypes that may be stored there. This is typically 4



84 mpatrol

bytes on 32-bit processors and 8 bytes on 64-bit processors, but a few processor architectures
(such as the Intel x86) allow the processor to read misaligned data at a performance cost.
This is in direct conflict with the ‘PAGEALLOC=UPPER’ option, which would like to align the end
of each memory allocation to a page boundary no matter what the size of the allocation is.
However, if we use the ‘DEFALIGN=1’ option in our example we can get the desired effect with
the ‘PAGEALLOC=UPPER’ option.

ERROR: [ILLMEM]: illegal memory access at address 0x00052000
0x00051FF7 (9 bytes) {malloc:123:0} [main|test.c|17]

0x0001372C main+88
0x000135A4 _start+100

call stack
0x7FA808E8 sprintf+64
0x000137B4 main+224
0x000135A4 _start+100

Running this in a debugger shows that the failure occurs at line 22 in our example since we
didn’t allocate enough memory at line 17. We can also achieve the same effect on systems that
support software watchpoints by using the ‘OFLOWWATCH’ option. This uses the same amount of
memory as the ‘OFLOWSIZE’ option but can run very slowly as every single memory access is
checked by the system. Note that the ‘FRDCOR’ and ‘FRECOR’ errors do not occur when using the
‘PAGEALLOC’ option since they will become illegal memory accesses instead.

If you don’t have the luxury of being able to use the mpatrol options that take advantage of
virtual memory protection, you can still use more traditional means of finding the error.

The chapter that describes how to use mpatrol (see Chapter 7 [Using mpatrol], page 27)
contains a section on how to pause at specific memory allocation events in a debugger (see
Section 7.5 [Using with a debugger], page 32). Since we know what the allocation index of the
last successful allocation was we can use the debugger to set a watchpoint on the address of the
memory corruption so that it can trap the instruction that changes it. Doing this is effectively
the same as using the ‘PAGEALLOC’ or ‘OFLOWWATCH’ options. There is a detailed tutorial on how
to do this in GDB in the aforementioned section of the manual.

If the debugger option isn’t available to you either then you can try locating the problem by
modifying your code. You should know where the last successful memory allocation was made
from the steps taken at the start of this chapter. Using this knowledge, you should be able
to work out the range of code that is causing the heap corruption. Then you can add calls to
__mp_check() at strategic points within that range so that you can narrow down where the heap
corruption is coming from. If you display a unique message after each call to __mp_check() then
you should be able to narrow it down quite quickly by monitoring which messages get displayed.

You might also find it helpful to make calls to __mp_memorymap() so that you can keep track
of the location of each memory allocation in the heap, and so that you can tell which allocations
neighbour each other. Turning on the ‘LOGMEMORY’ option with the __mp_setoption() function
might also help you see what is going on if there are a lot of calls to the memory operation
functions. Finally, if you are using the GNU compiler then the ‘-fcheck-memory-usage’ option
might come in handy if you can recompile the source files that you think might contain the
problem. However, the error may be hidden behind a call to a library function that is not
compiled with that option, as is the case with our example.

Another slightly less common problem associated with heap corruption is when the contents
of a memory allocation have been overwritten unexpectedly but do not overflow its boundaries.
This is not a misuse of the heap and so mpatrol will not report any errors or warnings, but
it may be an error in the user’s code. The heapdiff tool (see Section 8.3 [heapdiff], page 51)
provided in libmptools has an option called HD_CONTENTS which allows the entire live contents
of the heap to be written to disk and then compared when heapdiffend() is called. Every
single difference (at the byte level) in each memory allocation is reported and this information



Chapter 12: Heap corruption 85

can be extremely useful in narrowing down heap corruption. However, the HD_CONTENTS option
will require a lot of disk space if the heap is very large.

To conclude, the mpatrol library contains a wide variety of options and functions that you
can add to your debugging toolkit, but only if you know how to use them correctly. Hopefully,
after reading this chapter you will feel slightly more confident about knowing how to slay those
heap corruption demons.



86 mpatrol



Chapter 13: Memory leaks 87

13 Memory leaks

Memory leaks can be the bane of many a programmer and is the type of error that can
typically go unnoticed in simple test cases. It is perhaps not until an application has been
released to the customer and is being run in real-life situations that memory leaks get noticed
and become a serious problem. Luckily the mpatrol library provides tools that can quickly help
detect, identify and remove such errors. Note that it’s probably a good idea to fix any warnings
or errors that appear in the mpatrol log file before starting to look at removing memory leaks.

Surprisingly, there are no less than four different groups of mpatrol library run-time options
that you can use to detect memory leaks in a program, all without having to change a single line
of code! They each employ different techniques in order to locate the unfreed memory allocations
at program termination and operate independently of one another so that any combination of
techniques can be used at any one time. They also have differing levels of detail in the information
they provide, so which options you use will depend on what your requirements are.

If you wish to see a summary of the memory leaks grouped together by call site then the
‘PROF’ or ‘LEAKTABLE’ options are your best bet. The output file produced by the ‘PROF’ option
can be displayed by the mprof command, which will display a list of memory leaks as one of the
tables that it shows. Each entry in the memory leak table will normally only show one level of
stack depth from its call graph but this can be changed with the ‘--stack-depth’ option in the
mprof command. The table of memory leaks can also be written to a graph specification file for
later visualisation with a graph package. Using the ‘PROF’ option is probably the best way to
summarise where memory leaks occur in a program.

However, the ‘LEAKTABLE’ option can generate similar information to the ‘PROF’ option in the
mpatrol log file. The drawback to this option is that the entries displayed will only ever show
the immediate calling functions and no call stack information, but in many cases this is good
enough. Another drawback to this option is that it is affected by calls in the code to manipulate
the leak table. However, if the calls aren’t there then that won’t be an issue. The leak table
should really be used from within the source code (see below) but it can still provide some useful
information with the ‘LEAKTABLE’ option.

The third option is the ‘SHOWUNFREED’ option, which will show the details of every unfreed
memory allocation at the end of program execution. No attempt is made to summarise them, but
the full details of each (including the call stack if available) are given. This option is really only
useful if there are a small number of unfreed memory allocations when a program terminates,
but it is invaluable if all of the gory details are required.

The final group of options are the ‘LOGALLOCS’, ‘LOGREALLOCS’ and ‘LOGFREES’ options1. In
some situations a program will abort abnormally before it can exit, in which case the ‘LEAKTABLE’
and ‘SHOWUNFREED’ options will not display anything, and the ‘PROF’ option will not finish writing
out the profiling output file unless you are exceptionally lucky with the ‘AUTOSAVE’ option. One
can argue that you should be looking for the cause of the error rather than memory leaks in such
a program, but it is still possible to detect the latter using the aforementioned ‘LOG*’ options
and the mleak command.

The mleak command reads in an mpatrol log file, recording the details of each logged memory
allocation, reallocation or deallocation and then writes out what the ‘SHOWUNFREED’ option should
have written out at the end of the log file. It has a few limitations compared to the ‘SHOWUNFREED’
option, but the details of each unfreed memory allocation that it writes out should be accurate,
although only if the logging information in the log file was complete and accurate as well.

Note that more information from the ‘SHOWUNFREED’ and ‘LOG*’ options can be obtained
by using the ‘USEDEBUG’ option. This will attempt to add missing source file and line number
information to the details recorded by these options in the mpatrol log file, but only if it is
supported by the particular system and object file format, and then only if the program was

1 Note that the ‘LOGMEMORY’ option isn’t listed which is why ‘LOGALL’ wasn’t listed either.



88 mpatrol

compiled with debugging information from the compiler. If the ‘USEDEBUG’ option isn’t supported
then it might be possible to use the mpsym command to postprocess the mpatrol log file using
a symbolic debugger to fill in such information. You may also find that running the log file
through a C++ encoded name demangler is useful as well if your program contains C++ code.

Despite the plethora of automated features that the mpatrol library has for detecting memory
leaks, the most powerful method of narrowing down such leaks is by modifying the source code.
The mpatrol library provides several functions that can be used to keep track of differences
in the heap between two or more points in a program’s execution — such information can be
invaluable when pinpointing where a memory leak is coming from.

The first set of functions are based upon taking a snapshot of the heap at a certain point
and then walking the heap to examine the differences at a later point. The __mp_snapshot()
function returns the current event identifier in the mpatrol library and the __mp_iterate()
function traverses the heap calling a user-defined callback function for each memory allocation
that has changed since a particular event identifier. This is very useful for noting memory
allocations that have been made since a certain point in a program but have not been freed
when they were expected to. The heapdiff tool (see Section 8.3 [heapdiff], page 51) provided in
libmptools makes use of these functions to provide an easy-to-use interface.

The mpatrol library also provides a leak table (see Section 7.8 [Leak table], page 45) that
can be manipulated at any point in a program for the purpose of detecting changes in the
heap. The __mp_clearleaktable() function clears the leak table, while the __mp_leaktable()
function writes the contents of the leak table to the mpatrol log file. Automatic logging of
memory allocations, reallocations and deallocations can be turned on and off using the __mp_
startleaktable() and __mp_stopleaktable() functions respectively. The main advantage
to using the leak table instead of the functions described in the previous paragraph is that
it can provide a summary of unfreed allocations rather than showing the details of each one
individually. It can also summarise freed allocations without requiring the use of the ‘NOFREE’
option.

Finally, you can indicate to the mpatrol library that a particular memory allocation will
remain allocated until program termination and that it should not be treated as a memory
leak. This can be done by calling the __mp_setmark() function, and thereafter any attempt
to free the newly-marked allocation will result in an error, although reallocating it is possible.
It is normal in many programs to make several initial memory allocations that will remain in
use throughout the program’s lifetime. On most systems, such allocations will be freed when
the program terminates anyway so there will be no need to free them explicitly. It is these
allocations that should be marked so as to prevent them showing up as memory leaks.



Chapter 14: Improving performance 89

14 Improving performance

Because of their need to cover every eventuality, malloc library implementations are very
general and most do their job well when you consider what is thrown at them. However, your
program may not be performing as well as it should simply because there may be a more efficient
way of dealing with dynamic memory allocations. Indeed, there may even be a more efficient
malloc library available for you to use.

If you need to allocate lots of blocks of the same size1, but you won’t know the number of
blocks you’ll require until run-time then you could take the easy approach by simply allocating
a new block of memory for each occurrence. However, this is going to create a lot of (typically
small) memory blocks that the underlying malloc library will have to keep track of, and even
in many good malloc libraries this is likely to cause memory fragmentation and possibly even
result in the blocks scattered throughout the address space rather than all in the one place,
which is not necessarily a good thing on systems with virtual memory.

An alternative approach would be to allocate memory in multiples of the block size, so
that several blocks would be allocated at once. This would require slightly more work on
your part since you would need to write interface code to return a single block, while possible
allocating space for more blocks if no free blocks were available. However, this approach has
several advantages. The first is that the malloc library only needs to keep track of a few large
allocations rather than lots of small allocations, so splitting and merging free blocks is less likely
to occur. Secondly, your blocks will be scattered about less in the address space of the process,
which means that on systems with virtual memory there are less likely to be page faults if you
need to access or traverse all of the blocks you have created.

A memory allocation concept that is similar to this is called an arena. This datatype requires
functions which are built on top of the existing malloc library functions and which associate each
memory allocation with a particular arena. An arena can have as many allocations added to it
as required, but allocations cannot usually be freed until the whole arena is freed. Note that
there are not really any generic implementations of arenas that are available as everyone tends
to write their own version when they require it, although SGI IRIX and Compaq Tru64 systems
do come with an arena library called amalloc.

However, what if you don’t plan to free all of the blocks at the same time? A slight modifi-
cation to the above design could be to have a slot table. This would involve allocating chunks of
blocks as they are required, adding each individual block within a chunk to a singly-linked list of
free blocks. Then, as new blocks are required, the allocator would simply choose the first block
on the free list, otherwise it would allocate memory for a new chunk of blocks and add them to
the free list. Freeing individual blocks would simply involve returning the block to the free list.
If this description isn’t clear enough, have a look in ‘src/slots.h’ and ‘src/slots.c’. This is
how the mpatrol library allocates memory from the system for all of its internal structures. For
variable-sized structures, a slightly different approach needs to be taken, but for an example of
this using strings see ‘src/strtab.h’ and ‘src/strtab.c’.

Another optimisation that is possible on UNIX and Windows platforms is making use of
memory-mapped files. This allows you to map a filesystem object into the address space of your
process, thus allowing you to treat a file as an array of bytes. Because it uses the virtual memory
system to map the file, any changes you make to the mapped memory will be applied to the
file. This is implemented through the virtual memory system treating the file as a pseudo swap
file and will therefore only use up physical memory when pages are accessed. It also means that
file operations can be replaced by memory read and write operations, leading to a very fast and
efficient way of performing I/O. Another added bonus of this system means that entire blocks
of process memory can be written to a file for later re-use, just as long as the file can later be
mapped to the same address. This can be a lot faster than writing to and reading from a specific
format of file.

1 Such as for use in a linked list.



90 mpatrol

If you really don’t want to keep track of dynamic memory allocations at all then perhaps you
should consider garbage collection. This allows you to make dynamic memory allocations that
need not necessarily be matched by corresponding calls to free these allocations. A garbage col-
lector will (at certain points during program execution) attempt to look for memory allocations
that are no longer referenced by the program and free them for later re-use, hence removing all
possibility of memory leaks. However, the garbage collection process can take a sizable chunk of
processor time depending on how large the program is, so it is not really an option for real-time
programming. It is also very platform-dependent as it examines very low-level structures within
a process in order to determine which pointers point to which memory allocations. But there is
at least one garbage collector2 that works well with C and C++ and acts as a replacement for
malloc() and free(), so it may be the ideal solution for you.

If you do choose to use an alternative malloc library make sure that you have a license to do
so and that you follow any distribution requirements. On systems that support dynamic linking
you may want to link the library statically rather than dynamically so that you don’t have to
worry about an additional file that would need to be installed. However, whether you have
that choice depends on the license for the specific library, and some licenses also require that
the source code for the library be made readily available. Shared libraries have the advantage
that they can be updated with bug fixes so that all programs that require these libraries will
automatically receive these fixes without needing to be relinked.

If all of the above suggestions do not seem to help and you still feel that you have a perfor-
mance bottleneck in the part of your code that deals with dynamically allocated memory then
you should try using the memory allocation profiling feature of mpatrol. This can be used at
run-time to analyse the dynamic memory allocation calls that your program makes during its
execution, and builds statistics for later viewing with the mprof command. It is then possible
for you to see exactly how many calls were made to each function and where they came from.
Such information can then be put to good use in order to optimise the relevant parts of your
code. The tracing output files that can be produced by the mpatrol library may also be useful in
order to view patterns in memory allocation behaviour and gather information about lifetimes
of memory allocations.

And finally, some tips on how to correctly use dynamic memory allocations. The first, most
basic rule is to always check the return values from malloc() and related functions. Never
assume that a call to malloc() will succeed, because you’re unlikely to be able to read the
future3. Alternatively, use (or write) an xmalloc() or similar function4, which calls malloc()
but never returns ‘NULL’ since it will abort instead. With the C++ operators it is slightly different
because some versions use exceptions to indicate failure, so you should always provide a handler
to deal with this eventuality.

Never use features5 of specific malloc libraries if you want your code to be portable. Always
follow the ANSI C or C++ calling conventions and never make assumptions about the function
or operator you are about to call — the standards committees went to great lengths to explicitly
specify its behaviour. For example, don’t assume that the contents of a freed memory allocation
will remain valid until the next call to malloc(), and don’t assume that the contents of a newly
allocated memory block will be zeroed unless you created it with calloc().

Try to avoid allocating arrays on the stack if they are to hold data that may overflow. In
most cases this is common sense, but sometimes you may allocate an array that should suffice
for 99% of the time. However, if there is a 1% chance that it may overflow then on some
systems the stack is executable and hackers can use that feature to break into a secure program
by overwriting the current function’s return address on the stack. Use statically-allocated or
dynamically-allocated arrays for these situations, or better still, check for overflow.

2 A freely distributably library called GC (see Appendix K [Related software], page 213).
3 If you can, why are you reading this — you’ve already read it!
4 The mpatrol library comes with the xmalloc() and MP_MALLOC() families of functions.
5 Whether they are documented or not.



Chapter 14: Improving performance 91

Finally, try stress-testing your program in low memory conditions. The mpatrol library
contains the ‘LIMIT’ option which can place an upper bound on the size of the heap, and also
contains the ‘FAILFREQ’ and ‘FAILSEED’ options which can cause random memory allocation
failures. Doing this will test parts of your code that you would probably never expect to be
called, but perhaps they will one day! Who would you rather have debugging your program —
yourself or the user?



92 mpatrol



Chapter 15: How it works 93

15 How it works

The mpatrol library was originally written with the intention of plugging it into an existing
compiler so that the compiler could plant calls to it in the code it generated when a specific
debugging option was used. These extra calls would obviously slow the code down, but along
with the stack checking options that would be provided, this would give the user an enhanced
run-time debugging environment. Unfortunately, this integration never happened, but the way
that mpatrol works is still significantly different from other malloc tracing libraries.

In order to quickly determine exactly which memory allocation a heap address belonged to
it was necessary to be able to search the heap in an efficient manner. The traditional way of
searching along a linked list was unfeasible, so an implementation based on red-black trees was
used, where every known memory allocation in the heap was given an entry in the tree, with
their start addresses as the key. Another major design decision was to also choose red-black
trees to implement the best fit allocation algorithm. Although first fit was considered, I decided
that best fit would allow the library to have more control over the heap, with every free memory
block in the heap given an entry in the free tree, with their sizes as the key. There was a bit of
work involved in getting the splitting and merging of free blocks to work efficiently, but it seems
to work well now.

My original implementation had all of the information about each memory block stored
just before the block itself. I eventually dropped that behaviour in favour of storing all of the
library’s internal information in a separate part of the heap. I did that for two reasons. The
first was because of the problems that would occur due to memory allocations with different
alignment requirements. The second reason was that the library’s internal structures could
be write-protected on systems with virtual memory, to prevent user code interfering with the
operation of the library.

Because the library attempts to record as much information as possible about every memory
allocation there will inevitably be a much larger memory requirement when running a program
linked with the library. This will typically be two or three times larger in magnitude, but will
be affected by the number of memory allocations made and also the number of symbols read.
The latter will also affect how quickly the program starts since the first call to allocate memory
will result in the initialisation of the library and the loading of symbols from the executable file
and any shared libraries.

Due to its design, it is also possible to allocate memory from the heap using the mpatrol
library functions whilst already within an mpatrol library function. This does not normally
occur, but on some platforms calling printf() from within the library may result in printf()
calling malloc() to allocate itself a buffer, which ends up as a recursive call. Luckily, this is dealt
with by simply not displaying the allocation in the log file, but all other details of the allocation
are still recorded. This can sometimes result in hidden memory usage which occurs behind the
scenes and alters the peak memory usage in the summary. This is particularly evident when
the library uses an object file access library to read program symbols at the time of library
initialisation.

Memory allocation profiling support was added for mpatrol release 1.2.0. Every allocation
and deallocation is recorded, with the call stack information being used to differentiate all of
the call sites within the program. Unlike other profilers that come with UNIX systems, even the
symbolic information about the program being run is written to the profiling output file, since
it makes no sense for mprof to re-read the symbol table from the executable file when it has
already been read and processed by the mpatrol library. It also has the added bonus of allowing
the user to save profiling output files for later use even when the executable files which produced
them have changed or no longer exist. It also means that symbol names can be obtained for
functions in shared libraries.

Memory allocation tracing support was added for mpatrol release 1.3.2 and was added to
produce concise information for every memory allocation event. This information could also be



94 mpatrol

produced in a verbose form in the log file, but to log every memory allocation event in a large
program would result in a massive log file that would be hard to parse. In order to keep the size
of the tracing output file down, almost all of the data in the file is encoded as LEB128 numbers.
The idea for this comes from the DWARF 2 debugging format.

Support for the alloca() family of functions was added for mpatrol release 1.3.0 and uses the
heap instead of the stack in order to trace and debug these functions. If full call stack tracebacks
are supported on a particular system then mpatrol will compare the current call stack with the
call stack of the function that called alloca() in order to determine if a memory allocation made
by alloca() is out of scope. This is generally a safe way to determine when such allocations
should be freed, but if full call stack tracebacks are not supported then mpatrol will compare
the addresses of specific local variables in the call stack in order to determine if the allocation
should be freed. This is an inferior method since it depends on the same function call sequence
being used each time an mpatrol function is called. Therefore, a safety boundary was added
that will prevent mpatrol from freeing such allocations unless they are a really clear-cut case
(i.e. the stack frames differ by a minimum number of bytes). As a result, this second method
will not usually free such allocations until a much later point.

The library is written in a modular fashion so as to make it easy to add new functionality.
New modules have already been added, such as the stack, symbol, profile and trace modules.
Extra information about each memory allocation can be added to the allocation information
module in ‘src/info.h’ and ‘src/info.c’ without having to change much code in any other
files.

The ‘tools’ directory in the mpatrol distribution comes with a collection of functions that
are built on top of the mpatrol library using its interface functions. This provides a way to
extend the mpatrol library for specific applications without requiring that all applications use the
extensions. It also provides a way to add new interfaces to the library, perhaps for compatibility
with other malloc debugging libraries.

Platform-dependent code has been isolated to specific modules, and feature macros are en-
tirely defined and controlled from ‘config.h’ and ‘target.h’. The source code has been written
so as to make it as easy as possible to compile the library on new platforms at the first attempt,
although any additional features that the platform supports will then have to be explicitly
enabled in the code.

Of the UNIX platforms that the mpatrol library runs on, Solaris and Linux proved to be
the easiest to port to, with well documented and easily accessible programming interfaces to
operating system features. Unfortunately, the non-UNIX ports proved a lot harder to write and
do not contain as many of the useful features that the UNIX ports have, although sometimes
not because they cannot ever support them, but because there would be a huge amount of work
involved.



Chapter 16: Examples 95

16 Examples

Following are a set of examples that are intended to illustrate what exactly is possible with
the mpatrol library and how to go about using it effectively.

You should already have built and installed the library and should know how to link programs
with the library. Unfortunately, it isn’t possible to give specific instructions on how to do this as
it varies from system to system and also depends on your preferred compiler and development
tools.

However, on a typical SVR4 UNIX system, with mpatrol installed in ‘/usr/local’, the
mpatrol library can usually be incorporated into a program using the following commands:

• If the mpatrol library was built with no support for any object file format or was built with
support for the ‘a.out’ object file format:

cc -I/usr/local/include <file> -L/usr/local/lib -lmpatrol

• If the mpatrol library was built with support for the COFF or XCOFF object file format
access library (not on LynxOS systems):

cc -I/usr/local/include <file> -L/usr/local/lib -lmpatrol -lld

• If the mpatrol library was built with support for the ELF32 or ELF64 object file format
access library:

cc -I/usr/local/include <file> -L/usr/local/lib -lmpatrol -lelf

• If the mpatrol library was built with support for the GNU BFD object file format access
library:

cc -I/usr/local/include <file> -L/usr/local/lib -lmpatrol -lbfd
-liberty

• If the mpatrol library was built on HP/UX with support for the GNU BFD object file
format access library:

cc -I/usr/local/include <file> -L/usr/local/lib -lmpatrol -lbfd
-liberty -lcl

On Windows platforms, with mpatrol installed in ‘/mpatrol’, the mpatrol library can usually
be incorporated into a program using the following commands:

• If the program is to be linked with the archive version of the mpatrol library:
cl -I/mpatrol/include -Zi <file> -link -libpath:/mpatrol/lib

-defaultlib:libmpatrol -defaultlib:imagehlp -pdb:none

• If the program is to be linked with the DLL version of the mpatrol library:
cl -I/mpatrol/include -MD -Zi <file> -link -libpath:/mpatrol/lib

-defaultlib:mpatrol -pdb:none

If you need to link with other libraries, make sure that they don’t contain definitions of
malloc(), etc., or if they do then you must ensure that the mpatrol library appears before them
on the link line. Note also that if the mpatrol library was built on Tru64, or on IRIX with
the MP_LIBRARYSTACK_SUPPORT preprocessor macro defined, then the ‘libexc’ library must be
linked in as well. You should also check the section on supported systems (see Appendix G
[Supported systems], page 179) to see if there are any other issues on the platform that you are
using.

You should also know how to set an environment variable on your specific system. Again,
this varies from system to system and also depends on the command line interpreter or shell that
you use. The environment variable that the mpatrol library uses is called MPATROL_OPTIONS.
You can see exactly what options are available for this environment variable by setting it to
‘HELP’ and then running a program that has been linked with the library.



96 mpatrol

16.1 Getting started

The first example we’ll look at is when the argument in a call to free() doesn’t match the
return value from malloc(), even though the intention is to free the memory that was allocated
by malloc(). This example is in ‘tests/fail/test1.c’ and causes many existing malloc()
implementations to crash.

Along the way, I’ll try to describe as many features of the mpatrol library as possible, and
illustrate them with examples. Note that the output from your version of the library is likely to
vary slightly from that shown in the examples, especially on non-UNIX systems.

23 /*
24 * Allocates a block of 16 bytes and then attempts to free the
25 * memory returned at an offset of 1 byte into the block.
26 */

29 #include "mpatrol.h"

32 int main(void)
33 {
34 char *p;

36 if (p = (char *) malloc(16))
37 free(p + 1);
38 return EXIT_SUCCESS;
39 }

Note that I’ve removed the copyright message from the start of the file and added line
numbers so that the tracing below makes more sense.

After compiling and linking the above program with the mpatrol library, the MPATROL_
OPTIONS environment variable should be set to be ‘LOGALL’ and the program should be executed,
generating the following output in ‘mpatrol.log’.

@(#) mpatrol 1.4.8 (02/01/08)
Copyright (C) 1997-2002 Graeme S. Roy

This is free software, and you are welcome to redistribute it under
certain conditions; see the GNU Library General Public License for
details.

For the latest mpatrol release and documentation,
visit http://www.cbmamiga.demon.co.uk/mpatrol.

operating system: UNIX
system variant: Linux
processor architecture: Intel 80x86
processor word size: 32-bit
object file format: BFD
dynamic linker type: SVR4

Log file generated on Tue Jan 8 19:47:24 2002

read 310 symbols from /usr/lib/libmpatrol.so.1.4



Chapter 16: Examples 97

read 647 symbols from /usr/lib/libbfd-2.9.5.0.22.so
read 2634 symbols from /lib/libc.so.6
read 1142 symbols from /usr/lib/libstdc++-libc6.1-1.so.2
read 695 symbols from /lib/libm.so.6
read 178 symbols from /lib/ld-linux.so.2
read 158 symbols from ./test1

ALLOC: malloc (52, 16 bytes, 4 bytes) [main|test1.c|36]
0x0804942F main+31
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

returns 0x080620E8

FREE: free (0x080620E9) [main|test1.c|37]
0x08049457 main+71
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

ERROR: [MISMAT]: free: 0x080620E9 does not match allocation of 0x080620E8
0x080620E8 (16 bytes) {malloc:52:0} [main|test1.c|36]

0x0804942F main+31
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

system page size: 4096 bytes
default alignment: 4 bytes
overflow size: 0 bytes
overflow byte: 0xAA
allocation byte: 0xFF
free byte: 0x55
allocation stop: 0
reallocation stop: 0
free stop: 0
unfreed abort: 0
small boundary: 32 bytes
medium boundary: 256 bytes
large boundary: 2048 bytes
lower check range: 0
upper check range: 0
check frequency: 1
failure frequency: 0
failure seed: 972951591
prologue function: <unset>
epilogue function: <unset>
handler function: <unset>
log file: mpatrol.log
profiling file: mpatrol.out
tracing file: mpatrol.trace
program filename: ./test1
symbols read: 5764



98 mpatrol

autosave count: 0
freed queue size: 0
allocation count: 52
allocation peak: 20 (427512 bytes)
allocation limit: 0 bytes
allocated blocks: 7 (1528 bytes)
marked blocks: 0 (0 bytes)
freed blocks: 0 (0 bytes)
free blocks: 4 (432648 bytes)
internal blocks: 33 (540672 bytes)
total heap usage: 974848 bytes
total compared: 0 bytes
total located: 2 bytes
total copied: 32176 bytes
total set: 582856 bytes
total warnings: 0
total errors: 1

Ignoring the copyright blurb and target environment information at the top of the file, let’s
first take a look at the initial log message from the library. I’ve annotated each of the items
with a number that corresponds to the descriptions below.

(1) (2) (3) (4) (5) (6) (7) (8)
| | | | | | | |
V V V V V V V V

ALLOC: malloc (52, 16 bytes, 4 bytes) [main|test1.c|36]
(9) -> 0x0804942F main+31

0x4007C9CB __libc_start_main+255
0x08049381 _start+33 <- (10)

returns 0x080620E8 <- (11)

1. Allocation type. This generalises the type of dynamic memory operation that is being
performed, and can be one of ‘ALLOC’, ‘REALLOC’ or ‘FREE’. This should make looking for
all allocations, reallocations or frees in the log file a lot easier. Alternatively, if a memory
operation function was called then this can also be one of ‘MEMSET’, ‘MEMCOPY’, ‘MEMFIND’
or ‘MEMCMP’.

2. Allocation function. This is the name of the function that has been called to allocate the
memory, in this case ‘malloc’.

3. Allocation index. This is incremented every time a new memory allocation is requested, and
persists even if the memory allocation is resized with realloc() and its related functions,
so can be useful to keep track of a memory allocation, even if its start address changes. The
mpatrol library may use up the first few allocation indices when it gets initialised.

4. Size of requested allocation.
5. Alignment for requested allocation. This is normally the default system alignment for

general-purpose memory allocations, but may be different depending on the type of function
that is used to allocate the memory.

The following information contains source file details of where the call to malloc() came
from, but is only available if the source file containing the call to malloc() included ‘mpatrol.h’;
otherwise the fields will all be ‘-’1. Because of the convoluted way this information is obtained

1 This information may also be filled in if the ‘USEDEBUG’ option or the mpsym command is used and supported,
and if debugging information about the call to malloc() is available.



Chapter 16: Examples 99

for the C++ operators, you may encounter some problems in existing C++ programs when making
direct calls to operator new for example. However, if you want to disable the redefinition of the
C++ operators in ‘mpatrol.h’ you can define the preprocessor macro MP_NOCPLUSPLUS before the
inclusion of that file. Alternatively, you may wish to define the MP_NONEWDELETE preprocessor
macro in order to use MP_NEW, MP_NEW_NOTHROW and MP_DELETE instead of new and delete.
That way you can combine calls to mpatrol’s operators and the standard operators. Just make
sure you don’t mix them!

If you are running on a system on which mpatrol supports full symbolic stack tracebacks
the following information may still be useful if the source files were compiled with optimisation
turned on. This is because the calling function may have been inlined, in which case you will
only see the name of the function into which the calling function was expanded in the stack
traceback.

6. Function where call to malloc() took place. This information is only available if the source
file containing the call to malloc() was compiled with gcc or g++.

7. Filename in which call to malloc() took place.
8. Line number at which call to malloc() took place.

The following information contains function call stack details of where the call to malloc()
came from, but is only available if the mpatrol library has been built on a platform that supports
this. The top-most entry should be the function which called malloc() and the bottom-most
entry should be the entry-point for the process.
9. Address of function call. This is normally the address of the machine instruction immedi-

ately after the function call instruction, also known as the return address.
10. Function where call took place. This information is only available if the mpatrol library has

been built on a platform that supports reading symbol table information from executable
files, and then only if there is an entry in the symbol table corresponding to the return
address. C++ function names may still be in their mangled form, but this can be easily
rectified by processing the log file with a C++ name demangler. The number after the plus
sign is the offset in bytes from the beginning of the function.

The following information is only available when the allocation type is ‘ALLOC’ or ‘REALLOC’
since it makes no sense when applied to ‘FREE’.
11. The address of the new memory block that has been allocated by malloc().

As you can see, there is quite a lot of information that can be displayed from a simple call
to malloc(), and hopefully this information has been presented in a clear and concise format
in the log file.

The next entries in the log file correspond to the call to free(), which attempts to free the
memory allocated by malloc(), but supplies the wrong address.

The first four lines should be self-explanatory as they are very similar to those described
above for malloc(). However, the next lines signal that a terminal error has occurred in the
program, so I’ve annotated them as before.

FREE: free (0x080620E9) [main|test1.c|37]
0x08049457 main+71
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

(1) (2) (3)
| | |
V V V

ERROR: [MISMAT]: free: 0x080620E9 does not match allocation of 0x080620E8
(4) (5) (6) (7)(8) (9) (10) (11)



100 mpatrol

| | | | | | | |
V V V V V V V V

0x080620E8 (16 bytes) {malloc:52:0} [main|test1.c|36]
(12) -> 0x0804942F main+31

0x4007C9CB __libc_start_main+255
0x08049381 _start+33

1. Error severity. The mpatrol library has two different severities of error: ‘WARNING’ and
‘ERROR’. The first is always recoverable, and serves only to indicate that something is not
quite right, and so may be useful in determining where something started to go wrong. The
second may or may not be recoverable, and the library terminates the program if it is fatal,
displaying any relevant information as it does this.

2. Error abbreviation code. This is a code that is different for each type of error that is
detected by the mpatrol library. Some warnings and errors that are not directly related to
the program being run will not contain this field. See the appendix on diagnostic messages
(see Appendix D [Diagnostic messages], page 167) for a complete list of all possible error
abbreviation codes and their descriptions.

3. Allocation function. This is the name of the function used to allocate, reallocate or free
memory where the error was detected. This may be omitted if an error is detected elsewhere
in the library.

The following information is related to the information that the library has stored about the
relevant memory allocation. This information is always displayed in this format when details of
individual memory allocations are required. If any information is missing then it simply means
that the library was not able to determine it when the memory block was first allocated.
4. Address of memory allocation.
5. Size of memory allocation.
6. Allocation function. This is the name of the function that was called to allocate the memory

block, in this case ‘malloc’. If the memory allocation has been resized then this will be
either ‘realloc’, ‘reallocf’, ‘recalloc’, ‘expand’ or ‘xrealloc’.

7. Allocation index.
8. Reallocation index. This is used to count the number of times a memory allocation has

been resized with realloc() and its related functions.
9. Function where original call to malloc() took place. If the memory allocation has been

resized then this will be the name of the function which last called realloc() and its related
functions.

10. Filename in which original call to malloc() took place. If the memory allocation has been
resized then this will be the filename in which the last call to realloc() and its related
functions took place.

11. Line number at which original call to malloc() took place. If the memory allocation has
been resized then this will be the line number at which the last call to realloc() and its
related functions took place.

12. Function call stack of original memory allocation. If the memory allocation has been resized
then this will be the call stack of the last call to realloc() and related functions.

So, the mpatrol library detected the error in the above program and terminated it. When
the library terminates it always displays a summary of various memory allocation statistics and
settings that were used during the execution of the program.

The various settings and statistics displayed by the library for the above example have been
numbered and their descriptions appear below.

1 system page size: 4096 bytes
2 default alignment: 4 bytes



Chapter 16: Examples 101

3 overflow size: 0 bytes
4 overflow byte: 0xAA
5 allocation byte: 0xFF
6 free byte: 0x55
7 allocation stop: 0
8 reallocation stop: 0
9 free stop: 0
10 unfreed abort: 0
11 small boundary: 32 bytes
12 medium boundary: 256 bytes
13 large boundary: 2048 bytes
14 lower check range: 0
15 upper check range: 0
16 check frequency: 1
17 failure frequency: 0
18 failure seed: 972951591
19 prologue function: <unset>
20 epilogue function: <unset>
21 handler function: <unset>
22 log file: mpatrol.log
23 profiling file: mpatrol.out
24 tracing file: mpatrol.trace
25 program filename: ./test1
26 symbols read: 5764
27 autosave count: 0
28 freed queue size: 0
29 allocation count: 52
30 allocation peak: 20 (427512 bytes)
31 allocation limit: 0 bytes
32 allocated blocks: 7 (1528 bytes)
33 marked blocks: 0 (0 bytes)
34 freed blocks: 0 (0 bytes)
35 free blocks: 4 (432648 bytes)
36 internal blocks: 33 (540672 bytes)
37 total heap usage: 974848 bytes
38 total compared: 0 bytes
39 total located: 2 bytes
40 total copied: 32176 bytes
41 total set: 582856 bytes
42 total warnings: 0
43 total errors: 1

1. System page size. This value is used on some platforms when allocating and protecting
system memory.

2. Default alignment. This value is the minimum alignment required for general purpose
memory allocations, and is usually the alignment required by the most restrictive datatype
on a given system. It is used when allocating memory that has no specified alignment. It
can be changed at run-time using the ‘DEFALIGN’ option, but setting this value too small
may cause the program to crash due to bus errors which are caused by reading from or
writing to misaligned data.

3. Overflow size. This value is the size used by one overflow buffer. If this is non-zero then
every memory allocation will have two overflow buffers; one on either side. These buffers



102 mpatrol

are used by the library to detect if the program has written too many bytes to a memory
allocation, thus overflowing into one of the buffers, but these extra checks can slow down
execution speed. It can be changed at run-time using the ‘OFLOWSIZE’ option.

4. Overflow byte.
5. Allocation byte.
6. Free byte. These values are used by the library to pre-fill blocks of memory for checking

purposes. The overflow byte is used to fill overflow buffers, the allocation byte is used to fill
newly-allocated memory (except from calloc() or recalloc()), and the free byte is used
to fill free blocks or freed memory allocations. These can be changed at run-time using the
‘OFLOWBYTE’, ‘ALLOCBYTE’ and ‘FREEBYTE’ options.

7. Allocation stop.
8. Reallocation stop.
9. Free stop. These values are used by the library to halt the program when run inside a

debugger whenever a specified allocation index is allocated, reallocated or freed. These can
be changed at run-time using the ‘ALLOCSTOP’, ‘REALLOCSTOP’ and ‘FREESTOP’ options.

10. Unfreed abort. This value is used when the program terminates and is used by the library
to check if there are more than a given number of unfreed memory allocations. If there
are then the library will cause the program to abort with an error. It can be changed at
run-time using the ‘UNFREEDABORT’ option.

11. Small boundary.
12. Medium boundary.
13. Large boundary. These values are used in memory allocation profiling and specify the

boundaries in bytes between small, medium, large and extra large allocations. These can
be changed at run-time using the ‘SMALLBOUND’, ‘MEDIUMBOUND’ and ‘LARGEBOUND’ options.

14. Lower check range.
15. Upper check range.
16. Check frequency. These values specify the range of allocation indices through which the

library will physically check every area of free memory and every overflow buffer for errors,
along with the frequency at which to make the checks. A dash specifies that either the
lower or upper range is infinite, but if they are both zero then no such checking will ever be
performed, thus speeding up execution speed dramatically. The check frequency indicates
the number of memory allocation events that must occur in between checking the heap.
The library defaults to performing no such checks. This can be changed at run-time using
the ‘CHECK’ option.

17. Failure frequency.
18. Failure seed. These values are used to specify if random memory allocation failures should

occur during program execution, for the purposes of stress testing a program. If the failure
frequency is zero then no random failures will occur, but if it is greater than zero then the
higher the number, the less frequent the failures. The failure seed is used internally by the
mpatrol library when generating random numbers. If it is zero then the seed will be set
randomly, but if it is greater than zero then it will be used to generate a predictable sequence
of random numbers; i.e. two runs of the same program with the same failure frequencies
and the same failure seeds will generate exactly the same sequence of failures.

19. Prologue function.
20. Epilogue function.
21. Handler function. These values contain addresses or names of functions that have been

installed as callback functions for the library. These functions, if set, will be called from the
library at appropriate times during program execution in order to handle specific events.
These can be changed at compile-time using the __mp_prologue(), __mp_epilogue() and
__mp_nomemory() functions.



Chapter 16: Examples 103

22. Log file. Simply contains the name of the file where all mpatrol library diagnostics go to.
It can be changed at run-time using the ‘LOGFILE’ option.

23. Profiling file. Contains the name of the file where all of the mpatrol library memory al-
location profiling information goes when the ‘PROF’ option is used. It can be changed at
run-time using the ‘PROFFILE’ option.

24. Tracing file. Contains the name of the file where all of the mpatrol library memory allocation
tracing information goes when the ‘TRACE’ option is used. It can be changed at run-time
using the ‘TRACEFILE’ option.

25. Program filename. Contains the full pathname to the program’s executable file. This is used
by the mpatrol library to read the symbol table in order to provide symbolic information
in function call stacks. It can be changed at run-time using the ‘PROGFILE’ option.

26. Symbols read. This value contains the total number of symbols read from a program’s
executable file and/or the dynamic linker, if applicable.

27. Autosave count. This value contains the frequency at which the mpatrol library should
periodically write the profiling data to the profiling output file. When the total number of
profiled memory allocations and deallocations is a multiple of this number then the current
profiling information will be written to the profiling output file. It can be changed at
run-time using the ‘AUTOSAVE’ option.

28. Freed queue size. This value contains the maximum number of freed memory allocations
that will be stored in the freed queue if the ‘NOFREE’ option is used. Once the freed queue
becomes full then the oldest freed allocation in the queue will be returned to the free memory
pool for reuse every time an existing memory allocation is freed. If this value is zero then
the freed queue will never contain any freed allocations. It can be changed at run-time
using the ‘NOFREE’ option.

29. Allocation count. This value contains the total number of memory allocations that were
created by the mpatrol library. This value may be more than expected if the mpatrol library
makes any memory allocations during initialisation.

30. Allocation peak. This value contains the peak memory usage set by the program when run-
ning; the peak number of memory allocations, and also the peak number of bytes allocated
in parentheses (the two numbers may peak at different times throughout the lifetime of the
program). This value may be more than expected if the mpatrol library makes any memory
allocations during initialisation.

31. Allocation limit. This value is used to limit the amount of memory that can be allocated
by a program, which can be useful for stress-testing in simulated low memory conditions.
It can be changed at run-time using the ‘LIMIT’ option.

32. Allocated blocks.
33. Marked blocks.
34. Freed blocks.
35. Free blocks. These values contain the total number of allocated, marked, freed and free

blocks at the time the summary was produced. A marked block is an allocated block
that the user has instructed (via the __mp_setmark() function) the mpatrol library should
remain allocated for the rest of the lifetime of the program and should never be freed or
counted as a memory leak. A freed block is an allocated block that has been freed but
has not been returned to the free memory list for later allocation. These values may be
different from those expected if the mpatrol library makes any memory allocations during
initialisation. In this example a large amount of memory is used by the system object file
access library which is used for reading the symbols from the program’s executable file and
any shared libraries that it requires.

36. Internal blocks. This value contains the total number of memory blocks (of varying sizes)
that have been allocated from the system for the mpatrol library to use internally. These
memory blocks will be write-protected on systems that support memory protection in order



104 mpatrol

to prevent the program from corrupting the library’s data structures. This can be overridden
at run-time using the ‘NOPROTECT’ option in order to speed up program execution slightly.

37. Total heap usage. This value contains the total amount of system heap memory that has
been allocated by the mpatrol library.

38. Total compared.
39. Total located.
40. Total copied.
41. Total set. These values contain the total number of bytes that have been tracked by the

mpatrol library in byte comparison operations (such as memcmp()), byte location operations
(such as memchr(), byte copy operations (such as memcpy()) and byte set operations (such
as memset()) respectively. They do not take into account any other such operations that
occur outwith these functions, such as loading and storing from machine instructions.

42. Total warnings.
43. Total errors. The library keeps a count of the total number of warnings and errors it has

displayed so that you can quickly work out this information at program termination.

16.2 Detecting incorrect reuse of freed memory

The next example uses ‘tests/fail/test2.c’ to illustrate how the mpatrol library can
detect whereabouts on the heap an address belongs.

23 /*
24 * Allocates a block of 16 bytes and then immediately frees it. An
25 * attempt is then made to double the size of the original block.
26 */

29 #include "mpatrol.h"

32 int main(void)
33 {
34 char *p;

36 if (p = (char *) malloc(16))
37 {
38 free(p);
39 p = (char *) realloc(p, 32);
40 }
41 return EXIT_SUCCESS;
42 }

The relevant excerpts from ‘mpatrol.log’ appear below. The format of the log messages
should be familiar to you now.

ALLOC: malloc (52, 16 bytes, 4 bytes) [main|test2.c|36]
0x0804942F main+31
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

returns 0x080620E8

FREE: free (0x080620E8) [main|test2.c|38]



Chapter 16: Examples 105

0x08049456 main+70
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

0x080620E8 (16 bytes) {malloc:52:0} [main|test2.c|36]
0x0804942F main+31
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

REALLOC: realloc (0x080620E8, 32 bytes, 4 bytes) [main|test2.c|39]
0x08049476 main+102
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

ERROR: [NOTALL]: realloc: 0x080620E8 has not been allocated

returns 0x00000000

The mpatrol library stores all of its information about allocated and free memory in tree
structures so that it can quickly determine if an address belongs to allocated or free memory, or
if it even exists in the heap that is managed by mpatrol. The above example should illustrate
this since after the allocation had been freed, the library recognised this and reported an error.
It was possible for the program to continue execution even after that error since mpatrol could
recover from it and return ‘NULL’.

It is possible for mpatrol to give even more useful diagnostics in the above situation by using
the ‘NOFREE’ option. This prevents the library from returning any freed allocations to the free
memory pool, by preserving any information about them and marking them as freed. If you
add the ‘NOFREE=1’ option to the MPATROL_OPTIONS environment variable you should see the
following entries in ‘mpatrol.log’ instead.

ALLOC: malloc (52, 16 bytes, 4 bytes) [main|test2.c|36]
0x0804942F main+31
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

returns 0x08062F54

FREE: free (0x08062F54) [main|test2.c|38]
0x08049456 main+70
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

0x08062F54 (16 bytes) {malloc:52:0} [main|test2.c|36]
0x0804942F main+31
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

REALLOC: realloc (0x08062F54, 32 bytes, 4 bytes) [main|test2.c|39]
0x08049476 main+102
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

ERROR: [PRVFRD]: realloc: 0x08062F54 was freed with free



106 mpatrol

0x08062F54 (16 bytes) {free:52:0} [main|test2.c|38]
0x08049456 main+70
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

returns 0x00000000

Note the extra information reported by realloc() since the library knows all of the details
about the freed memory allocation and when it was freed.

The ‘NOFREE’ option can potentially use up much more system memory than normal if it is
given a large numerical argument since it effectively instructs the mpatrol library to allocate new
memory for every single memory allocation or reallocation. It can also slow down program exe-
cution when overflow buffers are used, since with each new memory allocation the library needs
to check more and more overflow buffers every time it is called. However, with a low numerical
argument it can be quite useful for problems such as this one. The test in ‘tests/fail/test3.c’
has a similar situation.

The numerical argument specified with the ‘NOFREE’ option indicates the number of recently-
freed memory allocations that are to be delayed from being returned to the free memory pool,
with a value of zero meaning that all freed memory allocations will immediately be reused.
Obviously, in an ideal world it would be nice to be able to specify ‘NOFREE=’huge-number all
the time, but this will gradually use up more and more memory since no system heap memory
will ever be reused. Supplying a smaller number to the ‘NOFREE’ option allows you to make
a compromise by storing the details of only the most recently-freed memory allocations. How
many details you wish to store is up to you.

Normally, the ‘NOFREE’ option will cause the library to fill all freed memory allocations
with the free byte. However, the original contents of such allocations can be preserved with
the ‘PRESERVE’ option. This could help in situations when you need to determine exactly if a
program is relying on the contents of freed memory.

16.3 Detecting use of free memory

This next example illustrates how the mpatrol library is able to check to see if anything has
been written into free memory. The test is located in ‘tests/fail/test4.c’ and simply writes
a single byte into free memory.

23 /*
24 * Allocates a block of 16 bytes and then immediately frees it. A
25 * NULL character is written into the middle of the freed memory.
26 */

29 #include "mpatrol.h"

32 int main(void)
33 {
34 char *p;

36 if (p = (char *) malloc(16))
37 {
38 free(p);
39 p[8] = ’\0’;
40 }



Chapter 16: Examples 107

41 return EXIT_SUCCESS;
42 }

The following output was produced as part of ‘mpatrol.log’. Note that this test was run
using the same MPATROL_OPTIONS settings as the last example, but make sure that ‘PRESERVE’
is not set.

ERROR: [FRDCOR]: freed allocation 0x08062F54 has memory corruption at 0x08062F5C
0x08062F5C 00555555 55555555 .UUUUUUU

0x08062F54 (16 bytes) {free:52:0} [main|test4.c|38]
0x08049456 main+70
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

The library was able to detect that something had been written into free memory and could
report on the memory allocation that was overwritten. However, these checks are only performed
whenever a function in the mpatrol library is called if the ‘CHECK’ option is used, or at the end
of program execution. In the example above, the code which wrote into free memory could have
been miles away from where the library detected the error since we were not using the ‘CHECK’
option. However, adding ‘CHECK=-’ to the MPATROL_OPTIONS environment variable doesn’t really
help much since the next mpatrol function that is called is the one to terminate the library
anyway.

Note that using the ‘CHECK’ option is equivalent to calling __mp_check() when each mpatrol
library function is called, or at the range and frequency specified in the values passed to the
‘CHECK’ option. If you suspect that heap corruption is occurring in a part of your code where
there is a large gap between mpatrol library calls, you can try to narrow the problem down by
adding a few calls to __mp_check().

On platforms that support memory protection, the library also supports the ‘PAGEALLOC’
option. This option instructs the library to force every single memory allocation to have a
size which is a multiple of the system page size. Although the library still stores the original
requested size, it effectively means that no two memory allocations occupy the same page of
memory. It can then use page protection (which only operates on pages of memory) to protect
all free memory from being read from or written to, and uses similar features to install a page
of overflow buffer on either side of the allocation.

However, if the requested size for the memory allocation was not a multiple of the page size
this means that there will still be unused space left over in the allocated pages. This problem
is solved by turning the unused space into overflow buffers that will be checked in the normal
way. The positioning of the allocation within its pages is also important. If you want to check
for illegal reads from the borders of the memory allocation, unless it fits exactly into its pages
then there is a chance that a program could illegally read the right-most overflow buffer if
the allocation was left-aligned, or vice-versa. Two settings therefore exist for the ‘PAGEALLOC’
option: ‘LOWER’ and ‘UPPER’. They refer to the placement of every memory allocation within its
constituent pages.

The following diagram illustrates the ‘PAGEALLOC’ option. In the diagram, the system page
size is assumed to be 16 bytes (very unlikely, but will serve for this example) and each character
represents 1 byte.

x = allocated memory
o = overflow buffer (filled with the overflow byte)
. = overflow buffer page (read and write protected)

PAGEALLOC=LOWER, allocation size is 16 bytes or
PAGEALLOC=UPPER, allocation size is 16 bytes:

................xxxxxxxxxxxxxxxx................



108 mpatrol

PAGEALLOC=LOWER, allocation size is 8 bytes:
................xxxxxxxxoooooooo................

PAGEALLOC=UPPER, allocation size is 8 bytes:
................ooooooooxxxxxxxx................

In our original example, if the ‘PAGEALLOC=LOWER’ option is added to the MPATROL_OPTIONS
environment variable then the following error will be produced instead of the original error.

ERROR: [ILLMEM]: illegal memory access at address 0x081C6008
0x081C6000 (16 bytes) {free:52:0} [main|test4.c|38]

0x08049456 main+70
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

call stack
0x0804945F main+79
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

On systems that support memory protection, the mpatrol library has a built-in signal handler
which catches illegal memory accesses and terminates the program. In the above case, the
freed memory was made write-protected and so could not be written to. The underlying virtual
memory system in the operating system noticed this and signaled this to the library immediately
after it happened.

Along with the details of the freed memory allocation that was being written to, the library
also attempts to display the function call stack for the location in the program that caused the
illegal memory access, although this can be quite unreliable. A better solution would be to run
the program in a debugger to catch the illegal memory access.

Note that the ‘PAGEALLOC’ option also modifies the behaviour of the ‘NOFREE’ and ‘PRESERVE’
options when used together. The memory allocation being freed will always be made write-
protected when the ‘PRESERVE’ option is used, otherwise it will also be made read-protected to
prevent further accesses.

Note also that the ‘PAGEALLOC=UPPER’ option is potentially much less efficient at catching
illegal memory accesses than the ‘PAGEALLOC=LOWER’ option. This is due to alignment require-
ments, since an allocation of 1 byte requiring an alignment of 16 bytes cannot be placed at the
very end of a page of size 4096 bytes. The following diagram illustrates this, using the same
page size as the last diagram.

x = allocated memory
o = overflow buffer (filled with the overflow byte)
. = overflow buffer page (read and write protected)

PAGEALLOC=UPPER, allocation size is 16 bytes, alignment is 8 bytes:
................xxxxxxxxxxxxxxxx................

PAGEALLOC=UPPER, allocation size is 3 bytes, alignment is 1 byte:
................oooooooooooooxxx................

PAGEALLOC=UPPER, allocation size is 3 bytes, alignment is 8 bytes:
................ooooooooxxxooooo................

Everything is OK until the last allocation, where the alignment requirement means that there
must be two overflow buffers. This slows down program execution since the library must check



Chapter 16: Examples 109

an additional overflow buffer, and also means that the program would have to read six bytes
beyond the end of the allocation before the illegal memory access would be detected.

16.4 Using overflow buffers

This example illustrates the use of overflow buffers and so the MPATROL_OPTIONS envi-
ronment variable should have ‘OFLOWSIZE=2’ and ‘CHECK=-’ added to it. However, turn
off any ‘PAGEALLOC’ options for the purposes of this example. The test is located in
‘tests/fail/test5.c’, and ‘tests/fail/test6.c’ is very similar.

23 /*
24 * Allocates a block of 16 bytes and then copies a string of 16
25 * bytes into the block. However, the string is copied to 1 byte
26 * before the allocated block which writes before the start of the
27 * block. This test must be run with an OFLOWSIZE greater than 0.
28 */

31 #include "mpatrol.h"

34 int main(void)
35 {
36 char *p;

38 if (p = (char *) malloc(16))
39 {
40 strcpy(p - 1, "this test fails!");
41 free(p);
42 }
43 return EXIT_SUCCESS;
44 }

The following error should be produced in ‘mpatrol.log’.
ERROR: [ALLOVF]: allocation 0x08062FB8 has a corrupted overflow buffer at

0x08062FB7
0x08062FB6 AA74 .t

0x08062FB8 (16 bytes) {malloc:52:0} [main|test5.c|38]
0x0804942F main+31
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

Once again, the library attempts to show you as much detail as possible about where the
corruption occurred. Along with showing you a memory dump of the overflow buffer that was
corrupted, it also shows you the allocation to which the overflow buffer belongs.

Using overflow buffers and the ‘CHECK=-’ option can reduce the speed of program execution
since the library has to check every buffer whenever it is called, and if the buffers are larger then
they’ll take longer to check and will use up more memory. However, larger buffers mean that
there is less chance of the program writing past one memory allocation into another.

Alternatively, the ‘CHECK’ option can be used to limit the number of checks that the library
has to perform, thus speeding up program execution. This option specifies a range of allocation
indices through which the library will check overflow buffers and free memory for corruption.
Such checks occur when they normally would, but only if the current allocation index falls



110 mpatrol

within the specified range. This feature can be used when there is a suspicion that free memory
corruption or overflow buffer corruption occurs at a certain point during program execution, but
checking them at every library call would take too long. You can also specify a frequency at
which to check the heap using the ‘CHECK’ option. This can be used when attempting to narrow
down the search for where heap corruption occurs.

On systems which support software watch points, there is an extra option called ‘OFLOWWATCH’
which allows additional memory protection. Watch points allow individual bytes to be read
and/or write protected as opposed to just pages. The ‘OFLOWWATCH’ option installs software
watch points at every overflow buffer instead of requiring the library to check the integrity of
the overflow buffers, and can be used in combination with ‘PAGEALLOC’. However, software watch
points slow down program execution to a crawl since every machine instruction must be checked
individually by the system to see if it accesses a watch point area. Slowing the program down
by a factor of 10,000 is not uncommon on some systems when the ‘OFLOWWATCH’ option is used.

16.5 Checking memory accesses

For the ultimate in heap checking, if you are using the GNU compiler you can use the
‘-fcheck-memory-usage’ option. This instructs the compiler to place error-checking calls before
each read or write to memory. The functions that are called then check to ensure that the
memory access does not overflow a heap memory allocation or access free memory.

The following test (which can be found in ‘tests/fail/test17.c’) has an example of a read
from memory which overflows a memory allocation’s boundaries.

23 /*
24 * Allocates a single byte of memory and then attempts to read the
25 * byte as a word, resulting in some uninitialised bytes being read.
26 * This can sometimes be detected with PAGEALLOC=UPPER but can always
27 * be detected with OFLOWWATCH or by using the -fcheck-memory-usage
28 * option of gcc.
29 */

32 #include "mpatrol.h"

35 int main(void)
36 {
37 int *p;
38 int r;

40 if (p = (int *) calloc(1, 1))
41 {
42 r = p[0];
43 free(p);
44 }
45 return EXIT_SUCCESS;
46 }

For this example, the above test must be compiled with gcc with the
‘-fcheck-memory-usage’ option on the compiler command line and linked with the
mpatrol library. Normally, the test will pass and not cause any problems, since most malloc
libraries will allocate at least one word anyway. However, there are some instances where that
will not be the case, especially on systems where misaligned memory accesses are legal. Also,



Chapter 16: Examples 111

if the implementation of calloc() only initialised the number of bytes requested then the
number read back might not be zero.

If you now run the program it should abort and produce something similar to the following
in the resulting ‘mpatrol.log’.

ERROR: [RNGOVF]: range [0x00022568,0x0002256B] overflows
[0x00022568,0x00022568]

0x00022568 (1 byte) {calloc:19:0} [main|test17.c|40]
0x00010A0C main+96
0x0001087C _start+100

As you can see, the mpatrol library detected a read beyond the boundaries of the one byte
memory allocation starting at ‘0x00022568’.

16.6 Bad memory operations

In C there are several basic memory operation functions that are often called to perform tasks
such as clearing memory, copying memory, etc. The mpatrol library contains replacements
for these which allow for better checking of their arguments to prevent reading and writing
past the boundaries of existing memory allocations. The following source can be found in
‘tests/fail/test9.c’.

23 /*
24 * Allocates a block of 16 bytes and then attempts to zero the contents of
25 * the block. However, a zero byte is also written 1 byte before and 1
26 * byte after the allocated block, resulting in an error in the log file.
27 */

30 #include "mpatrol.h"

33 int main(void)
34 {
35 char *p;

37 if (p = (char *) malloc(16))
38 {
39 memset(p - 1, 0, 18);
40 free(p);
41 }
42 return EXIT_SUCCESS;
43 }

When this is compiled and run, the following should appear in the log file.

ERROR: [RNGOVF]: memset: range [0x08062FB7,0x08062FC8] overflows
[0x08062FB8,0x08062FC7]

0x08062FB8 (16 bytes) {malloc:52:0} [main|test9.c|37]
0x0804942F main+31
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

As you can see, the library detected that the memset() function would have written past the
boundaries of the memory allocation and reported this to you. It then proceeded to ignore the



112 mpatrol

request to copy the memory and continued with the execution of the program2. Note that this
will only be done for known memory allocations. Reading and writing past the boundaries of
static and stack memory allocations cannot be detected in this way.

If the ‘LOGMEMORY’ option is added to the MPATROL_OPTIONS environment variable then it
is possible to see a log of all the mpatrol library memory operation functions that were called
during program execution. For example, adding this option and running the above program
again will produce something similar to the following.

MEMSET: memset (0x08062FB7, 18 bytes, 0x00) [main|test9.c|39]
0x0804945B main+75
0x4007C9CB __libc_start_main+255
0x08049381 _start+33

This is similar to the tracing produced for memory allocation functions, except that the
arguments in parentheses mean different things. For ‘MEMSET’, the first argument represents the
start of the memory block to set, the second argument represents the number of bytes to set
and the third argument represents the actual byte to set.

For ‘MEMCOPY’, the first argument represents the source memory block, the second argument
represents the destination memory block, the third argument represents the number of bytes to
copy and the fourth argument represents a byte to copy up to if memccpy() is being called. This
is similar for ‘MEMCMP’.

For ‘MEMFIND’, the first and second arguments represent the source memory block and its
length, while the third and fourth arguments represent the memory block to search for and its
length. In the implementation for memchr(), the byte to search for is copied to a one byte buffer
and the address of that buffer is used as the memory block to search for.

Note that as with the memory allocation functions, ‘MEMCMP’, ‘MEMFIND’, ‘MEMCOPY’ and
‘MEMSET’ are used to generalise the types of operations being performed and are followed by
the names of the actual functions being used. In some cases the functions may use a different
ordering of parameters than that shown.

16.7 Incompatible function calls

This example illustrates how the mpatrol library checks for calls to incompatible pairs
of memory allocation functions. It requires the use of C++, although does not use any
C++ features except for overloaded operators. The source is in ‘tests/fail/test7.c’, and
‘tests/fail/test8.c’ is similar.

23 /*
24 * Allocates a block of 16 bytes using C++ operator new[] and then
25 * attempts to free it using C++ operator delete.
26 */

29 #include "mpatrol.h"

32 int main(void)
33 {
34 char *p;

36 p = new char[16];

2 The error can be turned into a warning with the ‘ALLOWOFLOW’ option which will also force the operation to
be performed.



Chapter 16: Examples 113

37 delete p;
38 return EXIT_SUCCESS;
39 }

The relevant parts of ‘mpatrol.log’ are shown below.
ALLOC: operator new[] (74, 16 bytes, 4 bytes) [int main()|test7.c|36]

0x0804955D main+13
0x400DB9CB __libc_start_main+255
0x080494C1 _start+33

returns 0x08062FC0

FREE: operator delete (0x08062FC0) [int main()|test7.c|37]
0x0804956E main+30
0x400DB9CB __libc_start_main+255
0x080494C1 _start+33

ERROR: [INCOMP]: operator delete: 0x08062FC0 was allocated with operator new[]
0x08062FC0 (16 bytes) {operator new[]:74:0} [int main()|test7.c|36]

0x0804955D main+13
0x400DB9CB __libc_start_main+255
0x080494C1 _start+33

This shows a call to operator new[], closely followed by a call to operator delete. How-
ever, in C++ calls to operator new[] must be matched by calls to operator delete[] and not
operator delete. Hence, the library reports this as an error and does not free the memory
allocation.

16.8 The alloca() functions

There are two examples of using alloca() and its related functions in ‘tests/pass/test8.c’
and ‘tests/fail/test16.c’. Both rely on mpatrol having full call stack traceback support,
although they will work (albeit with slightly different results) on systems that do not.

The first test simply illustrates the use of alloca() and how its memory allocations are freed
when they are no longer in use.

23 /*
24 * Tests alloca() and related functions via nested function calls.
25 * The final output should be a horizontal pyramid of plus signs
26 * followed by a horizontal pyramid of minus signs.
27 */

30 #include "mpatrol.h"
31 #include <stdio.h>

34 char *f1(char *s)
35 {
36 char *t;
37 size_t l;

39 l = strlen(s) + 1;
40 if ((t = (char *) alloca(l + 1)) == NULL)



114 mpatrol

41 return NULL;
42 memcpy(t, s, l);
43 t[l - 1] = t[l - 2];
44 t[l] = ’\0’;
45 return strdup(t);
46 }

49 char *f2(char *s)
50 {
51 char *t;
52 size_t l;

54 l = strlen(s) - 1;
55 if ((t = (char *) alloca(l + 1)) == NULL)
56 return NULL;
57 memcpy(t, s, l + 1);
58 t[l] = ’\0’;
59 return strdup(t);
60 }

63 int f(char *s, size_t l)
64 {
65 char *t;
66 size_t i;

68 puts(s);
69 for (i = 0; i < l; i++)
70 {
71 if (((t = f1(s)) == NULL) ||
72 ((s = (char *) alloca(strlen(t) + 1)) == NULL))
73 return 0;
74 strcpy(s, t);
75 free(t);
76 puts(s);
77 }
78 for (i = 0; i < l; i++)
79 {
80 if (((t = f2(s)) == NULL) ||
81 ((s = (char *) alloca(strlen(t) + 1)) == NULL))
82 return 0;
83 strcpy(s, t);
84 free(t);
85 puts(s);
86 }
87 return 1;
88 }

91 int main(void)



Chapter 16: Examples 115

92 {
93 char *s;

95 s = strdupa("+");
96 if (!f(s, 4))
97 exit(EXIT_FAILURE);
98 dealloca(s);
99 s = strdupa("-");
100 if (!f(s, 4))
101 exit(EXIT_FAILURE);
102 dealloca(s);
103 return EXIT_SUCCESS;
104 }

When compiled and run, you should get the following output.
+
++
+++
++++
+++++
++++
+++
++
+
-
--
---
----
-----
----
---
--
-

If you run it again, this time with the MPATROL_OPTIONS environment variable set to
‘LOGALLOCS’ and ‘LOGFREES’, you should see the following in the newly-generated ‘mpatrol.log’
file. Note that the ‘...’ marks text that has been removed.

ALLOC: strdupa (1, 2 bytes, 1 byte) [main|test8.c|95] (char x 2)
0x000138F0 main+52
0x00013350 _start+100

returns 0x0008C000

ALLOC: alloca (2, 3 bytes, 8 bytes) [f1|test8.c|40]
0x000134CC f1+76
0x000136D8 f+68
0x00013904 main+72
0x00013350 _start+100

returns 0x0008C008

ALLOC: strdup (3, 3 bytes, 1 byte) [f1|test8.c|45] (char x 3)
0x00013584 f1+260



116 mpatrol

0x000136D8 f+68
0x00013904 main+72
0x00013350 _start+100

returns 0x0008C002

FREE: alloca (0x0008C008) [f|test8.c|72]
0x00013728 f+148
0x00013904 main+72
0x00013350 _start+100

0x0008C008 (3 bytes) {alloca:2:0} [f1|test8.c|40]
0x000134CC f1+76
0x000136D8 f+68
0x00013904 main+72
0x00013350 _start+100

ALLOC: alloca (4, 3 bytes, 8 bytes) [f|test8.c|72]
0x00013728 f+148
0x00013904 main+72
0x00013350 _start+100

returns 0x0008C008

...

FREE: alloca (0x0008C040) [main|test8.c|102]
0x000139C8 main+268
0x00013350 _start+100

0x0008C040 (2 bytes) {alloca:50:0} [f|test8.c|81]
0x00013828 f+404
0x00013988 main+204
0x00013350 _start+100

FREE: alloca (0x0008C038) [main|test8.c|102]
0x000139C8 main+268
0x00013350 _start+100

0x0008C038 (3 bytes) {alloca:47:0} [f|test8.c|81]
0x00013828 f+404
0x00013988 main+204
0x00013350 _start+100

...

FREE: alloca (0x0008C010) [main|test8.c|102]
0x000139C8 main+268
0x00013350 _start+100

0x0008C010 (4 bytes) {alloca:32:0} [f|test8.c|72]



Chapter 16: Examples 117

0x00013728 f+148
0x00013988 main+204
0x00013350 _start+100

FREE: alloca (0x0008C008) [main|test8.c|102]
0x000139C8 main+268
0x00013350 _start+100

0x0008C008 (3 bytes) {alloca:29:0} [f|test8.c|72]
0x00013728 f+148
0x00013988 main+204
0x00013350 _start+100

FREE: dealloca (0x0008C000) [main|test8.c|102]
0x000139C8 main+268
0x00013350 _start+100

0x0008C000 (2 bytes) {strdupa:26:0} [main|test8.c|99] (char x 2)
0x00013974 main+184
0x00013350 _start+100

After the first call to strdupa(), there is a call to alloca() followed by a call to strdup().
Because the memory allocation made by strdupa() is at the top level of the program it cannot
automatically be freed until main() returns. However, at the next call to alloca() in f(), the
mpatrol library notices that the memory allocation that was made by alloca() in f1() can
be freed since f1() has returned. The relevant allocation is then freed before making the next
memory allocation. You can see how it makes its decision by examining the call stack at the
point of deallocation.

However, all of the memory allocations made by alloca() in f() cannot be freed until f()
returns. This can be seen in the two sets of eight consecutive deallocations in the log file, each set
followed by a call to dealloca(). The dealloca() function explicitly frees a memory allocation
that was made by the alloca() family of functions, but these calls are not really necessary
as all of these memory allocations would be freed anyway when main() returns. The call to
dealloca() is really only necessary to force a deallocation for a specific purpose at a certain
point in the program. Note that implicit deallocations are marked as being done by alloca()
while explicit deallocations are marked as being done by dealloca().

The second test illustrates how the mpatrol library can help debug alloca()-related problems
by treating such memory allocations as normal heap allocations.

23 /*
24 * Duplicates a string using alloca() and then returns the address
25 * of the allocation. This is illegal since the memory allocated
26 * by alloca() will be freed when the function returns. The call
27 * to memcpy() will then corrupt free memory and the call to free()
28 * will attempt to free an invalid pointer.
29 */

32 #include "mpatrol.h"
33 #include <stdio.h>

36 char *f(size_t l)



118 mpatrol

37 {
38 return (char *) alloca(l);
39 }

42 char *g(char *s)
43 {
44 char *t;
45 size_t l;

47 l = strlen(s) + 1;
48 if (t = f(l))
49 memcpy(t, s, l);
50 return t;
51 }

54 int main(void)
55 {
56 char *s;

58 s = g("test");
59 free(s);
60 return EXIT_SUCCESS;
61 }

If you compile and run this example with the MPATROL_OPTIONS environment variable con-
taining the options ‘LOGALL’ and ‘NOFREE=1’ you should see the following in mpatrol.log.

ALLOC: alloca (1, 5 bytes, 8 bytes) [f|test16.c|38]
0x0001346C f+52
0x000134A8 g+40
0x00013524 main+20
0x00013308 _start+100

returns 0x0008C000

FREE: alloca (0x0008C000) [g|test16.c|49]
0x000134F8 g+120
0x00013524 main+20
0x00013308 _start+100

0x0008C000 (5 bytes) {alloca:1:0} [f|test16.c|38]
0x0001346C f+52
0x000134A8 g+40
0x00013524 main+20
0x00013308 _start+100

MEMCOPY: memcpy (0x0001F760, 0x0008C000, 5 bytes, 0x00) [g|test16.c|49]
0x000134F8 g+120
0x00013524 main+20
0x00013308 _start+100



Chapter 16: Examples 119

ERROR: [FRDOPN]: memcpy: attempt to perform operation on freed memory
0x0008C000 (5 bytes) {alloca:1:0} [g|test16.c|49]

0x000134F8 g+120
0x00013524 main+20
0x00013308 _start+100

returns 0x0008C000

FREE: free (0x0008C000) [main|test16.c|59]
0x00013550 main+64
0x00013308 _start+100

ERROR: [PRVFRD]: free: 0x0008C000 was freed with alloca
0x0008C000 (5 bytes) {alloca:1:0} [g|test16.c|49]

0x000134F8 g+120
0x00013524 main+20
0x00013308 _start+100

As you can see, memory allocations made by alloca() are treated in almost exactly the
same way as normal memory allocations, with the result that errors similar to those above can
be detected by the mpatrol library. The only real difference between the two types of memory
allocations is that allocations made by the alloca() family of functions will never show up in
the list of unfreed memory allocations.

16.9 The MP_MALLOC() functions

The mpatrol library comes with a set of alternative dynamic memory allocation functions for
C. These allow it to record the type and type size of every memory allocation made through these
functions, which can be very useful for debugging purposes. It also means that the alignment
for each memory allocation can be determined according to its type. The following test can be
found in ‘tests/pass/test9.c’.

23 /*
24 * Allocates 16 floats and then resizes the allocation to 8 floats and
25 * frees them. Then allocates 16 integers and resizes the allocation
26 * to 32 integers before freeing them. Finally, duplicates a string
27 * and then frees it.
28 */

31 #include "mpatrol.h"

34 int main(void)
35 {
36 float *f;
37 int *i;
38 char *s;

40 MP_MALLOC(f, 16, float);
41 MP_REALLOC(f, 8, float);
42 MP_FREE(f);
43 MP_CALLOC(i, 16, int);



120 mpatrol

44 MP_REALLOC(i, 32, int);
45 MP_FREE(i);
46 MP_STRDUP(s, "test");
47 MP_FREE(s);
48 return EXIT_SUCCESS;
49 }

If this test is compiled and linked with the mpatrol library and then run with the ‘LOGALL’
option, the following output will be seen in the mpatrol log file.

ALLOC: xmalloc (84, 64 bytes, 4 bytes) [main|test9.c|40] (float x 16)
0x0804AC36 main+38
0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

returns 0x080510E8

REALLOC: xrealloc (0x080510E8, 32 bytes, 4 bytes) [main|test9.c|41] (float x 8)
0x0804AC60 main+80
0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

0x080510E8 (64 bytes) {xmalloc:84:0} [main|test9.c|40] (float x 16)
0x0804AC36 main+38
0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

returns 0x080510E8

FREE: xfree (0x080510E8) [main|test9.c|42]
0x0804AC7F main+111
0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

0x080510E8 (32 bytes) {xrealloc:84:1} [main|test9.c|41] (float x 8)
0x0804AC60 main+80
0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

ALLOC: xcalloc (85, 64 bytes, 4 bytes) [main|test9.c|43] (int x 16)
0x0804ACB2 main+162
0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

returns 0x080510E8

REALLOC: xrealloc (0x080510E8, 128 bytes, 4 bytes) [main|test9.c|44] (int x 32)
0x0804ACDF main+207
0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

0x080510E8 (64 bytes) {xcalloc:85:0} [main|test9.c|43] (int x 16)
0x0804ACB2 main+162



Chapter 16: Examples 121

0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

returns 0x080510E8

FREE: xfree (0x080510E8) [main|test9.c|45]
0x0804ACFE main+238
0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

0x080510E8 (128 bytes) {xrealloc:85:1} [main|test9.c|44] (int x 32)
0x0804ACDF main+207
0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

ALLOC: xstrdup (86, 5 bytes, 1 byte) [main|test9.c|46] (char x 5)
0x0804AD2E main+286
0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

returns 0x080510E5

FREE: xfree (0x080510E5) [main|test9.c|47]
0x0804AD4F main+319
0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

0x080510E5 (5 bytes) {xstrdup:86:0} [main|test9.c|46] (char x 5)
0x0804AD2E main+286
0x400A09CB __libc_start_main+255
0x0804AB81 _start+33

As you can see, the type and number of items allocated of that type are associated with each
memory allocation. The function names that are logged as having made the memory allocations
are from the xmalloc() family of functions since that is how the MP_MALLOC() family of functions
are implemented.

16.10 Additional useful information

This last example illustrates the various ‘SHOW’ options that are available for displaying
additional information from the mpatrol library at program termination. It also shows how
to easily detect memory leaks. Use the ‘OFLOWSIZE=16’, ‘NOFREE=16’ and ‘SHOWALL’ options in
MPATROL_OPTIONS before running.

1 /*
2 * Introduces a memory leak by clobbering a pointer with a new
3 * memory allocation. Use with SHOWUNFREED to display it.
4 */

7 #include "mpatrol.h"



122 mpatrol

10 int main(void)
11 {
12 void *p;

14 p = malloc(4);
15 p = malloc(4);
16 if (p != NULL)
17 free(p);
18 return EXIT_SUCCESS;
19 }

The information that we are interested in comes after the summary of library statistics
generated in the log file. The first block of data shows a memory map of the heap that is being
handled by mpatrol. This can be used to see graphically where a particular allocation is located,
or to look for memory fragmentation. The ‘SHOWMAP’ option also displays this information.

Note that gaps in the memory map can either be due to space used by internal memory
blocks or to some other memory allocation library using up space. On some systems that don’t
have virtual memory, gaps are likely to be owned by other processes or belong to the system
free memory list. The ‘...’ marks text that has been removed.

memory map:
...

/ 0x0002FDD0-0x0002FDDF overflow (16 bytes)
|+ 0x0002FDE0-0x0002FE03 allocated (36 bytes) {calloc:13:0} [-|-|-]
\ 0x0002FE04-0x0002FE13 overflow (16 bytes)

--- 0x0002FE14-0x0002FE17 free (4 bytes)
/ 0x0002FE18-0x0002FE27 overflow (16 bytes)
|+ 0x0002FE28-0x0002FF18 allocated (241 bytes) {calloc:15:0} [-|-|-]
\ 0x0002FF19-0x0002FF28 overflow (16 bytes)

--- 0x0002FF29-0x0002FF2F free (7 bytes)
/ 0x0002FF30-0x0002FF3F overflow (16 bytes)
|+ 0x0002FF40-0x0002FF93 allocated (84 bytes) {calloc:16:0} [-|-|-]
\ 0x0002FF94-0x0002FFA3 overflow (16 bytes)

--- 0x0002FFA4-0x0002FFA7 free (4 bytes)
/ 0x0002FFA8-0x0002FFB7 overflow (16 bytes)
|+ 0x0002FFB8-0x0002FFC4 allocated (13 bytes) {calloc:17:0} [-|-|-]
\ 0x0002FFC5-0x0002FFD4 overflow (16 bytes)

--- 0x0002FFD5-0x0002FFD7 free (3 bytes)
/ 0x0002FFD8-0x0002FFE7 overflow (16 bytes)
|+ 0x0002FFE8-0x0002FFEB allocated (4 bytes) {malloc:19:0} [main|test.c|14]
\ 0x0002FFEC-0x0002FFFB overflow (16 bytes)

--- 0x0002FFFC-0x0002FFFF free (4 bytes)
--------------------- gap (57344 bytes)

/ 0x0003E000-0x0003E00F overflow (16 bytes)
|+ 0x0003E010-0x0003EFFF freed (4080 bytes) {free:6:0} [-|-|-]
\ 0x0003F000-0x0003F00F overflow (16 bytes)
/ 0x0003F010-0x0003F01F overflow (16 bytes)
|+ 0x0003F020-0x0003F707 freed (1768 bytes) {free:12:0} [-|-|-]
\ 0x0003F708-0x0003F717 overflow (16 bytes)

--- 0x0003F718-0x0003FFFF free (2280 bytes)
--------------------- gap (16384 bytes)

/ 0x00044000-0x0004400F overflow (16 bytes)
|+ 0x00044010-0x00045197 freed (4488 bytes) {free:8:0} [-|-|-]



Chapter 16: Examples 123

\ 0x00045198-0x000451A7 overflow (16 bytes)
/ 0x000451A8-0x000451B7 overflow (16 bytes)
|+ 0x000451B8-0x000459AF freed (2040 bytes) {free:10:0} [-|-|-]
\ 0x000459B0-0x000459BF overflow (16 bytes)
/ 0x000459C0-0x000459CF overflow (16 bytes)
|+ 0x000459D0-0x00045D93 allocated (964 bytes) {calloc:14:0} [-|-|-]
\ 0x00045D94-0x00045DA3 overflow (16 bytes)
/ 0x00045DA4-0x00045DB3 overflow (16 bytes)
|+ 0x00045DB4-0x00045DCE allocated (27 bytes) {strdup:18:0} [-|-|-]
\ 0x00045DCF-0x00045DDE overflow (16 bytes)

--- 0x00045DDF-0x00045DDF free (1 byte)
/ 0x00045DE0-0x00045DEF overflow (16 bytes)
|+ 0x00045DF0-0x00045DF3 freed (4 bytes) {free:20:0} [main|test.c|17]
\ 0x00045DF4-0x00045E03 overflow (16 bytes)

--- 0x00045E04-0x00045FFF free (508 bytes)

The next block of data shows a summary of all the symbols that could be read from the
program’s executable file and/or any shared libraries that the program requires. This can be
useful to see which symbols have actually been read by the mpatrol library. The ‘SHOWSYMBOLS’
option also displays this information.

Note that the following data has been dramatically cut down in size for the purposes of this
example. The ‘...’ marks text that has been removed.

symbols read: 3300
0x000108B0 _ex_text0 [a.out] (0 bytes)

0x000108B0-0x0001097F _start [a.out] (208 bytes)
0x00010990-0x00010A27 main [a.out] (152 bytes)

0x00010A28 _ex_text1 [a.out] (0 bytes)
0x00010A28-0x00010A77 _init [a.out] (80 bytes)
0x00010A78-0x00010AC7 _fini [a.out] (80 bytes)

0x7FA1FFF8 _ex_text0 [/usr/lib/libc.so.1] (0 bytes)
0x7FA1FFF8-0x7FA2005F atexit [/usr/lib/libc.so.1] (104 bytes)
0x7FA20060-0x7FA200EF _exithandle [/usr/lib/libc.so.1] (144 bytes)
0x7FA20470-0x7FA204EB __dtou [/usr/lib/libc.so.1] (124 bytes)
0x7FA20500-0x7FA20577 __ftou [/usr/lib/libc.so.1] (120 bytes)
0x7FA2083C-0x7FA20B2F __div64 [/usr/lib/libc.so.1] (756 bytes)
0x7FA20B30-0x7FA20DEB __rem64 [/usr/lib/libc.so.1] (700 bytes)
...
0x7FA96858-0x7FA96867 getpid [/usr/lib/libc.so.1] (16 bytes)
0x7FA96858-0x7FA96867 _getpid [/usr/lib/libc.so.1] (16 bytes)
0x7FA96868-0x7FA9689F _kill [/usr/lib/libc.so.1] (56 bytes)
0x7FA96868-0x7FA9689F _libc_kill [/usr/lib/libc.so.1] (56 bytes)

0x7FA968A0 _ex_text1 [/usr/lib/libc.so.1] (0 bytes)
0x7FA968A0-0x7FA968DF _init [/usr/lib/libc.so.1] (64 bytes)
0x7FA968E0-0x7FA9691F _fini [/usr/lib/libc.so.1] (64 bytes)
0x7FB105E4-0x7FB1069F memmove [/usr/lib/libc_psr.so.1] (188 bytes)
0x7FB105E4-0x7FB1069F _memmove [/usr/lib/libc_psr.so.1] (188 bytes)

0x7FB106A0 forcpy [/usr/lib/libc_psr.so.1] (0 bytes)
0x7FB106A0-0x7FB1190B memcpy [/usr/lib/libc_psr.so.1] (4716 bytes)
0x7FB106A0-0x7FB1190B _memcpy [/usr/lib/libc_psr.so.1] (4716 bytes)
0x7FB106A0-0x7FB1190B __align_cpy_1 [/usr/lib/libc_psr.so.1] (4716 bytes)
...
0x7FB135B0-0x7FB135D3 __div64 [/usr/lib/libc_psr.so.1] (36 bytes)



124 mpatrol

0x7FB135D4-0x7FB135F7 __udiv64 [/usr/lib/libc_psr.so.1] (36 bytes)
0x7FB135F8-0x7FB1362B __umul64 [/usr/lib/libc_psr.so.1] (52 bytes)
0x7FB135F8-0x7FB1362B __mul64 [/usr/lib/libc_psr.so.1] (52 bytes)
0x7FB1362C-0x7FB13657 __urem64 [/usr/lib/libc_psr.so.1] (44 bytes)
0x7FB13658-0x7FB13683 __rem64 [/usr/lib/libc_psr.so.1] (44 bytes)

0x7FB333F8 _ex_text0 [/usr/lib/libelf.so.1] (0 bytes)
0x7FB333F8-0x7FB3346F _elf32_entsz [/usr/lib/libelf.so.1] (120 bytes)
0x7FB33470-0x7FB334EB elf32_fsize [/usr/lib/libelf.so.1] (124 bytes)
0x7FB33470-0x7FB334EB _elf32_fsize [/usr/lib/libelf.so.1] (124 bytes)
0x7FB334EC-0x7FB3352F _elf32_msize [/usr/lib/libelf.so.1] (68 bytes)
0x7FB33530-0x7FB335D3 _elf32_mtype [/usr/lib/libelf.so.1] (164 bytes)
...
0x7FB49054-0x7FB4921F _elf_nlist [/usr/lib/libelf.so.1] (460 bytes)
0x7FB49220-0x7FB4932F nlist [/usr/lib/libelf.so.1] (272 bytes)
0x7FB49330-0x7FB493E3 _elf_findop [/usr/lib/libelf.so.1] (180 bytes)

0x7FB493E4 _ex_text1 [/usr/lib/libelf.so.1] (0 bytes)
0x7FB493E4-0x7FB4941B _init [/usr/lib/libelf.so.1] (56 bytes)
0x7FB4941C-0x7FB49453 _fini [/usr/lib/libelf.so.1] (56 bytes)
0x7FB65818-0x7FB6582F __mp_newlist [/usr/lib/libmpatrol.so.1.3] (24 bytes)
0x7FB65830-0x7FB65853 __mp_addhead [/usr/lib/libmpatrol.so.1.3] (36 bytes)
0x7FB65854-0x7FB6587B __mp_addtail [/usr/lib/libmpatrol.so.1.3] (40 bytes)
0x7FB6587C-0x7FB6589F __mp_prepend [/usr/lib/libmpatrol.so.1.3] (36 bytes)
0x7FB658A0-0x7FB658C3 __mp_insert [/usr/lib/libmpatrol.so.1.3] (36 bytes)
0x7FB658C4-0x7FB658EB __mp_remove [/usr/lib/libmpatrol.so.1.3] (40 bytes)
...
0x7FB725F4-0x7FB7262B memmem [/usr/lib/libmpatrol.so.1.3] (56 bytes)
0x7FB7262C-0x7FB72663 _memmem [/usr/lib/libmpatrol.so.1.3] (56 bytes)
0x7FB72664-0x7FB72697 memcmp [/usr/lib/libmpatrol.so.1.3] (52 bytes)
0x7FB72698-0x7FB726CB _memcmp [/usr/lib/libmpatrol.so.1.3] (52 bytes)
0x7FB726CC-0x7FB726FF bcmp [/usr/lib/libmpatrol.so.1.3] (52 bytes)
0x7FB72700-0x7FB72733 _bcmp [/usr/lib/libmpatrol.so.1.3] (52 bytes)
0x7FB9085C-0x7FB90863 dlinfo [/usr/lib/libdl.so.1] (8 bytes)
0x7FB9085C-0x7FB90863 _dlinfo [/usr/lib/libdl.so.1] (8 bytes)
0x7FB90864-0x7FB9086B dlmap [/usr/lib/libdl.so.1] (8 bytes)
0x7FB90864-0x7FB9086B _dlmap [/usr/lib/libdl.so.1] (8 bytes)
0x7FB9086C-0x7FB90873 dlmopen [/usr/lib/libdl.so.1] (8 bytes)
0x7FB9086C-0x7FB90873 _dlmopen [/usr/lib/libdl.so.1] (8 bytes)
...
0x7FB90894-0x7FB9089B dladdr [/usr/lib/libdl.so.1] (8 bytes)
0x7FB90894-0x7FB9089B _dladdr [/usr/lib/libdl.so.1] (8 bytes)
0x7FB9089C-0x7FB908A3 dldump [/usr/lib/libdl.so.1] (8 bytes)
0x7FB9089C-0x7FB908A3 _dldump [/usr/lib/libdl.so.1] (8 bytes)
0x7FB908A4-0x7FB908AB _ld_concurrency [/usr/lib/libdl.so.1] (8 bytes)
0x7FB908AC-0x7FB908B3 bind_guard [/usr/lib/libdl.so.1] (8 bytes)

The next table is really only useful for seeing how much memory fragmentation has occurred
in the memory map. It shows a breakdown of the free memory blocks that have either resulted
from the mpatrol library allocating uninitialised memory from the system heap or from freeing
existing memory allocations. The column on the left shows the size of the free block in bytes
and the column on the right shows the number of blocks of that size that are available. The
‘SHOWFREE’ option also displays this information.

free blocks: 10 (2919 bytes)



Chapter 16: Examples 125

2280: 1
508: 1
76: 1
32: 1
7: 1
4: 3
3: 1
1: 1

The next block of data shows a summary of all freed memory allocations. This is only possible
because the ‘NOFREE’ option was also given, otherwise there would be no details on freed memory
allocations. All of these entries show where the allocation was freed, which can be useful if you
quickly needed to see where an allocation was freed. The ‘SHOWFREED’ option also displays this
information. Note that the list will be limited to the size of the freed queue and will show only
the most recently-freed items.

As this example was run on UNIX, the mpatrol library replaces the default implementations
of malloc(), free(), etc. As can be seen below, this allows the library to trace all calls
to allocate dynamic memory in a process, even from functions that were not compiled with
mpatrol. Four of the five functions shown below were called by the mpatrol library in order to
read the symbols from ELF object files. However, they are located in the ELF access library
which was not compiled with mpatrol.

Note that the following data has again been cut down in size for the purposes of this example.
The ‘...’ marks text that has been removed.

freed allocations: 13 (19756 bytes)
0x0002E010 (232 bytes) {free:1:0} [-|-|-]

0x7FB3E5BC _elf_end+776
0x7FB6B3D4 __mp_addsymbols+440
0x7FB6FF5C __mp_init+208
0x7FB701FC __mp_alloc+84
0x000109B8 main+40
0x00010970 _start+192

0x0002E118 (3536 bytes) {free:2:0} [-|-|-]
0x7FB3E450 _elf_end+412
0x7FB6B3D4 __mp_addsymbols+440
0x7FB6FF5C __mp_init+208
0x7FB701FC __mp_alloc+84
0x000109B8 main+40
0x00010970 _start+192

0x0002EF08 (232 bytes) {free:3:0} [-|-|-]
0x7FB3E5BC _elf_end+776
0x7FB6B3D4 __mp_addsymbols+440
0x7FB6B4B4 __mp_addextsymbols+208
0x7FB6FF64 __mp_init+216
0x7FB701FC __mp_alloc+84
0x000109B8 main+40
0x00010970 _start+192

0x0002F010 (2448 bytes) {free:4:0} [-|-|-]
0x7FB3E450 _elf_end+412
0x7FB6B3D4 __mp_addsymbols+440



126 mpatrol

0x7FB6B4B4 __mp_addextsymbols+208
0x7FB6FF64 __mp_init+216
0x7FB701FC __mp_alloc+84
0x000109B8 main+40
0x00010970 _start+192

...

0x00045DF0 (4 bytes) {free:20:0} [main|test.c|17]
0x00010A14 main+132
0x00010970 _start+192

The final block of data shows a summary of all unfreed memory allocations. This can show up
memory leaks, although all but one of the unfreed memory allocations in this example come from
the standard C library. On systems such as UNIX it does not really matter about these unfreed
allocations since they will automatically be returned to the system on process termination.

However, the other unfreed allocation shows an example of a memory leak, where no pointers
referencing that allocation remain in the program to free it with. If this was within a loop then
the program could quickly run away with memory, causing at least a decrease in performance,
and at most a memory shortage. The mpatrol library makes it easier to spot memory leaks,
especially if the ‘PROF’ profiling option is used.

The ‘SHOWUNFREED’ option also displays this information.
unfreed allocations: 7 (1369 bytes)

0x0002FDE0 (36 bytes) {calloc:13:0} [-|-|-]
0x7FA54B7C _tzload+56
0x7FA53990 _ltzset_u+444
0x7FA52D98 localtime_u+28
0x7FA3AF20 ctime+12
0x7FB6D05C __mp_printversion+184
0x7FB6FFA0 __mp_init+276
0x7FB701FC __mp_alloc+84
0x000109B8 main+40
0x00010970 _start+192

0x0002FE28 (241 bytes) {calloc:15:0} [-|-|-]
0x7FA54E3C _tzload+760
0x7FA53990 _ltzset_u+444
0x7FA52D98 localtime_u+28
0x7FA3AF20 ctime+12
0x7FB6D05C __mp_printversion+184
0x7FB6FFA0 __mp_init+276
0x7FB701FC __mp_alloc+84
0x000109B8 main+40
0x00010970 _start+192

0x0002FF40 (84 bytes) {calloc:16:0} [-|-|-]
0x7FA54E64 _tzload+800
0x7FA53990 _ltzset_u+444
0x7FA52D98 localtime_u+28
0x7FA3AF20 ctime+12
0x7FB6D05C __mp_printversion+184
0x7FB6FFA0 __mp_init+276



Chapter 16: Examples 127

0x7FB701FC __mp_alloc+84
0x000109B8 main+40
0x00010970 _start+192

0x0002FFB8 (13 bytes) {calloc:17:0} [-|-|-]
0x7FA54EE8 _tzload+932
0x7FA53990 _ltzset_u+444
0x7FA52D98 localtime_u+28
0x7FA3AF20 ctime+12
0x7FB6D05C __mp_printversion+184
0x7FB6FFA0 __mp_init+276
0x7FB701FC __mp_alloc+84
0x000109B8 main+40
0x00010970 _start+192

0x0002FFE8 (4 bytes) {malloc:19:0} [main|test.c|14]
0x000109B8 main+40
0x00010970 _start+192

...

Beginning with mpatrol release 1.4.2, the ‘LEAKTABLE’ option is available to summarise the
above unfreed memory allocations without including the internal memory allocations that were
made when the mpatrol library was initialised. If you add the ‘LEAKTABLE’ option to the
MPATROL_OPTIONS environment variable and then re-run the program you should see the fol-
lowing in the mpatrol log file:

top 1 unfreed memory entry in leak table:

bytes count location
-------- ------ --------

4 1 test.c line 14
4 1 total



128 mpatrol



Chapter 17: Tutorial 129

17 Tutorial

In this chapter we’ll look at a real example of using the mpatrol library to debug a program.
All of the following building and debugging steps were performed on an Intel Linux machine
so the details may differ slightly on your system, but the concepts should remain the same.
However, on systems without virtual memory some of the steps may actually cause the machine
to lock up or crash so be aware of this if you are running such a system — you may be safer
just reading this tutorial rather than attempting it!

This tutorial will also make use of the option ‘USEDEBUG’ which displays source-level file names
and line numbers associated with symbols in call stack tracebacks, but only if the underlying
object file access library supports reading line tables from object files and even then only if the
object files were compiled with debugging information enabled. Alternatively, you may be able
to use the mpsym command to obtain such information instead.

The program we are going to look at is a simple filter which processes its standard input and
displays the processed information on its standard output. In this case the program converts all
lowercase characters to uppercase and removes any blank lines. The source for the program is
given below, but can also be found in ‘tests/tutorial/test1.c’.

23 /*
24 * Reads the standard input file stream, converts all lowercase
25 * characters to uppercase, and displays all non-empty lines to the
26 * standard output file stream.
27 */

30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <ctype.h>

36 char *strtoupper(char *s)
37 {
38 char *t;
39 size_t i, l;

41 l = strlen(s);
42 t = (char *) malloc(l);
43 for (i = 0; i < l; i++)
44 t[i] = toupper(s[i]);
45 t[i] = ’\0’;
46 return t;
47 }

50 int main(void)
51 {
52 char *b, *s;

54 b = (char *) malloc(BUFSIZ);
55 while (gets(b))
56 {



130 mpatrol

57 s = strtoupper(b);
58 if (*s != ’\0’)
59 {
60 puts(s);
61 free(s);
62 }
63 }
64 free(b);
65 return EXIT_SUCCESS;
66 }

If you quickly skimmed over the above code then you might have noticed some rather obvious
errors, but there are also some less obvious ones hidden there as well. After compiling and linking
with the system C compiler and libraries it successfully runs, even when its source code is piped
to it. So if it runs, why bother trying to debug it?

The short answer to that is that this program does in fact contain one rather major error
that is likely to prevent it from running portably on other systems. However, for the purposes
of this tutorial, we’ll pretend that we’ve just been handed the source code for this program and
have not worked on it before. So let’s now try to compile and link it with the mpatrol library1.

First, add the inclusion of ‘mpatrol.h’ to line 34 so that we can replace calls to malloc()
and free() with their mpatrol equivalents2. Then, recompile the program and link it with
the mpatrol library. This time, running it with the ‘CHECK=-’ option and even the simplest of
non-empty input lines should cause it to abort!

If you look at the ‘mpatrol.log’ file produced, you should see something along the lines of
the following at the end of the log file.

ERROR: [FRECOR]: free memory corruption at 0x08067FF6
0x08067FF6 00555555 55555555 5555 .UUUUUUUUU

This tells us that something has written a zero byte into free memory at location
‘0x08067FF6’. Unfortunately, the library only caught it at the next call to one of its functions
so it had already happened somewhere in between the last call and the current call. Turning
on the ‘LOGALL’ option in the MPATROL_OPTIONS environment variable allows us to see the last
successful function call to the mpatrol library.

ALLOC: malloc (56, 8192 bytes, 4 bytes) [main|test1.c|54]
0x0804960E main+34 at test1.c:54
0x4007C9CB __libc_start_main+255
0x080494D1 _start+33

returns 0x080F0B48

ALLOC: malloc (68, 2 bytes, 4 bytes) [strtoupper|test1.c|42]
0x08049592 strtoupper+50 at test1.c:42
0x08049631 main+69 at test1.c:57
0x4007C9CB __libc_start_main+255
0x080494D1 _start+33

returns 0x08067FF4

1 On UNIX systems with dynamic linking it might also be possible to run the program under the mpatrol

command with its ‘--dynamic’ option without having to recompile or relink, but compiling and linking with
the mpatrol library is a more generic solution across different platforms.

2 This is not strictly necessary on UNIX and Windows platforms (and AmigaOS when using gcc), but it does
give us more debugging information.



Chapter 17: Tutorial 131

Unfortunately, this only tells us that the last successful mpatrol library function call was
malloc() called from strtoupper(). If we add the option ‘OFLOWSIZE=8’ to the MPATROL_
OPTIONS environment variable then we get slightly more information about which memory allo-
cation was affected3.

ERROR: [ALLOVF]: allocation 0x08071E34 has a corrupted overflow buffer at
0x08071E36

0x08071E36 00AAAAAA AAAAAAAA ........

0x08071E34 (2 bytes) {malloc:68:0} [strtoupper|test1.c|42]
0x08049592 strtoupper+50 at test1.c:42
0x08049631 main+69 at test1.c:57
0x4007C9CB __libc_start_main+255
0x080494D1 _start+33

Now we can make a better guess about what is happening. Since the start of the upper over-
flow buffer of allocation 68 has been written to, we can assume that something has written one
byte beyond the end of that memory allocation. You can probably see where that is happening
now by looking at the code, but let’s try to be even more sure that this is what is wrong.

The only foolproof way to do this is to add a watch point to keep an eye on the address
that is being written to. This can normally only be done within a debugger, but on systems
that support programmable software watch points, the ‘OFLOWWATCH’ option can be used to do
the same thing. For the sake of generality, we’ll use the debugger watch point approach, in
this case with gdb. In order for the following example to work correctly you’ll need to add the
‘ALLOCSTOP=68’ option to the MPATROL_OPTIONS environment variable so that we can stop just
after the last successful memory allocation.

(gdb) break main
Breakpoint 1 at 0x80495f2: file test1.c, line 54.
(gdb) run <test1.c
Starting program: a.out
Breakpoint 1, main() at test1.c:54
54 b = (char *) malloc(BUFSIZ);
(gdb) break __mp_trap
Breakpoint 2 at 0x804f083
(gdb) continue
Continuing.
Breakpoint 2, 0x804f083 in __mp_trap()
(gdb) backtrace
#0 0x804f083 in __mp_trap()
#1 0x804c81b in __mp_getmemory()
#2 0x8049a94 in __mp_alloc()
#3 0x8049592 in strtoupper(s=0x80f0be0 "/*") at test1.c:42
#4 0x8049631 in main() at test1.c:57
(gdb) step
Single stepping until exit from function __mp_trap,
which has no line number information.
0x804c81b in __mp_getmemory()
(gdb) step
Single stepping until exit from function __mp_getmemory,
which has no line number information.
0x8049a94 in __mp_alloc()

3 Note that the start address of the allocation has changed slightly since we added padding around it with the
‘OFLOWSIZE’ option.



132 mpatrol

(gdb) step
Single stepping until exit from function __mp_alloc,
which has no line number information.
strtoupper(s=0x80f0be0 "/*") at test1.c:43
43 for (i = 0; i < l; i++)
(gdb) watch *0x8071e36
Hardware watchpoint 3: *134684214
(gdb) continue
Continuing.
Hardware watchpoint 3: *134684214
Old value = -1431655766
New value = -1431655936
strtoupper(s=0x80f0be0 "/*") at test1.c:46
46 return t;
(gdb) quit
The program is running. Exit anyway? (y or n) y

After loading the program into gdb, we need to break at main() so that we can run to a
point where all of the shared library symbols have been loaded into memory4. We can then set
another breakpoint at __mp_trap() and continue until allocation 68 has been reached.

Because the mpatrol library has not been built with debugging information in this example
we can quickly step back to the strtoupper() function since gdb won’t step through functions
that have no debugging information. We then set a watch point on address ‘0x8071e36’, which
is the address of the memory location that has been causing the problems. After continuing, the
debugger stops at line 46, but this is more likely to be line 45 since that is where a zero byte is
being written to5.

So, we have located the problem, which is simply a case of not allocating enough memory to
contain the copied string and the terminating zero byte. We can also improve the strtoupper()
function by checking the pointer returned by malloc() to see if it is ‘NULL’, and if so simply
exit with an error. You can try running the program with the ‘FAILFREQ’ option to see how it
would originally behave in a low memory situation.

The following listing shows the above modifications that we have made to our program. It
can also be found in ‘tests/tutorial/test2.c’.

23 /*
24 * Reads the standard input file stream, converts all lowercase
25 * characters to uppercase, and displays all non-empty lines to the
26 * standard output file stream.
27 */

30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <ctype.h>
34 #include "mpatrol.h"

37 char *strtoupper(char *s)

4 This is really only necessary when the mpatrol library has been built as a shared library.
5 This is not necessarily the fault of the debugger or the debugging information generated by the compiler since

on most platforms such watch points can only be caught after they occur, hence most debuggers show the
next statement to be executed rather than the current one.



Chapter 17: Tutorial 133

38 {
39 char *t;
40 size_t i, l;

42 l = strlen(s);
43 if ((t = (char *) malloc(l + 1)) == NULL)
44 {
45 fputs("strtoupper: out of memory\n", stderr);
46 exit(EXIT_FAILURE);
47 }
48 for (i = 0; i < l; i++)
49 t[i] = toupper(s[i]);
50 t[i] = ’\0’;
51 return t;
52 }

55 int main(void)
56 {
57 char *b, *s;

59 b = (char *) malloc(BUFSIZ);
60 while (gets(b))
61 {
62 s = strtoupper(b);
63 if (*s != ’\0’)
64 {
65 puts(s);
66 free(s);
67 }
68 }
69 free(b);
70 return EXIT_SUCCESS;
71 }

Leaving aside the obvious problem with gets() and the general inefficiency of the algorithm,
we could assume that our program works safely now and we can release it to the outside world.
However, a user soon reports a problem with our program steadily using more and more memory
during its execution when processing very large files.

This is generally attributable to a memory leak and so we can use the ‘SHOWUNFREED’ option
to try to detect where the memory leak is coming from. Following is some example output from
the mpatrol log file when our program is run and is given a relatively small text file as input.

unfreed allocations: 10 (185 bytes)
0x08062000 (176 bytes) {malloc:1:0} [-|-|-]

0x400B681B __new_fopen+27
0x0804F24E __mp_openlogfile+70
0x080497B5 __mp_init+109
0x08049973 __mp_alloc+31
0x0804962E main+34 at test2.c:59
0x4007C9CB __libc_start_main+255
0x080494D1 _start+33



134 mpatrol

0x08067FF4 (1 byte) {malloc:83:0} [strtoupper|test2.c|43]
0x08049593 strtoupper+51 at test2.c:43
0x08049651 main+69 at test2.c:62
0x4007C9CB __libc_start_main+255
0x080494D1 _start+33

0x08067FF8 (1 byte) {malloc:89:0} [strtoupper|test2.c|43]
0x08049593 strtoupper+51 at test2.c:43
0x08049651 main+69 at test2.c:62
0x4007C9CB __libc_start_main+255
0x080494D1 _start+33

0x08067FFC (1 byte) {malloc:90:0} [strtoupper|test2.c|43]
0x08049593 strtoupper+51 at test2.c:43
0x08049651 main+69 at test2.c:62
0x4007C9CB __libc_start_main+255
0x080494D1 _start+33

0x0808B304 (1 byte) {malloc:95:0} [strtoupper|test2.c|43]
0x08049593 strtoupper+51 at test2.c:43
0x08049651 main+69 at test2.c:62
0x4007C9CB __libc_start_main+255
0x080494D1 _start+33

0x0808B308 (1 byte) {malloc:96:0} [strtoupper|test2.c|43]
0x08049593 strtoupper+51 at test2.c:43
0x08049651 main+69 at test2.c:62
0x4007C9CB __libc_start_main+255
0x080494D1 _start+33

0x0808B30C (1 byte) {malloc:101:0} [strtoupper|test2.c|43]
0x08049593 strtoupper+51 at test2.c:43
0x08049651 main+69 at test2.c:62
0x4007C9CB __libc_start_main+255
0x080494D1 _start+33

0x0808B310 (1 byte) {malloc:113:0} [strtoupper|test2.c|43]
0x08049593 strtoupper+51 at test2.c:43
0x08049651 main+69 at test2.c:62
0x4007C9CB __libc_start_main+255
0x080494D1 _start+33

0x0808B314 (1 byte) {malloc:114:0} [strtoupper|test2.c|43]
0x08049593 strtoupper+51 at test2.c:43
0x08049651 main+69 at test2.c:62
0x4007C9CB __libc_start_main+255
0x080494D1 _start+33

0x0808B318 (1 byte) {malloc:118:0} [strtoupper|test2.c|43]
0x08049593 strtoupper+51 at test2.c:43
0x08049651 main+69 at test2.c:62



Chapter 17: Tutorial 135

0x4007C9CB __libc_start_main+255
0x080494D1 _start+33

We can discount the first entry since that is obviously coming from when the mpatrol library
first initialises itself. However, all of the other entries appear to be coming from line 43 within
strtoupper() and appear to be only 1 byte in length. At that point in the code, the only
possible reason for allocating 1 byte is when the string is empty and so that must mean that we
are not freeing memory that contains empty strings. Looking at line 66 we can see that free()
is only ever called for non-empty strings and therefore if we move the call to free() outside
the test for an empty string we will fix the memory leak. The file ‘tests/tutorial/test3.c’
contains the source for the final program.

Note that we can come to the same conclusion as above in a much quicker manner by using
the ‘LEAKTABLE’ option. The following is written to the mpatrol log file when we use that option
on the same program (note that the internal memory allocation has not automatically been
added to the leak table):

top 1 unfreed memory entry in leak table:

bytes count location
-------- ------ --------

9 9 test2.c line 43
9 9 total



136 mpatrol



Appendix A: Functions 137

Appendix A Functions

The mpatrol library contains implementations of dynamic memory allocation functions for C
and C++ suitable for tracing and debugging. The library is intended to be used without requiring
any changes to existing user source code except the inclusion of the ‘mpatrol.h’ header file,
although additional functions are supplied for extra tracing and control. Note that the current
version of the mpatrol library is contained in the MPATROL_VERSION preprocessor macro.

All of the function definitions in ‘mpatrol.h’ can be disabled by defining the NDEBUG prepro-
cessor macro, which is the same macro used to control the behaviour of the assert() function.
If NDEBUG is defined then no macro redefinition of functions will take place and all special mpa-
trol library functions will evaluate to empty statements. The ‘mpalloc.h’ header file will also
be included in this case. It is intended that the NDEBUG preprocessor macro be defined in release
builds.

The MP_MALLOC() family of functions that are defined in ‘mpalloc.h’ are also defined in
‘mpatrol.h’ when NDEBUG is not defined. The mpatrol versions of these functions contain more
debugging information than the mpalloc versions do, but they do not call the allocation failure
handler when no more memory is available (they cause the ‘OUTMEM’ error message to be given
instead).

A.1 C dynamic memory allocation functions

The following 19 functions are available as replacements for existing C library functions.
To use these you must include ‘mpatrol.h’ before all other header files, although on UNIX
and Windows platforms (and AmigaOS when using gcc) they will be used anyway, albeit with
slightly less tracing information. If alloca() is being used and ‘alloca.h’ is included then
‘mpatrol.h’ must appear before ‘alloca.h’ otherwise the debugging version of alloca() will
not be used.

void *malloc(size_t size)
Allocates size uninitialised bytes from the heap and returns a pointer to the first
byte of the allocation. The pointer returned will be suitably aligned for casting to
any type and can be used to store data of up to size bytes in length. If size is ‘0’
then the memory allocated will be implicitly rounded up to ‘1’ byte. If there is
not enough space in the heap then the ‘NULL’ pointer will be returned and errno
will be set to ENOMEM. The allocated memory must be deallocated with free() or
reallocated with realloc().

void *calloc(size_t nelem, size_t size)
Allocates nelem elements of size zero-initialised bytes from the heap and returns
a pointer to the first byte of the allocation. The pointer returned will be suitably
aligned for casting to any type and can be used to store data of up to nelem * size
bytes in length. If nelem * size is ‘0’ then the amount of memory allocated will
be implicitly rounded up to ‘1’ byte. If there is not enough space in the heap then
the ‘NULL’ pointer will be returned and errno will be set to ENOMEM. The allocated
memory must be deallocated with free() or reallocated with realloc().

void *memalign(size_t align, size_t size)
Allocates size uninitialised bytes from the heap and returns a pointer to the first
byte of the allocation. The pointer returned will be aligned to align bytes and can
be used to store data of up to size bytes in length. If align is zero then the default
system alignment will be used. If align is not a power of two then it will be rounded
up to the nearest power of two. If align is greater than the system page size then
it will be truncated to that value. If size is ‘0’ then the memory allocated will be
implicitly rounded up to ‘1’ byte. If there is not enough space in the heap then



138 mpatrol

the ‘NULL’ pointer will be returned and errno will be set to ENOMEM. The allocated
memory must be deallocated with free() or reallocated with realloc(), although
the latter will not guarantee the preservation of alignment.

void *valloc(size_t size)
Allocates size uninitialised bytes from the heap and returns a pointer to the first
byte of the allocation. The pointer returned will be aligned to the system page size
and can be used to store data of up to size bytes in length. If size is ‘0’ then the
memory allocated will be implicitly rounded up to ‘1’ byte. If there is not enough
space in the heap then the ‘NULL’ pointer will be returned and errno will be set to
ENOMEM. The allocated memory must be deallocated with free() or reallocated with
realloc(), although the latter will not guarantee the preservation of alignment.

void *pvalloc(size_t size)
Allocates size uninitialised bytes from the heap and returns a pointer to the first
byte of the allocation. The pointer returned will be aligned to the system page size
and can be used to store data of up to size bytes in length. If size is ‘0’ then the
memory allocated will be implicitly rounded up to ‘1’ page, otherwise size will be
implicitly rounded up to a multiple of the system page size. If there is not enough
space in the heap then the ‘NULL’ pointer will be returned and errno will be set to
ENOMEM. The allocated memory must be deallocated with free() or reallocated with
realloc(), although the latter will not guarantee the preservation of alignment.

void *alloca(size_t size)
Allocates size temporary uninitialised bytes from the heap and returns a pointer to
the first byte of the allocation. The pointer returned will be suitably aligned for
casting to any type and can be used to store data of up to size bytes in length. If
size is ‘0’ then the memory allocated will be implicitly rounded up to ‘1’ byte. If
there is not enough space in the heap then the program will be terminated and the
‘OUTMEM’ error will be given. The alloca() function normally allocates its memory
from the stack, with the result that all such allocations will be freed when the
function returns. This version of alloca() allocates its memory from the heap in
order to provide better debugging, but the allocations may not necessarily be freed
immediately when the function returns. The allocated memory can be deallocated
explicitly with dealloca(), but may not be reallocated or deallocated in any other
way. This function is available for backwards compatibility with older C source code
and should not be used in new code.

char *strdup(const char *str)
Allocates exactly enough memory from the heap to duplicate str (including the
terminating nul character) and returns a pointer to the first byte of the allocation
after copying str to the newly-allocated memory. The pointer returned will have no
alignment constraints and can be used to store character data up to the length of str.
If str is ‘NULL’ then an error will be given and the ‘NULL’ pointer will be returned.
If there is not enough space in the heap then the ‘NULL’ pointer will be returned
and errno will be set to ENOMEM. The allocated memory must be deallocated with
free() or reallocated with realloc().

char *strndup(const char *str, size_t size)
Allocates exactly enough memory from the heap to duplicate str (including the
terminating nul character) and returns a pointer to the first byte of the allocation
after copying str to the newly-allocated memory. The pointer returned will have no
alignment constraints and can be used to store character data up to the length of str.
If str is ‘NULL’ and size is non-zero then an error will be given and the ‘NULL’ pointer
will be returned. If the length of str is greater than size then only size characters
will be allocated and copied, with one additional byte for the nul character. If there
is not enough space in the heap then the ‘NULL’ pointer will be returned and errno



Appendix A: Functions 139

will be set to ENOMEM. The allocated memory must be deallocated with free() or
reallocated with realloc(). This function is available for backwards compatibility
with older C libraries and should not be used in new code.

char *strsave(const char *str)
Allocates exactly enough memory from the heap to duplicate str (including the
terminating nul character) and returns a pointer to the first byte of the allocation
after copying str to the newly-allocated memory. The pointer returned will have no
alignment constraints and can be used to store character data up to the length of str.
If str is ‘NULL’ then an error will be given and the ‘NULL’ pointer will be returned.
If there is not enough space in the heap then the ‘NULL’ pointer will be returned
and errno will be set to ENOMEM. The allocated memory must be deallocated with
free() or reallocated with realloc(). This function is available for backwards
compatibility with older C libraries and should not be used in new code.

char *strnsave(const char *str, size_t size)
Allocates exactly enough memory from the heap to duplicate str (including the
terminating nul character) and returns a pointer to the first byte of the allocation
after copying str to the newly-allocated memory. The pointer returned will have no
alignment constraints and can be used to store character data up to the length of str.
If str is ‘NULL’ and size is non-zero then an error will be given and the ‘NULL’ pointer
will be returned. If the length of str is greater than size then only size characters
will be allocated and copied, with one additional byte for the nul character. If there
is not enough space in the heap then the ‘NULL’ pointer will be returned and errno
will be set to ENOMEM. The allocated memory must be deallocated with free() or
reallocated with realloc(). This function is available for backwards compatibility
with older C libraries and should not be used in new code.

char *strdupa(const char *str)
Allocates exactly enough temporary memory from the heap to duplicate str (in-
cluding the terminating nul character) and returns a pointer to the first byte of the
allocation after copying str to the newly-allocated memory. The pointer returned
will have no alignment constraints and can be used to store character data up to
the length of str. If str is ‘NULL’ then an error will be given and the ‘NULL’ pointer
will be returned. If there is not enough space in the heap then the program will be
terminated and the ‘OUTMEM’ error will be given. The strdupa() function normally
allocates its memory from the stack, with the result that all such allocations will be
freed when the function returns. This version of strdupa() allocates its memory
from the heap in order to provide better debugging, but the allocations may not
necessarily be freed immediately when the function returns. The allocated mem-
ory can be deallocated explicitly with dealloca(), but may not be reallocated or
deallocated in any other way. This function is available for backwards compatibility
with older C source code and should not be used in new code.

char *strndupa(const char *str, size_t size)
Allocates exactly enough temporary memory from the heap to duplicate str (in-
cluding the terminating nul character) and returns a pointer to the first byte of the
allocation after copying str to the newly-allocated memory. The pointer returned
will have no alignment constraints and can be used to store character data up to
the length of str. If str is ‘NULL’ and size is non-zero then an error will be given
and the ‘NULL’ pointer will be returned. If the length of str is greater than size then
only size characters will be allocated and copied, with one additional byte for the
nul character. If there is not enough space in the heap then the program will be
terminated and the ‘OUTMEM’ error will be given. The strndupa() function normally
allocates its memory from the stack, with the result that all such allocations will be
freed when the function returns. This version of strndupa() allocates its memory



140 mpatrol

from the heap in order to provide better debugging, but the allocations may not
necessarily be freed immediately when the function returns. The allocated mem-
ory can be deallocated explicitly with dealloca(), but may not be reallocated or
deallocated in any other way. This function is available for backwards compatibility
with older C source code and should not be used in new code.

void *realloc(void *ptr, size_t size)
Resizes the memory allocation beginning at ptr to size bytes and returns a pointer to
the first byte of the new allocation after copying ptr to the newly-allocated memory,
which will be truncated if size is smaller than the original allocation. The pointer
returned will be suitably aligned for casting to any type and can be used to store
data of up to size bytes in length. If ptr is ‘NULL’ then the call will be equivalent
to malloc(). If size is ‘0’ then the existing memory allocation will be freed and
the ‘NULL’ pointer will be returned. If size is greater than the original allocation
then the extra space will be filled with uninitialised bytes. If there is not enough
space in the heap then the ‘NULL’ pointer will be returned and errno will be set
to ENOMEM. The allocated memory must be deallocated with free() and can be
reallocated again with realloc().

void *reallocf(void *ptr, size_t size)
Resizes the memory allocation beginning at ptr to size bytes and returns a pointer to
the first byte of the new allocation after copying ptr to the newly-allocated memory,
which will be truncated if size is smaller than the original allocation. The pointer
returned will be suitably aligned for casting to any type and can be used to store
data of up to size bytes in length. If ptr is ‘NULL’ then the call will be equivalent
to malloc(). If size is ‘0’ then the existing memory allocation will be freed and the
‘NULL’ pointer will be returned. If size is greater than the original allocation then
the extra space will be filled with uninitialised bytes. If there is not enough space in
the heap then the ‘NULL’ pointer will be returned, the original allocation will be freed
and errno will be set to ENOMEM. The allocated memory must be deallocated with
free() and can be reallocated again with realloc(). This function is available for
backwards compatibility with older C libraries and should not be used in new code.

void *recalloc(void *ptr, size_t nelem, size_t size)
Resizes the memory allocation beginning at ptr to nelem elements of size bytes and
returns a pointer to the first byte of the new allocation after copying ptr to the
newly-allocated memory, which will be truncated if nelem * size is smaller than
the original allocation. The pointer returned will be suitably aligned for casting
to any type and can be used to store data of up to nelem * size bytes in length.
If ptr is ‘NULL’ then the call will be equivalent to calloc(). If nelem * size is
‘0’ then the existing memory allocation will be freed and the ‘NULL’ pointer will
be returned. If nelem * size is greater than the original allocation then the extra
space will be filled with zero-initialised bytes. If there is not enough space in the
heap then the ‘NULL’ pointer will be returned and errno will be set to ENOMEM. The
allocated memory must be deallocated with free() and can be reallocated again
with realloc(). This function is available for backwards compatibility with older
C libraries and calloc() and should not be used in new code.

void *expand(void *ptr, size_t size)
Attempts to resize the memory allocation beginning at ptr to size bytes and either
returns ptr if there was enough space to resize it, or ‘NULL’ if the block could not
be resized for a particular reason. If ptr is ‘NULL’ then the call will be equivalent
to malloc(). If size is ‘0’ then the existing memory allocation will be freed and
the ‘NULL’ pointer will be returned. If size is greater than the original allocation
then the extra space will be filled with uninitialised bytes and if size is less than
the original allocation then the memory block will be truncated. If there is not



Appendix A: Functions 141

enough space in the heap then the ‘NULL’ pointer will be returned and errno will
be set to ENOMEM. The allocated memory must be deallocated with free() and
can be reallocated again with realloc(). This function is available for backwards
compatibility with older C libraries and should not be used in new code.

void free(void *ptr)
Frees the memory allocation beginning at ptr so the memory can be reused by
another call to allocate memory. If ptr is ‘NULL’ then no memory will be freed. All
of the previous contents will be destroyed.

void cfree(void *ptr, size_t nelem, size_t size)
Frees the memory allocation beginning at ptr so the memory can be reused by
another call to allocate memory. If ptr is ‘NULL’ then no memory will be freed. All of
the previous contents will be destroyed. The nelem and size parameters are ignored
in this implementation. This function is available for backwards compatibility with
older C libraries and calloc() and should not be used in new code.

void dealloca(void *ptr)
Explicitly frees the temporary memory allocation beginning at ptr so the memory
can be reused by another call to allocate memory. If ptr is ‘NULL’ then no memory
will be freed. All of the previous contents will be destroyed. This function can
only be used to free memory that was allocated with the alloca(), strdupa() and
strndupa() functions, but is only really required if the mpatrol library does not
automatically free such memory allocations when the allocating function returns.
This function is mpatrol-specific and should not be used in release code.

A.2 C dynamic memory extension functions

The following 5 functions are available as replacements for existing C library extension func-
tions that always abort and never return ‘NULL’ if there is insufficient memory to fulfil a request.
To use these you must include ‘mpatrol.h’ before all other header files, although on UNIX
and Windows platforms (and AmigaOS when using gcc) they will be used anyway, albeit with
slightly less tracing information.

void *xmalloc(size_t size)
Allocates size uninitialised bytes from the heap and returns a pointer to the first
byte of the allocation. The pointer returned will be suitably aligned for casting to
any type and can be used to store data of up to size bytes in length. If size is ‘0’
then the memory allocated will be implicitly rounded up to ‘1’ byte. If there is not
enough space in the heap then the program will be terminated and the ‘OUTMEM’
error will be given. The allocated memory must be deallocated with xfree() or
reallocated with xrealloc().

void *xcalloc(size_t nelem, size_t size)
Allocates nelem elements of size zero-initialised bytes from the heap and returns
a pointer to the first byte of the allocation. The pointer returned will be suitably
aligned for casting to any type and can be used to store data of up to nelem * size
bytes in length. If nelem * size is ‘0’ then the amount of memory allocated will
be implicitly rounded up to ‘1’ byte. If there is not enough space in the heap then
the program will be terminated and the ‘OUTMEM’ error will be given. The allocated
memory must be deallocated with xfree() or reallocated with xrealloc().

char *xstrdup(const char *str)
Allocates exactly enough memory from the heap to duplicate str (including the
terminating nul character) and returns a pointer to the first byte of the allocation
after copying str to the newly-allocated memory. The pointer returned will have no



142 mpatrol

alignment constraints and can be used to store character data up to the length of str.
If str is ‘NULL’ then an error will be given and the ‘NULL’ pointer will be returned.
If there is not enough space in the heap then the program will be terminated and
the ‘OUTMEM’ error will be given. The allocated memory must be deallocated with
xfree() or reallocated with xrealloc().

void *xrealloc(void *ptr, size_t size)
Resizes the memory allocation beginning at ptr to size bytes and returns a pointer
to the first byte of the new allocation after copying ptr to the newly-allocated
memory, which will be truncated if size is smaller than the original allocation. The
pointer returned will be suitably aligned for casting to any type and can be used
to store data of up to size bytes in length. If ptr is ‘NULL’ then the call will be
equivalent to xmalloc(). If size is ‘0’ then it will be implicitly rounded up to ‘1’.
If size is greater than the original allocation then the extra space will be filled with
uninitialised bytes. If there is not enough space in the heap then the program will
be terminated and the ‘OUTMEM’ error will be given. The allocated memory must be
deallocated with xfree() and can be reallocated again with xrealloc().

void xfree(void *ptr)
Frees the memory allocation beginning at ptr so the memory can be reused by
another call to allocate memory. If ptr is ‘NULL’ then no memory will be freed. All
of the previous contents will be destroyed.

A.3 C dynamic memory alternative functions

The following 6 functions are provided as convenient alternatives to the ANSI C dynamic
memory allocation functions (although strdup() is not strictly an ANSI C function). They are
implemented as preprocessor macro functions which may evaluate their arguments more than
once, so extra care should be taken to avoid passing arguments with side-effects. None of the
functions return ‘NULL’ if no memory is available and instead abort the program with a useful
error message indicating where the call to allocate memory came from and what was being
allocated. To use these you should include the ‘mpatrol.h’ or ‘mpalloc.h’ header files.

void *MP_MALLOC(void *ptr, size_t count, typename type)
Allocates count uninitialised items of type type from the heap, sets ptr to the result
and returns a suitably-cast pointer to the first item of the allocation. The pointer
returned will be suitably aligned for holding items of type type. If count is ‘0’ then
it will be implicitly rounded up to ‘1’. If there is not enough space in the heap then
the program will be aborted after calling the allocation failure handler, which by
default writes an appropriate error message to the standard error file stream. The
allocated memory in ptr must be deallocated with MP_FREE() or reallocated with
MP_REALLOC().

void *MP_CALLOC(void *ptr, size_t count, typename type)
Allocates count zero-initialised items of type type from the heap, sets ptr to the
result and returns a suitably-cast pointer to the first item of the allocation. The
pointer returned will be suitably aligned for holding items of type type. If count
is ‘0’ then it will be implicitly rounded up to ‘1’. If there is not enough space
in the heap then the program will be aborted after calling the allocation failure
handler, which by default writes an appropriate error message to the standard error
file stream. The allocated memory in ptr must be deallocated with MP_FREE() or
reallocated with MP_REALLOC().

char *MP_STRDUP(char *ptr, const char *str)
Allocates exactly enough memory from the heap to duplicate str (including the
terminating nul character), sets ptr to the result and returns a suitably-cast pointer



Appendix A: Functions 143

to the first byte of the allocation after copying str to the newly-allocated memory.
The pointer returned will have no alignment constraints and can be used to store
character data up to the length of str. If there is not enough space in the heap then
the program will be aborted after calling the allocation failure handler, which by
default writes an appropriate error message to the standard error file stream. The
allocated memory in ptr must be deallocated with MP_FREE() or reallocated with
MP_REALLOC().

void *MP_REALLOC(void *ptr, size_t count, typename type)
Resizes the memory allocation beginning at ptr to count items of type type and
returns a suitably-cast pointer to the first item of the new allocation after copying ptr
to the newly-allocated memory, which will be truncated if count is smaller than the
original number of items. The pointer returned will be suitably aligned for holding
items of type type. If ptr is ‘NULL’ then the call will be equivalent to MP_MALLOC().
If count is ‘0’ then it will be implicitly rounded up to ‘1’. If count is greater than
the original number of items then the extra space will be filled with uninitialised
bytes. If there is not enough space in the heap then the program will be aborted
after calling the allocation failure handler, which by default writes an appropriate
error message to the standard error file stream. The allocated memory must be
deallocated with MP_FREE() and can be reallocated again with MP_REALLOC().

void MP_FREE(void *ptr)
Frees the memory allocation beginning at ptr so the memory can be reused by
another call to allocate memory, and sets ptr to ‘NULL’ after freeing the memory. If
ptr is ‘NULL’ then no memory will be freed.

__mp_failhandler MP_FAILURE(__mp_failhandler func)
Installs an allocation failure handler specifically for use with MP_MALLOC(), MP_
CALLOC(), MP_STRDUP() and MP_REALLOC() and returns a pointer to the previously
installed handler, normally the default handler if no handler had been previously
installed. This will be called by the above functions when there is not enough space
in the heap for them to satisfy their allocation request. The default allocation failure
handler will terminate the program after writing an error message to the standard
error file stream indicating where the original allocation request took place and what
was being allocated.

A.4 C++ dynamic memory allocation functions

The following 5 functions are available as replacements for existing C++ library functions, but
the replacements in ‘mpatrol.h’ will only be used if the MP_NOCPLUSPLUS preprocessor macro
is not defined. The replacement operators make use of the preprocessor in order to obtain
source-level information. If this causes problems then you should define the MP_NONEWDELETE
preprocessor macro and use the MP_NEW, MP_NEW_NOTHROW and MP_DELETE macros instead of new
and delete directly. To use these C++ features you must include ‘mpatrol.h’ before all other
header files, although on UNIX and Windows platforms (and AmigaOS when using gcc) they
will be used anyway, albeit with slightly less tracing information.

void *operator new(size_t size)
Allocates size uninitialised bytes from the heap and returns a pointer to the first
byte of the allocation. The pointer returned will be suitably aligned for casting to
any type and can be used to store data of up to size bytes in length. If size is
‘0’ then the memory allocated will be implicitly rounded up to ‘1’ byte. If there
is not enough space in the heap then either the std::bad_alloc exception will be
thrown or the null pointer will be returned and errno will be set to ENOMEM — the
behaviour depends on whether the nothrow version of the operator is used. The
allocated memory must be deallocated with operator delete.



144 mpatrol

void *operator new[](size_t size)
Allocates size uninitialised bytes from the heap and returns a pointer to the first
byte of the allocation. The pointer returned will be suitably aligned for casting to
any type and can be used to store data of up to size bytes in length. If size is
‘0’ then the memory allocated will be implicitly rounded up to ‘1’ byte. If there
is not enough space in the heap then either the std::bad_alloc exception will be
thrown or the null pointer will be returned and errno will be set to ENOMEM — the
behaviour depends on whether the nothrow version of the operator is used. The
allocated memory must be deallocated with operator delete[].

void operator delete(void *ptr)
Frees the memory allocation beginning at ptr so the memory can be reused by
another call to allocate memory. If ptr is ‘NULL’ then no memory will be freed. All
of the previous contents will be destroyed. This function must only be used with
memory allocated by operator new.

void operator delete[](void *ptr)
Frees the memory allocation beginning at ptr so the memory can be reused by
another call to allocate memory. If ptr is ‘NULL’ then no memory will be freed. All
of the previous contents will be destroyed. This function must only be used with
memory allocated by operator new[].

std::new_handler std::set_new_handler(std::new_handler func)
Installs a low-memory handler specifically for use with operator new and operator
new[] and returns a pointer to the previously installed handler, or the null pointer
if no handler had been previously installed. This will be called repeatedly by both
functions when they would normally return ‘NULL’, and this loop will continue until
they manage to allocate the requested space. Note that this function is equivalent
to __mp_nomemory() and will replace the handler installed by that function.

A.5 C memory operation functions

The following 10 functions are available as replacements for existing C library memory opera-
tion functions. To use these you must include ‘mpatrol.h’ before all other header files, although
on UNIX and Windows platforms (and AmigaOS when using gcc) they will be used anyway,
albeit with slightly less tracing information.

void *memset(void *ptr, int byte, size_t size)
Writes size bytes of value byte to the memory location beginning at ptr and returns
ptr. If size is ‘0’ then no bytes will be written. If the operation would affect
an existing memory allocation in the heap but would straddle that allocation’s
boundaries then an error message will be generated in the log file and no bytes will
be written.

void bzero(void *ptr, size_t size)
Writes size zero bytes to the memory location beginning at ptr. If size is ‘0’ then no
bytes will be written. If the operation would affect an existing memory allocation in
the heap but would straddle that allocation’s boundaries then an error message will
be generated in the log file and no bytes will be written. This function is available
for backwards compatibility with older C libraries and should not be used in new
code.

void *memccpy(void *dest, const void *src, int byte, size_t size)
Copies size bytes from src to dest and returns ‘NULL’, or copies the number of bytes
up to and including the first occurrence of byte if byte exists within the specified
range and returns a pointer to the first byte after byte. If size is ‘0’ or src is the same



Appendix A: Functions 145

as dest then no bytes will be copied. The source and destination ranges should not
overlap, otherwise a warning will be written to the log file. If the operation would
affect an existing memory allocation in the heap but would straddle that allocation’s
boundaries then an error message will be generated in the log file and no bytes will
be copied.

void *memcpy(void *dest, const void *src, size_t size)
Copies size bytes from src to dest and returns dest. If size is ‘0’ or src is the same
as dest then no bytes will be copied. The source and destination ranges should not
overlap, otherwise a warning will be written to the log file. If the operation would
affect an existing memory allocation in the heap but would straddle that allocation’s
boundaries then an error message will be generated in the log file and no bytes will
be copied.

void *memmove(void *dest, const void *src, size_t size)
Copies size bytes from src to dest and returns dest. If size is ‘0’ or src is the same as
dest then no bytes will be copied. If the operation would affect an existing memory
allocation in the heap but would straddle that allocation’s boundaries then an error
message will be generated in the log file and no bytes will be copied.

void bcopy(const void *src, void *dest, size_t size)
Copies size bytes from src to dest. If size is ‘0’ or src is the same as dest then no
bytes will be copied. If the operation would affect an existing memory allocation in
the heap but would straddle that allocation’s boundaries then an error message will
be generated in the log file and no bytes will be copied. This function is available
for backwards compatibility with older C libraries and should not be used in new
code.

int memcmp(const void *ptr1, const void *ptr2, size_t size)
Compares size bytes from ptr1 and ptr2 and returns ‘0’ if all of the bytes are
identical, or returns the byte difference of the first differing bytes. If size is ‘0’ or
ptr1 is the same as ptr2 then no bytes will be compared. If the operation would read
from an existing memory allocation in the heap but would straddle that allocation’s
boundaries then an error message will be generated in the log file and no bytes will
be compared.

int bcmp(const void *ptr1, const void *ptr2, size_t size)
Compares size bytes from ptr1 and ptr2 and returns ‘0’ if all of the bytes are
identical, or returns the byte difference of the first differing bytes. If size is ‘0’ or
ptr1 is the same as ptr2 then no bytes will be compared. If the operation would read
from an existing memory allocation in the heap but would straddle that allocation’s
boundaries then an error message will be generated in the log file and no bytes will
be compared. This function is available for backwards compatibility with older C
libraries and should not be used in new code.

void *memchr(const void *ptr, int byte, size_t size)
Searches up to size bytes in ptr for the first occurrence of byte and returns a pointer
to it or ‘NULL’ if no such byte occurs. If size is ‘0’ then no bytes will be searched.
If the operation would affect an existing memory allocation in the heap but would
straddle that allocation’s boundaries then an error message will be generated in the
log file and no bytes will be searched.

void *memmem(const void *ptr1, size_t size1, const void *ptr2, size_t size2)
Searches up to size1 bytes in ptr1 for the first occurrence of ptr2 (which is exactly
size2 bytes in length) and returns a pointer to it or ‘NULL’ if no such sequence of
bytes occur. If size1 or size2 is ‘0’ then no bytes will be searched. If the operation
would affect an existing memory allocation in the heap but would straddle that



146 mpatrol

allocation’s boundaries then an error message will be generated in the log file and
no bytes will be searched.

A.6 mpatrol library functions

The following 42 functions are available as support routines for additional control and tracing
in the mpatrol library. Although they are documented here as being prefixed by ‘__mp_’, their
equivalent functions that are prefixed by ‘mpatrol_’ are also defined as aliases in the ‘mpatrol.h’
header file. To use these you should include the ‘mpatrol.h’ header file.

int __mp_atexit(void (*func)(void))
Installs a function to be called when the mpatrol library terminates. Up to 32
such functions can be registered and will be called in reverse order of registration.
Returns ‘1’ on success or ‘0’ if func could not be registered.

unsigned long __mp_setoption(long opt, unsigned long val)
Sets the value of an mpatrol option after the library has been initialised. Options
that require values are listed in ‘mpatrol.h’ prefixed with ‘MP_OPT_*’. The opt
argument should be set to one of these macros, and the val argument should be set
to the option value, cast to an unsigned integer. The return value will be ‘0’ on
success and ‘1’ on failure. Options that are flags are listed in ‘mpatrol.h’ prefixed
with ‘MP_FLG_*’. Multiple flags can be set or unset at once using the MP_OPT_
SETFLAGS and MP_OPT_UNSETFLAGS options respectively, with the necessary flags
specified in val. The return value will be ‘0’ on success and a combination of all of
the flags that could not be set or unset on failure.

int __mp_getoption(long opt, unsigned long *val)
Gets the value of an mpatrol option after the library has been initialised. If opt
is a valid option listed in ‘mpatrol.h’ then ‘1’ will be returned and the associated
value will be returned in val and cast to an unsigned integer, otherwise ‘0’ will be
returned. If opt is MP_OPT_SETFLAGS then all of the mpatrol library flags that are
set will be returned in val. If opt is MP_OPT_UNSETFLAGS then all of the mpatrol
library flags that are not set will be returned in val.

unsigned long __mp_libversion(void)
Returns the version number of the mpatrol library. This can be useful for verifying
that the version of the mpatrol library that a program is linked with is the one
expected at compile-time.

const char *__mp_strerror(__mp_errortype err)
Returns the error message corresponding to the error code err or ‘NULL’ if no such
error code exists. The most recent error code recorded by the mpatrol library can
be obtained by examining __mp_errno.

const char *__mp_function(__mp_alloctype func)
Returns the name of the function corresponding to the allocation type func or ‘NULL’
if no such allocation type exists.

int __mp_setuser(const void *ptr, const void *data)
Sets the user data for the memory allocation containing ptr. The contents of data
are entirely application-specific as user data will never be examined by the mpatrol
library. Such data is associated with a memory allocation for its entire lifetime
unless overridden by a subsequent call to __mp_setuser(). As such, the user data
must be valid for the entire lifetime of the memory allocation, perhaps even after
the allocation has been freed if the ‘NOFREE’ option is being used. This function
returns ‘1’ if there is an allocated memory block containing ptr, and ‘0’ otherwise.



Appendix A: Functions 147

int __mp_setmark(const void *ptr)
Sets the marked flag for the memory allocation containing ptr, indicating that the
memory allocation cannot be freed (but can be reallocated) and thus will not be
listed as a memory leak. This function returns ‘1’ if there is an allocated memory
block containing ptr, and ‘0’ otherwise. Note that a memory allocation made by
alloca(), strdupa() or strndupa() may not be marked.

int __mp_info(const void *ptr, __mp_allocinfo *info)
Obtains information about a specific memory allocation by placing statistics about
ptr in info. If ptr does not belong to a previously allocated memory allocation or free
memory block then ‘0’ will be returned, otherwise ‘1’ will be returned and info will
contain the following information (note that a free memory block will only contain
the block and size fields and can be identified by not having the allocated flag
set):
Field Description
block Pointer to first byte of allocation.
size Size of allocation in bytes.
type Type of function which allocated memory.
alloc Allocation index.
realloc Number of times reallocated.
thread Thread identifier.
event Event of last modification.
func Function in which allocation took place.
file File in which allocation took place.
line Line number at which allocation took place.
stack Pointer to function call stack.
typestr Type stored in allocation.
typesize Size of type stored in allocation.
userdata User data associated with allocation.
allocated Indicates if allocation was allocated.
freed Indicates if allocation has been freed.
marked Indicates if allocation has been marked.
profiled Indicates if allocation has been profiled.
traced Indicates if allocation has been traced.
internal Indicates if allocation is internal.

int __mp_syminfo(const void *ptr, __mp_symbolinfo *info)
Obtains symbolic information about a specific code address by placing statistics
about ptr in info. If ptr does not belong to a function symbol then ‘0’ will be
returned, otherwise ‘1’ will be returned and info will contain the following informa-
tion:
Field Description
name Name of symbol.
object File containing symbol.
addr Start address of symbol.
size Size of symbol.
file Filename corresponding to address.
line Line number corresponding to address.

const char *__mp_symbol(const void *ptr)
Obtains the name of a function symbol containing the code address specified in ptr.
If ptr does not belong to a function symbol then ‘NULL’ will be returned.

int __mp_printinfo(const void *ptr)
Displays information about a specific memory allocation containing ptr to the stan-
dard error file stream. If ptr does not belong to a previously allocated memory



148 mpatrol

allocation or free memory block then ‘0’ will be returned, otherwise ‘1’ will be
returned. This function is intended to be called from within a debugger.

unsigned long __mp_snapshot(void)
Returns the current event number, effectively taking a snapshot of the heap. This
number can then be used in later calls to __mp_iterate().

size_t __mp_iterate(int (*func)(const void *, void *), void *data, unsigned long
event)

Iterates over all of the current allocated and freed memory allocations, calling func
with the start address of every memory allocation that has been modified since event
number event. If func is ‘NULL’ then __mp_printinfo() will be used as the callback
function. If event is ‘0’ then func will be called with the start address of every
memory allocation. If func returns a negative number then the iteration process
will be stopped immediately. If func returns a positive number above zero then
__mp_iterate() will return the number of times func returned a non-zero number
after the iteration process has stopped. The data argument is passed directly to
func as its second argument and is not read by the mpatrol library.

size_t __mp_iterateall(int (*func)(const void *, void *), void *data)
Iterates over all of the current allocated and freed memory allocations and any free
memory blocks, calling func with the start address of every memory allocation or
free block. If func is ‘NULL’ then __mp_printinfo() will be used as the callback
function. If func returns a negative number then the iteration process will be stopped
immediately. If func returns a positive number above zero then __mp_iterate()
will return the number of times func returned a non-zero number after the iteration
process has stopped. The data argument is passed directly to func as its second
argument and is not read by the mpatrol library. Note that unlike __mp_iterate(),
this function will also include internal memory allocations made by the mpatrol
library and is intended for walking the entire heap.

int __mp_addallocentry(const char *file, unsigned long line, size_t size)
Adds an entry representing an allocation of size size to the leak table. The allocation
will be associated with a source filename of file and a line number of line if the former
is non-‘NULL’ and the latter is non-zero. If file is non-‘NULL’ and line is ‘0’ then file
represents the name of the function that made the allocation. If file is ‘NULL’ and
line is non-zero then line represents the code address at which the allocation was
made. If file is ‘NULL’ and line is ‘0’ then the location of the allocation is unknown.
Returns ‘1’ on success and ‘0’ if there was no more memory available to add another
entry to the leak table.

int __mp_addfreeentry(const char *file, unsigned long line, size_t size)
Adds an entry representing a deallocation of size size to the leak table. The deal-
location will be associated with a source filename of file and a line number of line
if the former is non-‘NULL’ and the latter is non-zero. If file is non-‘NULL’ and line
is ‘0’ then file represents the name of the function that made the deallocation. If
file is ‘NULL’ and line is non-zero then line represents the code address at which
the deallocation was made. If file is ‘NULL’ and line is ‘0’ then the location of the
deallocation is unknown. Returns ‘1’ on success and ‘0’ if there was no existing
allocation from the same location in the leak table.

void __mp_clearleaktable(void)
Deletes all of the existing entries in the leak table, making it empty. This will also
affect the behaviour of the ‘LEAKTABLE’ option since that option will then only be
able to show a summary of the entries in the leak table that were collected after the
last call to this function rather than from the start of program execution.



Appendix A: Functions 149

int __mp_startleaktable(void)
Starts the automatic logging of all memory allocations, reallocations and dealloca-
tions to the leak table. Returns ‘1’ if such logging was already being performed and
‘0’ otherwise.

int __mp_stopleaktable(void)
Stops the automatic logging of all memory allocations, reallocations and dealloca-
tions to the leak table. Returns ‘1’ if such logging was already being performed and
‘0’ otherwise.

void __mp_leaktable(size_t size, int opt, unsigned char flags)
Displays a summary of up to size entries from the leak table, or all entries if size
is ‘0’. If opt is MP_LT_ALLOCATED then all allocated entries will be displayed, if
opt is MP_LT_FREED then all freed entries will be displayed and if opt is MP_LT_
UNFREED then all unfreed entries will be displayed. The summary is normally sorted
in descending order of total bytes from each entry, but this can be changed by setting
flags to any combination of MP_LT_COUNTS (to sort by the number of occurrences in
each entry) and MP_LT_BOTTOM (to sort in ascending order).

void __mp_memorymap(int stats)
If stats is non-zero then the current statistics of the mpatrol library will be displayed.
If the heap contains at least one allocated, freed or free block then a map of the
current heap will also be displayed.

void __mp_summary(void)
Displays information about the current state of the mpatrol library, including its
settings and any relevant statistics.

int __mp_stats(__mp_heapinfo *info)
Obtains statistics about the current state of the heap and places them in info. If
this information could not be determined then ‘0’ will be returned, otherwise ‘1’
will be returned and info will contain the following information:
Field Description
acount Total number of allocated blocks.
atotal Total size of allocated blocks.
fcount Total number of free blocks.
ftotal Total size of free blocks.
gcount Total number of freed blocks.
gtotal Total size of freed blocks.
icount Total number of internal blocks.
itotal Total size of internal blocks.
mcount Total number of marked blocks.
mtotal Total size of marked blocks.

void __mp_check(void)
Forces the library to perform an immediate check of the overflow buffers of every
memory allocation and to ensure that nothing has overwritten any free blocks. If
any memory allocations made by the alloca() family of functions are out of scope
then this function will also cause them to be freed.

__mp_prologuehandler __mp_prologue(const __mp_prologuehandler func)
Installs a prologue function to be called before any memory allocation, realloca-
tion or deallocation function. This function will return a pointer to the previously
installed prologue function, or the null pointer if no prologue function had been pre-
viously installed. The following arguments will be used to call the prologue function
(the last four arguments contain the function name, file name, line number and the
return address of the calling function, or null pointers and zero if they cannot be
determined):



150 mpatrol

Argument 1 Argument 2 Argument 3 Called by
-1 size align malloc(), etc.
ptr size align realloc(), etc.
ptr -1 0 free(), etc.
ptr -2 1 strdup(), etc.

__mp_epiloguehandler __mp_epilogue(const __mp_epiloguehandler func)
Installs an epilogue function to be called after any memory allocation, reallocation or
deallocation function. This function will return a pointer to the previously installed
epilogue function, or the null pointer if no epilogue function had been previously
installed. The following arguments will be used to call the epilogue function (the
last four arguments contain the function name, file name, line number and the
return address of the calling function, or null pointers and zero if they cannot be
determined):
Argument Called by
ptr malloc(), realloc(), strdup(), etc.
-1 free(), etc.

__mp_nomemoryhandler __mp_nomemory(const __mp_nomemoryhandler func)
Installs a low-memory handler and returns a pointer to the previously installed
handler, or the ‘NULL’ pointer if no handler had been previously installed. This will
be called once by C memory allocation functions, and repeatedly by C++ memory
allocation functions, when they would normally return ‘NULL’. The four arguments
contain the function name, file name, line number and the return address of the
calling function, or null pointers and zero if they cannot be determined. Note
that this function is equivalent to set_new_handler() and will replace the handler
installed by that function.

int __mp_printf(const char *fmt, ...)
Writes format string fmt with variable arguments to the log file, with each line
prefixed by ‘>’. The final length of the string that is written to the log file must not
exceed 1024 characters. Returns the number of characters written, or a negative
number upon error.

int __mp_vprintf(const char *fmt, va_list args)
Writes format string fmt with variable argument list args to the log file, with each
line prefixed by ‘>’. The final length of the string that is written to the log file must
not exceed 1024 characters. Returns the number of characters written, or a negative
number upon error.

void __mp_locprintf(const char *fmt, ...)
Writes format string fmt with variable arguments to the log file, with each line
prefixed by ‘>’. The final length of the string that is written to the log file must not
exceed 1024 characters. It also writes information to the log file about where the
call to this function was made, which includes the source file location and the call
stack if they are available.

void __mp_vlocprintf(const char *fmt, va_list args)
Writes format string fmt with variable argument list args to the log file, with each
line prefixed by ‘>’. The final length of the string that is written to the log file must
not exceed 1024 characters. It also writes information to the log file about where
the call to this function was made, which includes the source file location and the
call stack if they are available.

void __mp_logmemory(const void *ptr, size_t size)
Displays the contents of a block of memory beginning at ptr, dumping size consec-
utive bytes to the log file in hexadecimal format.



Appendix A: Functions 151

int __mp_logstack(size_t frames)
Displays the current call stack, skipping frames stack frames from the current stack
frame before writing the symbolic stack trace to the log file. Returns ‘1’ if successful,
or ‘0’ if the call stack could not be determined or if frames was too large for the
current call stack.

int __mp_logaddr(const void *ptr)
Displays information about a specific memory allocation containing ptr to the log
file. If ptr does not belong to a previously allocated memory allocation then ‘0’ will
be returned, otherwise ‘1’ will be returned.

int __mp_edit(const char *file, unsigned long line)
Invokes a text editor to edit file at line number line via the mpedit command.
Returns ‘1’ if the text editor was successfully invoked, ‘-1’ if there was an error, or
‘0’ if there is no support for this feature. This function will only work on a system
where the ‘EDIT’ option works.

int __mp_list(const char *file, unsigned long line)
Displays a context listing of file at line number line via the mpedit command.
Returns ‘1’ if the listing was successfully performed, ‘-1’ if there was an error, or
‘0’ if there is no support for this feature. This function will only work on a system
where the ‘LIST’ option works.

int __mp_view(const char *file, unsigned long line)
Either invokes a text editor to edit file at line number line or displays a context
listing of file at line number line depending on the setting of the ‘EDIT’ and ‘LIST’
options. This is done via the mpedit command and will have no effect if the ‘EDIT’
and ‘LIST’ options are not set or if these options are not supported on the system.
Returns ‘1’ if the edit or listing was successfully performed, ‘-1’ if there was an error,
or ‘0’ if neither of the options were set or if there is no support for this feature.

int __mp_readcontents(const char *file, void *ptr)
Reads the contents of a memory allocation contents file into the memory allocation
containing ptr. The name of the file is composed of the file string followed by the
allocation index of the memory allocation separated by a dot. If file is ‘NULL’ then
it is assumed to be ‘.mpatrol’. Returns ‘1’ if the contents were read successfully
and ‘0’ otherwise.

int __mp_writecontents(const char *file, const void *ptr)
Writes the contents of the memory allocation containing ptr to an allocation contents
file. The name of the file is composed of the file string followed by the allocation
index of the memory allocation separated by a dot. If file is ‘NULL’ then it is
assumed to be ‘.mpatrol’. Returns ‘1’ if the contents were written successfully and
‘0’ otherwise.

long __mp_cmpcontents(const char *file, const void *ptr)
Compares the contents of the memory allocation containing ptr with the contents
of a previously written allocation contents file. The name of the file is composed of
the file string followed by the allocation index of the memory allocation separated
by a dot. If file is ‘NULL’ then it is assumed to be ‘.mpatrol’. Any differences are
written to the mpatrol log file. Returns the number of differences found, or ‘-1’ if
there was an error.

int __mp_remcontents(const char *file, const void *ptr)
Removes the memory allocation contents file that corresponds to the memory allo-
cation containing ptr. The name of the file is composed of the file string followed
by the allocation index of the memory allocation separated by a dot. If file is ‘NULL’
then it is assumed to be ‘.mpatrol’. Returns ‘1’ if the file was removed successfully
and ‘0’ otherwise.



152 mpatrol



Appendix B: Environment 153

Appendix B Environment

The library can read certain options at run-time from an environment variable called
MPATROL_OPTIONS. This variable must contain one or more valid option keywords from the
list below and must be no longer than 1024 characters in length. If MPATROL_OPTIONS is unset
or empty then the default settings will be used.

The syntax for options specified within the MPATROL_OPTIONS environment variable is
‘OPTION’ or ‘OPTION=VALUE’, where ‘OPTION’ is a keyword from the list below and ‘VALUE’ is
the setting for that option. If ‘VALUE’ is numeric then it may be specified using binary, octal,
decimal or hexadecimal notation, with binary notation beginning with either ‘0b’ or ‘0B’. If
‘VALUE’ is a character string containing spaces then it may be quoted using double quotes. No
whitespace may appear between the ‘=’ sign, but whitespace must appear between different op-
tions. Note that option keywords can be given in lowercase as well as uppercase, or a mixture
of both.

‘ALLOCBYTE’=<unsigned-integer>
Specifies an 8-bit byte pattern with which to prefill newly-allocated memory. This
can be used to detect the use of memory which has not been initialised after allo-
cation. Note that this setting will not affect memory allocated with calloc() or
recalloc() as these functions always prefill allocated memory with an 8-bit byte
pattern of zero. Default value: ‘ALLOCBYTE=0xFF’.

‘ALLOCSTOP’=<unsigned-integer>
Specifies an allocation index at which to stop the program when it is being allo-
cated. When the number of memory allocations reaches this number the program
will be halted, and its state may be examined at that point by using a suitable
debugger. Note that this setting will be ignored if its value is zero. Default value:
‘ALLOCSTOP=0’.

‘ALLOWOFLOW’
Specifies that a warning rather than an error should be produced if any memory
operation function overflows the boundaries of a memory allocation, and that the
operation should still be performed. This option is provided for circumstances where
it is desirable for the memory operation to be performed, regardless of whether it is
erroneous or not.

‘AUTOSAVE’=<unsigned-integer>
Specifies the frequency at which to periodically write the profiling data to the pro-
filing output file. When the total number of profiled memory allocations and deal-
locations is a multiple of this number then the current profiling information will be
written to the profiling output file. This option can be used to instruct the mpatrol
library to dump out any profiling information just before a fatal error occurs in a
program, for example. Note that this setting will be ignored if its value is zero.
Default value: ‘AUTOSAVE=0’.

‘CHECK’=<unsigned-range>
Specifies a range of allocation indices at which to check the integrity of free memory
and overflow buffers. The range must be specified as no more than two unsigned
integers separated by a dash, followed by an optional forward slash and an unsigned
integer specifying an event checking frequency. If numbers on either the left side
or the right side of the dash are omitted then they will be assumed to be ‘0’ and
infinity respectively. A value of ‘0’ on its own indicates that no such checking will
ever be performed. This option can be used to speed up the execution speed of the
library at the expense of checking. Default value: ‘CHECK=0’.



154 mpatrol

‘CHECKALL’
Equivalent to the ‘CHECKALLOCS’, ‘CHECKREALLOCS’, ‘CHECKFREES’ and
‘CHECKMEMORY’ options specified together.

‘CHECKALLOCS’
Checks that no attempt is made to allocate a block of memory of size zero. A
warning will be issued for every such case.

‘CHECKFORK’
Checks at every call to see if the process has been forked in case new log, profiling
and tracing output files need to be started. This option only has an effect on UNIX
platforms, but should not be used in multithreaded programs if each thread has a
different process identifier.

‘CHECKFREES’
Checks that no attempt is made to deallocate a ‘NULL’ pointer. A warning will be
issued for every such case.

‘CHECKMEMORY’
Checks that no attempt is made to perform a zero-length memory operation on a
‘NULL’ pointer.

‘CHECKREALLOCS’
Checks that no attempt is made to reallocate a ‘NULL’ pointer or resize an existing
block of memory to size zero. Warnings will be issued for every such case.

‘DEFALIGN’=<unsigned-integer>
Specifies the default alignment for general-purpose memory allocations, which must
be a power of two (and will be rounded up to the nearest power of two if it is not).
The default alignment for a particular system is calculated at run-time.

‘EDIT’ Specifies that a text editor should be invoked to edit any relevant source files that
are associated with any warnings or errors when they occur. Only diagnostics which
occur at source lines in the program will be affected and only then if they contain
source-level information. This option is currently only available on UNIX platforms
as it makes use of the mpedit command. It also overrides the behaviour of the
‘LIST’ option and affects the behaviour of the __mp_view() function.

‘FAILFREQ’=<unsigned-integer>
Specifies the frequency at which all memory allocations will randomly fail. For
example, a value of ‘10’ will mean that roughly 1 in 10 memory allocations will fail,
but a value of ‘0’ will disable all random failures. This option can be useful for
stress-testing an application. Default value: ‘FAILFREQ=0’.

‘FAILSEED’=<unsigned-integer>
Specifies the random number seed which will be used when determining which mem-
ory allocations will randomly fail. A value of ‘0’ will instruct the library to pick
a random seed every time it is run. Any other value will mean that the random
failures will be the same every time the program is run, but only as long as the seed
stays the same. Default value: ‘FAILSEED=0’.

‘FREEBYTE’=<unsigned-integer>
Specifies an 8-bit byte pattern with which to prefill newly-freed memory. This can
be used to detect the use of memory which has just been freed. It is also used
internally to ensure that freed memory has not been overwritten. Note that the
freed memory may be reused the next time a block of memory is allocated and so
once memory has been freed its contents are not guaranteed to remain the same as
the specified byte pattern. Default value: ‘FREEBYTE=0x55’.



Appendix B: Environment 155

‘FREESTOP’=<unsigned-integer>
Specifies an allocation index at which to stop the program when it is being freed.
When the memory allocation with the specified allocation index is to be freed the
program will be halted, and its state may be examined at that point using a suitable
debugger. Note that this setting will be ignored if its value is zero. Default value:
‘FREESTOP=0’.

‘HELP’ Displays a quick-reference option summary to the stderr file stream.

‘LARGEBOUND’=<unsigned-integer>
Specifies the limit in bytes up to which memory allocations should be classified as
large allocations for profiling purposes. This limit must be greater than the small
and medium bounds. Default value: ‘LARGEBOUND=2048’.

‘LEAKTABLE’
Specifies that the leak table should be automatically used and a leak table summary
should be displayed at the end of program execution. The summary shows a flat
profile of all unfreed memory allocations since the start of the program, or since the
last call to __mp_clearleaktable() if that function was called.

‘LIMIT’=<unsigned-integer>
Specifies the limit in bytes at which all memory allocations should fail if the total
allocated memory should increase beyond this. This can be used to stress-test
software to see how it behaves in low memory conditions. The internal memory
used by the library itself will not be counted as part of the total heap size, but
on some systems there may be a small amount of memory required to initialise the
library itself. Note that this setting will be ignored if its value is zero. Default value:
‘LIMIT=0’.

‘LIST’ Specifies that a context listing should be shown for any relevant source files that are
associated with any warnings or errors when they occur. Only diagnostics which
occur at source lines in the program will be affected and only then if they contain
source-level information. This option is currently only available on UNIX platforms
as it makes use of the mpedit command. It also overrides the behaviour of the
‘EDIT’ option and affects the behaviour of the __mp_view() function.

‘LOGALL’ Equivalent to the ‘LOGALLOCS’, ‘LOGREALLOCS’, ‘LOGFREES’ and ‘LOGMEMORY’ options
specified together.

‘LOGALLOCS’
Specifies that all memory allocations are to be logged and sent to the log file. Note
that any memory allocations made internally by the library will not be logged.

‘LOGFILE’=<string>
Specifies an alternative file in which to place all diagnostics from the mpatrol library.
If the LOGDIR environment variable is set and the specified file does not contain a
path component in its filename then the log file will be located in the directory
specified in LOGDIR. A filename of ‘stderr’ will send all diagnostics to the stderr
file stream and a filename of ‘stdout’ will do the equivalent with the stdout file
stream. Note that if a problem occurs while opening the log file or if any diagnostics
require to be displayed before the log file has had a chance to be opened then they
will be sent to the stderr file stream. Default value: ‘LOGFILE=mpatrol.log’ or
‘LOGFILE=%n.%p.log’ if the LOGDIR environment variable is set.

‘LOGFREES’
Specifies that all memory deallocations are to be logged and sent to the log file. Note
that any memory deallocations made internally by the library will not be logged.



156 mpatrol

‘LOGMEMORY’
Specifies that all memory operations are to be logged and sent to the log file. These
operations will be made by calls to functions such as memset() and memcpy(). Note
that any memory operations made internally by the library will not be logged.

‘LOGREALLOCS’
Specifies that all memory reallocations are to be logged and sent to the log file. Note
that any memory reallocations made internally by the library will not be logged.

‘MEDIUMBOUND’=<unsigned-integer>
Specifies the limit in bytes up to which memory allocations should be classified as
medium allocations for profiling purposes. This limit must be greater than the small
bound but less than the large bound. Default value: ‘MEDIUMBOUND=256’.

‘NOFREE’=<unsigned-integer>
Specifies that a number of recently-freed memory allocations should be prevented
from being returned to the free memory pool. Such freed memory allocations will
then be flagged as freed and can be used by the library to provide better diagnostics.
If the size of the freed queue is specified as zero then all freed memory will be
immediately reused by the mpatrol library. Note that if this option is given a
non-zero value then the mpatrol library will always force a memory reallocation to
return a pointer to newly-allocated memory, but the expand() function will never
be affected by this option. Default value: ‘NOFREE=0’.

‘NOPROTECT’
Specifies that the mpatrol library’s internal data structures should not be made
read-only after every memory allocation, reallocation or deallocation. This may
significantly speed up execution but this will be at the expense of less safety if the
program accidentally overwrites some of the library’s internal data structures. Note
that this option has no effect on systems that do not support memory protection.

‘OFLOWBYTE’=<unsigned-integer>
Specifies an 8-bit byte pattern with which to fill the overflow buffers of all mem-
ory allocations. This is used internally to ensure that nothing has been written
beyond the beginning or the end of a block of allocated memory. Note that this
setting will only have an effect if the ‘OFLOWSIZE’ option is in use. Default value:
‘OFLOWBYTE=0xAA’.

‘OFLOWSIZE’=<unsigned-integer>
Specifies the size in bytes to use for all overflow buffers, which must be a power of
two (and will be rounded up to the nearest power of two if it is not). This is used
internally to ensure that nothing has been written beyond the beginning or the end
of a block of allocated memory. Note that this setting specifies the size for only one
of the overflow buffers given to each memory allocation; the other overflow buffer
will have an identical size. No overflow buffers will be used if this setting is zero.
Default value: ‘OFLOWSIZE=0’.

‘OFLOWWATCH’
Specifies that watch point areas should be used for overflow buffers rather than
filling with the overflow byte. This can significantly reduce the speed of program
execution. Note that this option has no effect on systems that do not support watch
point areas.

‘PAGEALLOC’=<‘LOWER’|‘UPPER’>
Specifies that each individual memory allocation should occupy at least one page
of virtual memory and should be placed at the lowest or highest point within these
pages. This allows the library to place an overflow buffer of one page on either side
of every memory allocation and write-protect these pages as well as all free and



Appendix B: Environment 157

freed memory. Note that this option has no effect on systems that do not support
memory protection, and is disabled by default on other systems as it can slow down
the speed of program execution.

‘PRESERVE’
Specifies that any reallocated or freed memory allocations should preserve their
original contents. This option must be used with the ‘NOFREE’ option and has no
effect otherwise.

‘PROF’ Specifies that all memory allocations and deallocations are to be profiled and sent to
the profiling output file. Memory reallocations are treated as a memory deallocation
immediately followed by a memory allocation.

‘PROFFILE’=<string>
Specifies an alternative file in which to place all memory allocation profiling infor-
mation from the mpatrol library. If the PROFDIR environment variable is set and
the specified file does not contain a path component in its filename then the pro-
filing output file will be located in the directory specified in PROFDIR. A filename
of ‘stderr’ will send this information to the stderr file stream and a filename of
‘stdout’ will do the equivalent with the stdout file stream. Note that if a problem
occurs while opening the profiling output file then the profiling information will not
be output. Default value: ‘PROFFILE=mpatrol.out’ or ‘PROFFILE=%n.%p.out’ if the
PROFDIR environment variable is set.

‘PROGFILE’=<string>
Specifies an alternative filename with which to locate the executable file containing
the program’s symbols. On most systems, the library will automatically be able
to determine this filename, but on a few systems this option may have to be used
before any or all symbols can be read.

‘REALLOCSTOP’=<unsigned-integer>
Specifies a reallocation index at which to stop the program when a memory alloca-
tion is being reallocated. If the ‘ALLOCSTOP’ option is non-zero then the program
will be halted when the allocation matching that allocation index is reallocated the
specified number of times. Otherwise the program will be halted the first time any
allocation is reallocated the specified number of times. Note that this setting will
be ignored if its value is zero. Default value: ‘REALLOCSTOP=0’.

‘SAFESIGNALS’
Instructs the library to save and replace certain signal handlers during the execution
of library code and to restore them afterwards. This was the default behaviour in
version 1.0 of the mpatrol library and was changed since some memory-intensive pro-
grams became very hard to interrupt using the keyboard, thus giving the impression
that the program or system had hung.

‘SHOWALL’ Equivalent to the ‘SHOWFREE’, ‘SHOWFREED’, ‘SHOWUNFREED’, ‘SHOWMAP’ and
‘SHOWSYMBOLS’ options specified together.

‘SHOWFREE’
Specifies that a summary of all of the free memory blocks should be displayed at
the end of program execution. This step will not be performed if an abnormal
termination occurs or if there were no free memory blocks.

‘SHOWFREED’
Specifies that a summary of all of the freed memory allocations should be displayed
at the end of program execution. This option must be used in conjunction with
the ‘NOFREE’ option and this step will not be performed if an abnormal termination
occurs or if there were no freed allocations.



158 mpatrol

‘SHOWMAP’ Specifies that a memory map of the entire heap should be displayed at the end of
program execution. This step will not be performed if an abnormal termination
occurs or if the heap is empty.

‘SHOWSYMBOLS’
Specifies that a summary of all of the function symbols read from the program’s
executable file should be displayed at the end of program execution. This step will
not be performed if an abnormal termination occurs or if no symbols could be read
from the executable file.

‘SHOWUNFREED’
Specifies that a summary of all of the unfreed memory allocations should be dis-
played at the end of program execution. This step will not be performed if an
abnormal termination occurs or if there are no unfreed allocations. Note that any
marked memory allocations will not be listed.

‘SMALLBOUND’=<unsigned-integer>
Specifies the limit in bytes up to which memory allocations should be classified as
small allocations for profiling purposes. This limit must be greater than zero but
less than the medium and large bounds. Default value: ‘SMALLBOUND=32’.

‘TRACE’ Specifies that all memory allocations, reallocations and deallocations are to be traced
and sent to the tracing output file.

‘TRACEFILE’=<string>
Specifies an alternative file in which to place all memory allocation tracing infor-
mation from the mpatrol library. If the TRACEDIR environment variable is set and
the specified file does not contain a path component in its filename then the trac-
ing output file will be located in the directory specified in TRACEDIR. A filename
of ‘stderr’ will send this information to the stderr file stream and a filename of
‘stdout’ will do the equivalent with the stdout file stream. Note that if a problem
occurs while opening the tracing output file then the tracing information will not be
output. Default value: ‘TRACEFILE=mpatrol.trace’ or ‘TRACEFILE=%n.%p.trace’
if the TRACEDIR environment variable is set.

‘UNFREEDABORT’=<unsigned-integer>
Specifies the minimum number of unfreed allocations at which to abort the program
just before program termination. A summary of all the allocations will be displayed
on the standard error file stream before aborting. This option may be handy for use
in batch tests as it can force tests to fail if they do not free up a minimum number of
memory allocations, although marked allocations will not be considered as unfreed
allocations. Note that this setting will be ignored if its value is zero. Default value:
‘UNFREEDABORT=0’.

‘USEDEBUG’
Specifies that any debugging information in the executable file should be used to
obtain additional source-level information. This option will only have an effect if the
executable file contains a compiler-generated line number table and will be ignored
if the mpatrol library was built to support an object file access library that cannot
read line tables from object files. Note that this option will slow down program
execution, use up more system memory and may leave unaccounted unfreed memory
allocations at program termination.

‘USEMMAP’ Specifies that the library should use mmap() instead of sbrk() to allocate user
memory on UNIX platforms. This option should be used if there are problems
when using the mpatrol library in combination with another malloc library which
uses sbrk() to allocate its memory. Memory internal to the mpatrol library is
allocated with mmap() on systems where it is supported in order to segregate it



Appendix B: Environment 159

from user memory, and this behaviour is reversed with the ‘USEMMAP’ option. It is
ignored on systems that do not support the mmap() system call. Note that some
UNIX systems require this option in order for the mpatrol library to be able to
perform memory protection with the mprotect() system call.



160 mpatrol



Appendix C: Options 161

Appendix C Options

A utility program called mpatrol is provided to run commands that have been linked with
the mpatrol library.

mpatrol [options] <command> [arguments]

The mpatrol command is used to set various mpatrol library options when running command
with its arguments. In most cases, command must have been linked with the mpatrol library,
unless the ‘--dynamic’ option is used in which case command need only have been dynamically
linked.

All mpatrol library diagnostics are sent to the file ‘mpatrol.%n.log’ in the current directory
by default (where ‘%n’ is the current process id) but this can be changed using the ‘--log-file’
option. Similarly, the default profiling output filename is ‘mpatrol.%n.out’ and the default
tracing output filename is ‘mpatrol.%n.trace’.

Alternatively, the log file, profiling output file and tracing output file names can contain
‘%p’, which will be replaced with the name of the program being executed without the directory
components. If the executable filename could not be determined or was not set then it will
be replaced with ‘mpatrol’. A similar replacement character sequence is ‘%f’, which will be
replaced by the pathname of the program being executed, with all path separation characters
replaced by underscores.

The current date can be entered into such filenames through the use of the ‘%d’ character
sequence, which will be replaced with the date in the form ‘YYYYMMDD’. The current time can be
added with ‘%t’, which will be replaced with the time in the form ‘HHMMSS’. If the date or time
could not be determined, these will be replaced with ‘today’ and ‘now’ respectively.

All of the following options (except ‘--dynamic’, ‘--help’, ‘--read-env’, ‘--show-env’,
‘--threads’ and ‘--version’) correspond to their listed mpatrol library option (see Appendix B
[Environment], page 153). Note that some of these options have a one character equivalent op-
tion that can be used for brevity. The list of one character options can be viewed with the
‘--help’ option or viewed in the UNIX manual pages. Such options are parsed on the command
line in a similar way to the UNIX function getopt().

‘--alloc-byte’ <unsigned-integer>
[‘ALLOCBYTE’] Specifies an 8-bit byte pattern with which to prefill newly-allocated
memory.

‘--alloc-stop’ <unsigned-integer>
[‘ALLOCSTOP’] Specifies an allocation index at which to stop the program when it is
being allocated.

‘--allow-oflow’
[‘ALLOWOFLOW’] Specifies that a warning rather than an error should be produced if
any memory operation function overflows the boundaries of a memory allocation,
and that the operation should still be performed.

‘--auto-save’ <unsigned-integer>
[‘AUTOSAVE’] Specifies the frequency at which to periodically write the profiling data
to the profiling output file.

‘--check’ <unsigned-range>
[‘CHECK’] Specifies a range of allocation indices at which to check the integrity of
free memory and overflow buffers.

‘--check-all’
[‘CHECKALL’] Equivalent to the ‘--check-allocs’, ‘--check-reallocs’,
‘--check-frees’ and ‘--check-memory’ options specified together.



162 mpatrol

‘--check-allocs’
[‘CHECKALLOCS’] Checks that no attempt is made to allocate a block of memory of
size zero.

‘--check-fork’
[‘CHECKFORK’] Checks at every call to see if the process has been forked in case new
log, profiling and tracing output files need to be started.

‘--check-frees’
[‘CHECKFREES’] Checks that no attempt is made to deallocate a NULL pointer.

‘--check-memory’
[‘CHECKMEMORY’] Checks that no attempt is made to perform a zero-length memory
operation on a NULL pointer.

‘--check-reallocs’
[‘CHECKREALLOCS’] Checks that no attempt is made to reallocate a NULL pointer or
resize an existing block of memory to size zero.

‘--def-align’ <unsigned-integer>
[‘DEFALIGN’] Specifies the default alignment for general-purpose memory allocations,
which must be a power of two.

‘--dynamic’
Specifies that programs which were not linked with the mpatrol library should also
be traced, but only if they were dynamically linked. This option will only work if
the system dynamic linker has the ability to preload a set of user-specified shared
libraries via a special environment variable.

‘--edit’ [‘EDIT’] Specifies that a text editor should be invoked to edit any relevant source
files that are associated with any warnings or errors when they occur.

‘--fail-freq’ <unsigned-integer>
[‘FAILFREQ’] Specifies the frequency at which all memory allocations will randomly
fail.

‘--fail-seed’ <unsigned-integer>
[‘FAILSEED’] Specifies the random number seed which will be used when determining
which memory allocations will randomly fail.

‘--free-byte’ <unsigned-integer>
[‘FREEBYTE’] Specifies an 8-bit byte pattern with which to prefill newly-freed memory.

‘--free-stop’ <unsigned-integer>
[‘FREESTOP’] Specifies an allocation index at which to stop the program when it is
being freed.

‘--help’ Displays a quick-reference option summary.

‘--large-bound’ <unsigned-integer>
[‘LARGEBOUND’] Specifies the limit in bytes up to which memory allocations should
be classified as large allocations for profiling purposes.

‘--leak-table’
[‘LEAKTABLE’] Specifies that the leak table should be automatically used and a leak
table summary should be displayed at the end of program execution.

‘--limit’ <unsigned-integer>
[‘LIMIT’] Specifies the limit in bytes at which all memory allocations should fail if
the total allocated memory should increase beyond this.

‘--list’ [‘LIST’] Specifies that a context listing should be shown for any relevant source files
that are associated with any warnings or errors when they occur.



Appendix C: Options 163

‘--log-all’
[‘LOGALL’] Equivalent to the ‘--log-allocs’, ‘--log-reallocs’, ‘--log-frees’ and
‘--log-memory’ options specified together.

‘--log-allocs’
[‘LOGALLOCS’] Specifies that all memory allocations are to be logged and sent to the
log file.

‘--log-file’ <string>
[‘LOGFILE’] Specifies an alternative file in which to place all diagnostics from the
mpatrol library.

‘--log-frees’
[‘LOGFREES’] Specifies that all memory deallocations are to be logged and sent to
the log file.

‘--log-memory’
[‘LOGMEMORY’] Specifies that all memory operations are to be logged and sent to the
log file.

‘--log-reallocs’
[‘LOGREALLOCS’] Specifies that all memory reallocations are to be logged and sent to
the log file.

‘--medium-bound’ <unsigned-integer>
[‘MEDIUMBOUND’] Specifies the limit in bytes up to which memory allocations should
be classified as medium allocations for profiling purposes.

‘--no-free’ <unsigned-integer>
[‘NOFREE’] Specifies that a number of recently-freed memory allocations should be
prevented from being returned to the free memory pool.

‘--no-protect’
[‘NOPROTECT’] Specifies that the mpatrol library’s internal data structures should
not be made read-only after every memory allocation, reallocation or deallocation.

‘--oflow-byte’ <unsigned-integer>
[‘OFLOWBYTE’] Specifies an 8-bit byte pattern with which to fill the overflow buffers
of all memory allocations.

‘--oflow-size’ <unsigned-integer>
[‘OFLOWSIZE’] Specifies the size in bytes to use for all overflow buffers, which must
be a power of two.

‘--oflow-watch’
[‘OFLOWWATCH’] Specifies that watch point areas should be used for overflow buffers
rather than filling with the overflow byte.

‘--page-alloc-lower’
[‘PAGEALLOC=LOWER’] Specifies that each individual memory allocation should occupy
at least one page of virtual memory and should be placed at the lowest point within
these pages.

‘--page-alloc-upper’
[‘PAGEALLOC=UPPER’] Specifies that each individual memory allocation should occupy
at least one page of virtual memory and should be placed at the highest point within
these pages.

‘--preserve’
[‘PRESERVE’] Specifies that any reallocated or freed memory allocations should pre-
serve their original contents.



164 mpatrol

‘--prof’ [‘PROF’] Specifies that all memory allocations are to be profiled and sent to the
profiling output file.

‘--prof-file’ <string>
[‘PROFFILE’] Specifies an alternative file in which to place all memory allocation
profiling information from the mpatrol library.

‘--prog-file’ <string>
[‘PROGFILE’] Specifies an alternative filename with which to locate the executable
file containing the program’s symbols.

‘--read-env’
Reads and passes through the contents of the MPATROL_OPTIONS environment vari-
able. Such contents will be placed before any of the options resulting from mpatrol
command line options so that they can be overridden and will only be parsed by
the mpatrol library, not the mpatrol command.

‘--realloc-stop’ <unsigned-integer>
[‘REALLOCSTOP’] Specifies an allocation index at which to stop the program when a
memory allocation is being reallocated.

‘--safe-signals’
[‘SAFESIGNALS’] Instructs the library to save and replace certain signal handlers
during the execution of library code and to restore them afterwards.

‘--show-all’
[‘SHOWALL’] Equivalent to the ‘--show-free’, ‘--show-freed’, ‘--show-unfreed’,
‘--show-map’ and ‘--show-symbols’ options specified together.

‘--show-env’
Displays the contents of the MPATROL_OPTIONS environment variable. This will be
shown after all of the other command line options have been processed and will
prevent the specified command from being run.

‘--show-free’
[‘SHOWFREE’] Specifies that a summary of all of the free memory blocks should be
displayed at the end of program execution.

‘--show-freed’
[‘SHOWFREED’] Specifies that a summary of all of the freed memory allocations should
be displayed at the end of program execution.

‘--show-map’
[‘SHOWMAP’] Specifies that a memory map of the entire heap should be displayed at
the end of program execution.

‘--show-symbols’
[‘SHOWSYMBOLS’] Specifies that a summary of all of the function symbols read from
the program’s executable file should be displayed at the end of program execution.

‘--show-unfreed’
[‘SHOWUNFREED’] Specifies that a summary of all of the unfreed memory allocations
should be displayed at the end of program execution.

‘--small-bound’ <unsigned-integer>
[‘SMALLBOUND’] Specifies the limit in bytes up to which memory allocations should
be classified as small allocations for profiling purposes.

‘--threads’
Specifies that the program to be run is multithreaded if the ‘--dynamic’ option is
used. This option is required if the multithreaded version of the mpatrol library
should be preloaded instead of the normal version.



Appendix C: Options 165

‘--trace’ [‘TRACE’] Specifies that all memory allocations are to be traced and sent to the
tracing output file.

‘--trace-file’ <string>
[‘TRACEFILE’] Specifies an alternative file in which to place all memory allocation
tracing information from the mpatrol library.

‘--unfreed-abort’ <unsigned-integer>
[‘UNFREEDABORT’] Specifies the minimum number of unfreed allocations at which to
abort the program just before program termination.

‘--use-debug’
[‘USEDEBUG’] Specifies that any debugging information in the executable file should
be used to obtain additional source-level information.

‘--use-mmap’
[‘USEMMAP’] Specifies that the library should use mmap() instead of sbrk() to allocate
user memory.

‘--version’
Displays the version number of the mpatrol command.



166 mpatrol



Appendix D: Diagnostic messages 167

Appendix D Diagnostic messages

The following table lists the warnings and errors that are likely to appear in the mpatrol
log file when problems with dynamic memory allocations and memory operations occur. Other
types of warnings and errors may also appear in the log file, but they are likely to be associated
with parsing options and reading symbols from executable files and so should be self-explanatory.

In all cases, if a warning or error is caused by one of the memory access checking functions
(invoked through the use of the ‘-fcheck-memory-usage’ option to the GNU compiler) then
execution will halt regardless, despite what the description of the diagnostic message says.

If a warning or error occurs due to a direct call to an mpatrol library function then an attempt
will be made to provide a log entry for the call. If the diagnostic was not caused by a normal
memory allocation, reallocation or deallocation function then the log entry will be preceded by
‘LOG:’. The function type will be listed as ‘check’ if it does not fall into the normal categories
or if not enough information is available.

Note that on UNIX platforms, if the diagnostic message is caused by a line in the program
source then the ‘EDIT’ and ‘LIST’ options can be used to illustrate more clearly where in the
source code the warning or error occurred.
• ‘ALLOVF’

Message ‘allocation %1 has a corrupted overflow buffer at %2’

Type Error

‘%1’ The pointer to the memory allocation that has a corrupted overflow buffer.

‘%2’ The pointer to the first byte of corruption in the memory allocation’s overflow
buffer.

Cause Something has corrupted the overflow buffer of a memory allocation and this has
been caught at the next invocation of an mpatrol function when the ‘OFLOWSIZE’
or ‘PAGEALLOC’ options were used. This particular error message will not occur
if the ‘OFLOWWATCH’ option was used since all overflow buffers will be write
protected.

Additional
The log file entry, the library summary, the contents of the overflow buffer and
information about the original memory allocation.

Result Execution terminates.

• ‘ALLZER’

Message ‘attempt to create an allocation of size 0’

Type Warning

Cause A function was called to allocate memory with a size of ‘0’ when either of the
‘CHECKALL’ or ‘CHECKALLOCS’ options were used. This warning will not occur
by default as the ANSI C/C++ standards allow this behaviour, and it is really
only a portability issue.

Additional
The log file entry.

Result The size is increased to 1 byte and execution continues.

• ‘BADALN’

Message ‘alignment %1 is not a power of two’

Type Warning



168 mpatrol

‘%1’ The alignment in bytes.

Cause The memalign() function was called to allocate memory with an alignment
which was not a power of two when either of the ‘CHECKALL’ or ‘CHECKALLOCS’
options were used.

Additional
The log file entry.

Result The alignment is rounded up to the nearest power of two and execution con-
tinues.

• ‘FRDCOR’

Message ‘freed allocation %1 has memory corruption at %2’

Type Error

‘%1’ The pointer to the freed memory allocation that has been corrupted.

‘%2’ The pointer to the first byte of corruption in the freed memory allocation.

Cause Something has corrupted the contents of a previously freed memory allocation
and this has been caught at the next invocation of an mpatrol function when
the ‘NOFREE’ option was used. This particular error message will not occur if
the ‘PAGEALLOC’ option was used since all freed memory allocations will be write
protected and will also not occur if the ‘PRESERVE’ option was used since the
free byte cannot be used to verify the freed allocation’s contents.

Additional
The log file entry, the library summary, the contents of the freed memory block
and information about the original memory allocation.

Result Execution terminates.

• ‘FRDOPN’

Message ‘attempt to perform operation on freed memory’

Type Error

Cause A memory operation function was called to operate on a previously freed mem-
ory allocation when the ‘NOFREE’ option was used.

Additional
The log file entry and information about the original memory allocation.

Result The memory operation fails and execution continues.

• ‘FRDOVF’

Message ‘freed allocation %1 has a corrupted overflow buffer at %2’

Type Error

‘%1’ The pointer to the freed memory allocation that has a corrupted overflow buffer.

‘%2’ The pointer to the first byte of corruption in the freed memory allocation’s
overflow buffer.

Cause Something has corrupted the overflow buffer of a previously freed memory al-
location and this has been caught at the next invocation of an mpatrol func-
tion when the ‘NOFREE’ option was used in conjunction with the ‘OFLOWSIZE’
or ‘PAGEALLOC’ options. This particular error message will not occur if the
‘OFLOWWATCH’ option was used since all overflow buffers will be write protected.



Appendix D: Diagnostic messages 169

Additional
The log file entry, the library summary, the contents of the overflow buffer and
information about the original memory allocation.

Result Execution terminates.

• ‘FRECOR’

Message ‘free memory corruption at %1’

Type Error

‘%1’ The pointer to the first byte of corruption in free memory.

Cause Something has corrupted the contents of the free memory pool and this has
been caught at the next invocation of an mpatrol function. This particular
error message will not occur if the ‘PAGEALLOC’ option was used since all free
memory will be write protected.

Additional
The log file entry, the library summary and the contents of the free memory
block.

Result Execution terminates.

• ‘FREMRK’

Message ‘attempt to free marked allocation %1’

Type Error

‘%1’ The pointer to the memory allocation that has been requested to be freed.

Cause An attempt was made to free a marked memory allocation. This is not allowed
since any memory allocations that have been marked indicate to the mpatrol
library that they should remain allocated for the duration of the program.

Additional
The log file entry and information about the original memory allocation.

Result No memory allocation will be freed and execution continues.

• ‘FRENUL’

Message ‘attempt to free a NULL pointer’

Type Warning

Cause A function was called to free an existing memory allocation with a pointer of
‘NULL’ when either of the ‘CHECKALL’ or ‘CHECKFREES’ options were used. This
warning will not occur by default as the ANSI C/C++ standards allow this
behaviour, and it is really only a portability issue.

Additional
The log file entry.

Result No memory allocation will be freed and execution continues.

• ‘FREOPN’

Message ‘attempt to perform operation on free memory’

Type Error

Cause A memory operation function was called to operate on free memory.



170 mpatrol

Additional
The log file entry.

Result The memory operation fails and execution continues.

• ‘ILLMEM’

Message ‘illegal memory access at address %1’

Type Error

‘%1’ The address at which the illegal memory access occurred.

Cause An attempt was made to read from or write to an illegal address on systems
which have virtual memory. This address may or may not exist in the heap, or
it may be a perfectly valid address that was misaligned and caused a bus error.
In either case, the mpatrol library will attempt to associate the address with
an existing memory allocation. This error may also appear instead of memory
corruption errors if the ‘PAGEALLOC’ or ‘OFLOWWATCH’ options were used.

Additional
The library summary, information about the original memory allocation (if
possible) and the call stack of where the error occurred.

Result Execution terminates.

• ‘INCOMP’

Message ‘%1 was allocated with %2’

Type Error

‘%1’ The pointer to the memory allocation that is to be resized or freed.

‘%2’ The name of the function which originally allocated the memory allocation.

Cause A function was called to resize or free a memory allocation that was allocated
with a function that is incompatible with the current request. For example, a
memory allocation which was allocated with operator new being resized with
realloc().

Additional
The log file entry and information about the original memory allocation.

Result The reallocation or deallocation fails and execution continues.

• ‘MAXALN’

Message ‘alignment %1 is greater than the system page size’

Type Warning

‘%1’ The alignment in bytes.

Cause The memalign() function was called to allocate memory with an alignment
which was greater than the system page size when either of the ‘CHECKALL’ or
‘CHECKALLOCS’ options were used. The mpatrol library cannot currently align
memory allocations to a byte alignment over this limit, but then neither can
most other implementations.

Additional
The log file entry.

Result The alignment is set to the system page size and execution continues.



Appendix D: Diagnostic messages 171

• ‘MISMAT’

Message ‘%1 does not match allocation of %2’

Type Error

‘%1’ The pointer to the memory allocation that is to be resized or freed.

‘%2’ The pointer to the memory allocation that the mpatrol library knows about.

Cause A function was called to resize or free a memory allocation that begins at a
different address from that supplied.

Additional
The log file entry and information about the original memory allocation.

Result The reallocation or deallocation fails and execution continues.

• ‘NOTALL’

Message ‘%1 has not been allocated’

Type Error

‘%1’ The pointer to the memory allocation that is to be resized or freed.

Cause A function was called to resize or free a memory allocation that has not been
allocated. It may be that the memory allocation has just been freed, in which
case the ‘NOFREE’ option should be used to provide a better diagnostic message.

Additional
The log file entry.

Result The reallocation or deallocation fails and execution continues.

• ‘NULOPN’

Message ‘attempt to perform operation on a NULL pointer’

Type Error

Cause A memory operation function was called to operate on a ‘NULL’ pointer. If
the length of the operation was zero then this error will only occur when the
‘CHECKALL’ or ‘CHECKMEMORY’ options were used as the ANSI C/C++ standards
allow this behaviour, and it is really only a portability issue.

Additional
The log file entry.

Result The memory operation fails and execution continues.

• ‘OUTMEM’

Message ‘out of memory’

Type Error

Cause The alloca(), xmalloc() or MP_MALLOC() families of functions were called
to allocate memory, but no more memory was available to allocate and the
low-memory handler, if installed, could not free up sufficient memory. This
error can also be caused by a call to the operator new or operator new[] C++
operators (not the nothrow versions) when they would otherwise return a ‘NULL’
pointer and the mpatrol library was compiled with a C compiler (which means
that it cannot throw a std::bad_alloc exception).

Additional
The library summary.



172 mpatrol

Result Execution terminates.

• ‘PRVFRD’

Message ‘%1 was freed with %2’

Type Error

‘%1’ The pointer to the memory allocation that is to be resized or freed.

‘%2’ The name of the function which originally freed the memory allocation.

Cause A function was called to resize or free a memory allocation that had previously
been freed when the ‘NOFREE’ option was used.

Additional
The log file entry and information about the original memory allocation.

Result The reallocation or deallocation fails and execution continues.

• ‘RNGOVF’

Message ‘range [%1,%2] overflows [%3,%4]’

Type Warning/Error

‘%1’ The start address of the memory region.

‘%2’ The end address of the memory region.

‘%3’ The start address of the memory allocation.

‘%4’ The end address of the memory allocation.

Cause A memory operation function was called to operate on a range of memory which
overflowed the boundaries of a memory allocation.

Additional
The log file entry and information about the original memory allocation.

Result The operation will be only be performed (and will be changed from an error
to a warning) if the ‘ALLOWOFLOW’ option was used, but execution will continue
regardless.

• ‘RNGOVL’

Message ‘range [%1,%2] overlaps [%3,%4]’

Type Warning

‘%1’ The start address of the source memory region.

‘%2’ The end address of the source memory region.

‘%3’ The start address of the destination memory region.

‘%4’ The end address of the destination memory region.

Cause The memcpy() or memccpy() function was called to copy overlapping memory
regions. This is an error on many systems and the ANSI C/C++ standards
specify that memmove() should be used instead.

Additional
The log file entry.

Result The copy operation will still be performed but it will deal correctly with over-
lapping memory regions.



Appendix D: Diagnostic messages 173

• ‘RSZNUL’

Message ‘attempt to resize a NULL pointer’

Type Warning

Cause A function was called to resize an existing memory allocation with a pointer
of ‘NULL’ when either of the ‘CHECKALL’ or ‘CHECKREALLOCS’ options were used.
This warning will not occur by default as the ANSI C/C++ standards allow this
behaviour, and it is really only a portability issue.

Additional
The log file entry.

Result A new memory allocation is returned and execution continues.

• ‘RSZZER’

Message ‘attempt to resize an allocation to size 0’

Type Warning

Cause A function was called to resize an existing memory allocation to a size of ‘0’
when either of the ‘CHECKALL’ or ‘CHECKREALLOCS’ options were used. This
warning will not occur by default as the ANSI C/C++ standards allow this
behaviour, and it is really only a portability issue.

Additional
The log file entry.

Result The existing memory allocation will be freed and execution continues.

• ‘STROVF’

Message ‘string %1 overflows [%2,%3]’

Type Error

‘%1’ The start address of the string.

‘%2’ The start address of the memory allocation.

‘%3’ The end address of the memory allocation.

Cause A string function was called to operate on a string which overflowed the bound-
aries of a memory allocation.

Additional
The log file entry and information about the original memory allocation.

Result The operation will not be performed and execution continues.

• ‘ZERALN’

Message ‘alignment 0 is invalid’

Type Warning

Cause The memalign() function was called to allocate memory with an alignment of
‘0’ when either of the ‘CHECKALL’ or ‘CHECKALLOCS’ options were used.

Additional
The log file entry.

Result The alignment is set to the default system alignment and execution continues.



174 mpatrol



Appendix E: Library performance 175

Appendix E Library performance

The following times were obtained on a Sun Ultra 5 with an UltraSPARC IIi processor running
at 333MHz and running Solaris 7. The test performed was the one in ‘tests/pass/test1.c’
and all tests were run on a lightly loaded system, but were run several times to obtain an average
result. Obviously, these times can only be an approximation, but should serve to illustrate the
effects on performance that each option can have. All times are given in seconds, and the second
time on each line was obtained with the same options plus the ‘NOPROTECT’ option. The tests
were all run with the default ‘CHECK=0’ option, so running with the ‘CHECK=-’ option would slow
things down dramatically, albeit with more checking being performed to detect heap corruption.

Running with basic options:
no options 0.525 0.258
‘OFLOWSIZE=2’ 0.569 0.265
‘OFLOWSIZE=8’ 0.580 0.276
‘PAGEALLOC=LOWER’ 0.709 0.462
‘PAGEALLOC=UPPER’ 0.742 0.485

Running when all freed memory allocations are kept:
‘NOFREE=0xFFFF’ 0.711 0.338
‘NOFREE=0xFFFF OFLOWSIZE=2’ 0.725 0.350
‘NOFREE=0xFFFF OFLOWSIZE=8’ 0.739 0.358
‘NOFREE=0xFFFF PAGEALLOC=LOWER’ 1.048 0.710
‘NOFREE=0xFFFF PAGEALLOC=UPPER’ 1.079 0.722

Running when all freed memory allocations are kept and their contents are preserved:
‘NOFREE=0xFFFF PRESERVE’ 0.725 0.341
‘NOFREE=0xFFFF PRESERVE OFLOWSIZE=2’ 0.735 0.357
‘NOFREE=0xFFFF PRESERVE OFLOWSIZE=8’ 0.745 0.360
‘NOFREE=0xFFFF PRESERVE PAGEALLOC=LOWER’ 1.055 0.722
‘NOFREE=0xFFFF PRESERVE PAGEALLOC=UPPER’ 1.081 0.729

Running using watch points to check the overflow buffers:
‘OFLOWSIZE=2 OFLOWWATCH’ 28.758 28.372

Running using the Solaris malloc libraries:
Solaris malloc(3c) library 0.030
Solaris malloc(3x) library 0.033
Solaris bsdmalloc(3x) library 0.027
Solaris mapmalloc(3x) library 0.030
Solaris watchmalloc(3x) library 30.323



176 mpatrol



Appendix F: File formats 177

Appendix F File formats

The formats of the profiling and tracing output files that are produced by the mpatrol library
are described here1.

F.1 Profiling file format

Every mpatrol profiling output file contains the following components.
• 4 bytes containing the characters ‘M’, ‘P’, ‘T’ and ‘L’.
• 1 unsigned integer representing the value ‘1’. This is used by mprof to determine the

endianness of the processor that produced the profiling output file so that it can decide
whether to perform byte-swapping on the input data.

• 1 unsigned integer containing the version number of the mpatrol library which produced
the profiling output file.

• 3 unsigned integers containing the small, medium and large allocation bounds.
• 1 unsigned integer containing the allocation bin size. If the allocation bin size is greater than

zero then it is followed by the allocation bins, the large allocation totals, the deallocation
bins and the large deallocation totals, where the bins are arrays of unsigned integers with
dimensions of the allocation bin size and the totals are unsigned integers.

• 1 unsigned integer containing the number of profiling data structures. If the number of pro-
filing data structures is greater than zero then it is followed by the profiling data structures
themselves, which are of the following structure.
• 1 unsigned integer representing the index of this profiling data.
• 4 unsigned integers representing the small, medium, large and extra large allocation

counts for this profiling data.
• 4 unsigned integers representing the small, medium, large and extra large allocation

totals for this profiling data.
• 4 unsigned integers representing the small, medium, large and extra large deallocation

counts for this profiling data.
• 4 unsigned integers representing the small, medium, large and extra large deallocation

totals for this profiling data.
• 1 unsigned integer containing the number of call sites. If the number of call sites is greater

than zero then it is followed by the call sites themselves, which are of the following structure.
• 1 unsigned integer representing the index of this call site.
• 1 unsigned integer representing the index of the parent call site.
• 1 generic pointer representing the code address of this call site.
• 1 unsigned integer representing the index of an associated symbol.
• 1 unsigned integer representing the offset of the symbol name.
• 1 unsigned integer representing the index of any associated profiling data.

• 1 unsigned integer containing the number of symbol addresses. If the number of symbol
addresses is greater than zero then it is followed by the symbol addresses themselves, which
are generic pointers.

• 1 unsigned integer containing the size of the symbol name string table. This is followed by
the symbol name string table, which is an array of characters containing the nul-terminated
symbol names.

• 4 bytes containing the characters ‘M’, ‘P’, ‘T’ and ‘L’.

1 The file ‘extra/magic’ contains a UNIX magic file excerpt for automatically identifying an mpatrol log file,
an mpatrol profiling output file and an mpatrol tracing output file with the file command.



178 mpatrol

F.2 Tracing file format

Every mpatrol tracing output file contains the following components.
• 4 bytes containing the characters ‘M’, ‘T’, ‘R’ and ‘C’.
• 1 unsigned integer representing the value ‘1’. This is used by mptrace to determine the

endianness of the processor that produced the tracing output file so that it can decide
whether to perform byte-swapping on the input data.

• 1 unsigned integer containing the version number of the mpatrol library which produced
the tracing output file.

• One or more of the following event records.
• If the event is a system heap allocation for use by the mpatrol library’s internal data

structures then the event record will begin with the character ‘I’ followed by the start
address and size in bytes of the heap allocation encoded as unsigned LEB128 numbers.

• If the event is a system heap allocation for use by the program’s memory allocations
then the event record will begin with the character ‘H’ followed by the start address
and size in bytes of the heap allocation encoded as unsigned LEB128 numbers.

• If the event is a memory allocation then the event record will begin with the character
‘A’ followed by the allocation index, start address and size in bytes of the memory
allocation encoded as unsigned LEB128 numbers. From version 1.4.5 of the mpatrol
library, the thread identifier, function name, file name and line number are also written
out as part of the event record (see below).

• If the event is a memory reallocation then the event record will begin with the character
‘R’ followed by the allocation index, start address and size of the new memory allocation
encoded as an unsigned LEB128 number. From version 1.4.5 of the mpatrol library,
the thread identifier, function name, file name and line number are also written out as
part of the event record (see below).

• If the event is a memory deallocation then the event record will begin with the character
‘F’ followed by the allocation index of the memory allocation encoded as an unsigned
LEB128 number. From version 1.4.5 of the mpatrol library, the thread identifier,
function name, file name and line number are also written out as part of the event
record (see below).

• From version 1.4.5 of the mpatrol library, event records contain the following additional
information.
• The thread identifier as an unsigned LEB128 number.
• The cached source function name. If the first byte is zero then there is no associated

function name. If the first byte has the most significant bit set then the following
null-terminated string defines a source function name associated with the number in
the remaining 7 bits. If the first byte does not have the most significant bit set then it
is taken to be the index of a previously defined source function name.

• The cached source file name. If the first byte is zero then there is no associated file
name. If the first byte has the most significant bit set then the following null-terminated
string defines a source file name associated with the number in the remaining 7 bits. If
the first byte does not have the most significant bit set then it is taken to be the index
of a previously defined source file name.

• The source line number as an unsigned LEB128 number.
• 4 bytes containing the characters ‘M’, ‘T’, ‘R’ and ‘C’.



Appendix G: Supported systems 179

Appendix G Supported systems

Following is a list of systems on which the mpatrol library has been built and tested. The
system details include the operating system and version, the processor type, the object file format
and the compiler used to compile the library and tests. The details following each system list
any features of the library that are not (or cannot be) supported on that system.
• AIX 4.1, IBM RS/6000, XCOFF, cc
• The thread-safe version of the library does not work.
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEDEBUG’ option has no effect.
• There is a problem obtaining the program’s executable filename when using the shared

library version of mpatrol.
• The shared library version of mpatrol does not currently override the dynamic memory

allocation functions that are called from other shared libraries and so will only affect
object files that are statically linked. If this is a problem then should link your pro-
grams with the following additional compiler options in order to perform a static link
instead of a dynamic link: ‘-bnoautoimp’ ‘-bimport:/lib/syscalls.exp’ and also
‘-bimport:/lib/threads.exp’ if linking with ‘libmpatrolmt.a’.

• A makefile called ‘Makefile.aix’ is supplied in ‘build/unix’ which will build the
mpatrol library as an AIX shared library. The shared library will be embedded within
the mpatrol archive library as is done with the system libraries.

• The __mp_init_ initialisation function feature does not work since function entry points
need to be referenced through the TOC.

• The ‘--dynamic’ option to the mpatrol command has no effect.

• DG/UX 4.11, Intel Pentium Pro, ELF32, gcc
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEDEBUG’ option has no effect.
• The ‘--dynamic’ option to the mpatrol command has no effect.

• DG/UX 4.20MU07, Intel Pentium Pro, ELF32, gcc
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEDEBUG’ option has no effect.
• The ‘--dynamic’ option to the mpatrol command does not work unless ‘libelf.so’ is

available.

• DG/UX 4.11, Motorola 88100, ELF32, gcc
• The thread-safe version of the library does not work if the mpatrol library is built as a

shared library.
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEDEBUG’ option has no effect.
• Call stack traversal only works with unoptimised code.
• The ‘--dynamic’ option to the mpatrol command has no effect.

• DRS/NX 6.2, SPARC V7, ELF32, cc
• The option ‘-DSYSTEM=SYSTEM_DRSNX’ must be added to the CFLAGS section in the

‘Makefile’ before building the library.
• The thread-safe version of the library does not work. This is because there does not

appear to be any evidence that this version of the operating system supports threads.
• The ‘OFLOWWATCH’ option has no effect.



180 mpatrol

• The ‘USEDEBUG’ option has no effect.
• The ‘--dynamic’ option to the mpatrol command has no effect.

• DYNIX/ptx 4.5, Intel Pentium Pro, ELF32, cc
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEDEBUG’ option has no effect.
• The ‘--dynamic’ option to the mpatrol command does not work unless ‘libelf.so’ is

available.

• FreeBSD 4.2, Intel Celeron, ELF32, gcc
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEDEBUG’ option has no effect.
• On ELF-based systems, the mpatrol library requires either the ELF access library or

the GNU BFD library to be installed on the system, otherwise no symbols can be
read from executable files or shared libraries and the library must be built with the
‘-DFORMAT=FORMAT_NONE’ option. No such extra libraries are required on ‘a.out’-based
systems.

• The ‘--dynamic’ option to the mpatrol command does not appear to work correctly,
giving spurious errors in the log file.

• HP/UX 10.20, HP PA/RISC 9000, BFD, gcc
• The thread-safe version of the library does not work. This is because there does not

appear to be any evidence that this version of the operating system supports threads.
• The ‘OFLOWWATCH’ option has no effect.
• The ‘--dynamic’ option to the mpatrol command has no effect.

• IRIX 5.3, MIPS R4000, ELF32, cc
• The thread-safe version of the library does not work. This is because there does not

appear to be any evidence that this version of the operating system supports threads.
• This version of the operating system only allows up to 100 user-programmable software

watch points, which means that the ‘OFLOWWATCH’ option will not work properly if more
than 50 memory allocations exist at one time.

• The ‘USEDEBUG’ option has no effect.
• Stack traversal may be unreliable from signal-handlers.

• Red Hat Linux 6.0, Intel Pentium III, BFD, g++
• The ‘OFLOWWATCH’ option has no effect.
• The ‘CHECKFORK’ option does not work properly in multithreaded programs due to each

thread having different process identifiers.
• The ‘--dynamic’ option to the mpatrol command does not work unless ‘libiberty.so’

is available.
• Red Hat Linux 6.1, Intel Pentium III, BFD, g++
• The thread-safe version of the library does not work due to the system threads library

calling malloc() and bzero() recursively.
• The ‘OFLOWWATCH’ option has no effect.
• The ‘CHECKFORK’ option does not work properly in multithreaded programs due to each

thread having different process identifiers.
• The ‘--dynamic’ option to the mpatrol command does not work unless ‘libiberty.so’

is available.



Appendix G: Supported systems 181

• Red Hat Linux 6.2, Intel Pentium III, BFD, g++
• The ‘OFLOWWATCH’ option has no effect.
• The ‘CHECKFORK’ option does not work properly in multithreaded programs due to each

thread having different process identifiers.
• The ‘--dynamic’ option to the mpatrol command does not work unless ‘libiberty.so’

is available.
• Red Hat Linux 7.x, Intel Pentium III, BFD, g++
• The ‘OFLOWWATCH’ option has no effect.
• The ‘CHECKFORK’ option does not work properly in multithreaded programs due to each

thread having different process identifiers.
• The ‘--dynamic’ option to the mpatrol command does not work unless ‘libiberty.so’

is available.

• Red Hat Linux 5.1, Motorola 68040, BFD, gcc
• The thread-safe version of the library does not work due to the system threads library

calling malloc() and bzero() recursively.
• The ‘OFLOWWATCH’ option has no effect.
• The ‘CHECKFORK’ option does not work properly in multithreaded programs due to each

thread having different process identifiers.
• The ‘--dynamic’ option to the mpatrol command does not work unless ‘libiberty.so’

is available.
• Red Hat Linux 5.1, Motorola 68040, ELF32, gcc
• The thread-safe version of the library does not work due to the system threads library

calling malloc() and bzero() recursively.
• The ‘OFLOWWATCH’ option has no effect.
• The ‘CHECKFORK’ option does not work properly in multithreaded programs due to each

thread having different process identifiers.
• The ‘USEDEBUG’ option has no effect.
• The ‘--dynamic’ option to the mpatrol command does not work unless ‘libelf.so’ is

available.

• SuSE Linux 7.1, Intel Pentium II, BFD, g++
• The ‘OFLOWWATCH’ option has no effect.
• The ‘CHECKFORK’ option does not work properly in multithreaded programs due to each

thread having different process identifiers.
• The ‘--dynamic’ option to the mpatrol command does not work unless ‘libiberty.so’

is available.

• LynxOS 3.0.0, Intel Pentium Pro, BFD, gcc
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEMMAP’ option has no effect.
• There is currently no support for reading symbols from COFF shared libraries. You

should currently always perform a static link instead of a dynamic link when linking
your program, but that is the default on LynxOS anyway.

• The ‘--dynamic’ option to the mpatrol command has no effect.
• LynxOS 3.0.0, Intel Pentium Pro, COFF, gcc
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEDEBUG’ option has no effect.



182 mpatrol

• The ‘USEMMAP’ option has no effect.
• There is currently no support for reading symbols from COFF shared libraries. You

should currently always perform a static link instead of a dynamic link when linking
your program, but that is the default on LynxOS anyway.

• The ‘--dynamic’ option to the mpatrol command has no effect.

• LynxOS 3.0.0, PowerPC, BFD, gcc
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEMMAP’ option has no effect.
• There is currently no support for reading symbols from XCOFF shared libraries. You

should currently always perform a static link instead of a dynamic link when linking
your program, but that is the default on LynxOS anyway.

• The __mp_init_ initialisation function feature does not work since function entry points
need to be referenced through the TOC.

• The ‘--dynamic’ option to the mpatrol command has no effect.
• LynxOS 3.0.0, PowerPC, XCOFF, gcc
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEDEBUG’ option has no effect.
• The ‘USEMMAP’ option has no effect.
• There is currently no support for reading symbols from XCOFF shared libraries. You

should currently always perform a static link instead of a dynamic link when linking
your program, but that is the default on LynxOS anyway.

• The __mp_init_ initialisation function feature does not work since function entry points
need to be referenced through the TOC.

• The ‘--dynamic’ option to the mpatrol command has no effect.

• SINIX 5.43, MIPS R4000, ELF32, cc
• The thread-safe version of the library does not work. This is because there does not

appear to be any evidence that this version of the operating system supports threads.
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEDEBUG’ option has no effect.
• Stack traversal may be unreliable from signal-handlers.
• The ‘--dynamic’ option to the mpatrol command has no effect.

• Solaris 2.6, Intel Pentium Pro, BFD, gcc
• No known issues.

• Solaris 2.6, Intel Pentium Pro, ELF32, gcc
• The ‘USEDEBUG’ option has no effect.

• Solaris 2.5, SPARC V8, BFD, gcc
• The thread-safe version of the library does not work due to a problem with a system

library.
• The ‘OFLOWWATCH’ option has no effect. The ‘-DMP_PROCFS_SUPPORT=0’ and

‘-DMP_WATCH_SUPPORT=0’ options must be added to CFLAGS in the ‘Makefile’.
• Solaris 2.5, SPARC V8, ELF32, gcc
• The thread-safe version of the library does not work due to a problem with a system

library.
• The ‘OFLOWWATCH’ option has no effect. The ‘-DMP_PROCFS_SUPPORT=0’ and

‘-DMP_WATCH_SUPPORT=0’ options must be added to CFLAGS in the ‘Makefile’.



Appendix G: Supported systems 183

• The ‘USEDEBUG’ option has no effect.
• Solaris 7, SPARC V9, BFD, g++
• The mpatrol library can be compiled and run in a 64-bit environment.

• Solaris 7, SPARC V9, ELF32/ELF64, g++
• The ‘USEDEBUG’ option has no effect.
• The mpatrol library can be compiled and run in a 64-bit environment.

• Solaris 8, SPARC V9, BFD, g++
• The mpatrol library can be compiled and run in a 64-bit environment.

• Solaris 8, SPARC V9, ELF32/ELF64, g++
• The ‘USEDEBUG’ option has no effect.
• The mpatrol library can be compiled and run in a 64-bit environment.

• Tru64 5.0, Alpha, BFD, cxx
• The thread-safe version of the library has not yet been tested.
• The ‘OFLOWWATCH’ option has no effect.
• The system exception-handling library (libexc) is used for call stack traversal. Unfor-

tunately, this library makes several calls to malloc() when initialising itself and this
can sometimes result in a recursive loop when used in combination with the mpatrol
library. If this occurs, either MP_BUILTINSTACK_SUPPORT=1 must be defined or the
mpatrol library must be built without the ‘malloc.o’ module.

• The mpatrol library can be compiled and run in a 64-bit environment.

• UnixWare 7.1.1, Intel Pentium II, ELF32, gcc
• The option ‘-DSYSTEM=SYSTEM_UNIXWARE’ must be added to the CFLAGS section in the

‘Makefile’ before building the library.
• The thread-safe version of the library does not work.
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEDEBUG’ option has no effect.
• The ‘--dynamic’ option to the mpatrol command has no effect.

• AmigaOS 3.1, Motorola 68040, BFD, gcc
• No memory protection so the ‘PAGEALLOC’ option has no effect.
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEDEBUG’ option has no effect.
• The ‘USEMMAP’ option has no effect.
• The ‘EDIT’ and ‘LIST’ options have no effect.
• Limited support for call stack traversal.
• Limited support for reading symbols.
• No detection of illegal memory accesses.
• The __mp_init_ initialisation function feature does not work.
• The ‘--dynamic’ option to the mpatrol command has no effect.
• The mptrace command has no GUI.
• The mpsym and hexwords commands do not work unless gdb and the GNU text pro-

cessing tools are installed.
• The mpedit command does not work.

• AmigaOS 3.1, Motorola 68040, n/a, SAS/C



184 mpatrol

• No automatic override of malloc(), etc., without inclusion of ‘mpatrol.h’.
• No memory protection so the ‘PAGEALLOC’ option has no effect.
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEDEBUG’ option has no effect.
• The ‘USEMMAP’ option has no effect.
• The ‘EDIT’ and ‘LIST’ options have no effect.
• No support for call stack traversal.
• No support for reading symbols.
• No detection of illegal memory accesses.
• The C++ compiler may come with an older version of the standard C++ library which

does not place set_new_hander() in the std namespace. The ‘mpatrol.h’ header file
and the ‘cplus.c’ source file will need to be changed accordingly.

• The __mp_init_ initialisation function feature does not work.
• The ‘--dynamic’ option to the mpatrol command has no effect.
• The mptrace command has no GUI.
• The mpsym, mpedit and hexwords commands do not work.

• Microsoft Windows NT 4.0, Intel Pentium III, PE, Microsoft Visual C++
• The ‘OFLOWWATCH’ option has no effect.
• The ‘USEMMAP’ option has no effect.
• The ‘EDIT’ and ‘LIST’ options have no effect.
• The C++ compiler may come with an older version of the standard C++ library which

does not place set_new_hander() in the std namespace. The ‘mpatrol.h’ header file
and the ‘cplus.c’ source file will need to be changed accordingly.

• There is currently a problem when mixing the archive library version of mpatrol with
the DLL version of the Microsoft Runtime Library, and vice versa.

• The __mp_init_ initialisation function feature does not work.
• The ‘--dynamic’ option to the mpatrol command has no effect.
• The mptrace command has no GUI.
• The mpsym, mpedit and hexwords commands do not work.



Appendix H: Porting 185

Appendix H Porting

This section describes how to port the mpatrol library to new systems. It is not a complete
set of guidelines as nothing can cover every eventuality, but it should list most of the important
issues and where to make the necessary changes. Once you’ve made the changes (and are happy
with them) then send them to me and I can incorporate them into the next mpatrol release.
I’d also like to hear from anybody who has got mpatrol working on a different version of an
operating system listed in the supported systems section (see Appendix G [Supported systems],
page 179) even if no changes were required, since that information can be useful for new users
wondering if mpatrol can be used on their system.
1. Make any required changes in ‘src/target.h’ in order to identify the new system.

The TARGET macro is used to identify distinct families of operating systems whereas the
SYSTEM macro is used to identify the operating system variant if TARGET=TARGET_UNIX.
You should try to identify the predefined preprocessor macros that the system C compiler
defines for the operating system type and the operating system variant, otherwise you will
have to specify the TARGET and SYSTEM macros explicitly in the ‘Makefile’ when building
the mpatrol library. Note that for non-UNIX operating systems, SYSTEM=SYSTEM_ANY is
implied.
The ARCH macro is used to identify the processor architecture and the ENVIRON macro is
used to identify the processor word size. Again, you should try to identify the predefined
preprocessor macros that the system C compiler defines for the processor architecture and
processor word size, otherwise you may also have to specify the ARCH and ENVIRON macros
explicitly in the ‘Makefile’ when building the mpatrol library. The default setting for the
processor word size is ENVIRON=ENVIRON_32.
You can normally figure out the preprocessor macros that are predefined by the system C
compiler by using the ‘-#’, ‘-v’ or ‘-verbose’ options when compiling a source file. The
command line used to invoke the preprocessor should then be shown, which should show a
list of all of the macros that are being defined in addition to those specified on the compiler
command line. It should then be easy for you to spot the ones you need.
The FORMAT macro is used to identify the object file format and the DYNLINK macro is
used to identify the dynamic linker type. You may be able to use the existing values
for these without having to define new ones, but in any case you should attempt to set
defaults for these macros depending on the values of the four preceding macros. A setting of
FORMAT=FORMAT_NONE indicates that reading symbols from any object files is not supported
and a setting of DYNLINK=DYNLINK_NONE indicates that reading symbols from shared libraries
is not supported.
If the object file format of the new system is not currently supported, perhaps it is supported
by the GNU BFD library. This can be used as a catch-all solution to provide symbol reading
support for the mpatrol library with object file formats that are obscure or are just hard to
implement readers for. You’d be surprised at how many object file formats are supported
by that library and if the new format is supported then try defining FORMAT=FORMAT_BFD
for the new system.
In all six of the above target macros, care should be taken not to define a new macro that is
effectively the same as an existing one, unless there are significant differences. For example,
the dynamic linker used on BSD systems is slightly different from the dynamic linker used
on SunOS, but they both use DYNLINK=DYNLINK_BSD because the underlying dynamic linker
uses the same data structures — they are just named differently on the two systems.
Note that there are also corresponding *_STR macros for all six of the above target macros.
These are used when displaying the target environment information in the mpatrol log file
so they should be as accurate as possible so as to avoid misleading users.
Finally, you should determine if it is necessary to define any special macros in order to
obtain all of the required definitions from the system header files. Many compilers default



186 mpatrol

to providing an ANSI C or C++ environment without any extensions, but as the mpatrol
library uses additional features that are not provided by these standards, it may be necessary
to define additional macros that allow the compiler to see the definitions of these features.
For example, the _POSIX_SOURCE macro is defined here for all UNIX platforms so that
mpatrol can make use of the POSIX extensions. Note that ‘src/target.h’ is the only
mpatrol library source file that refers to the predefined preprocessor macros defined by the
system C compiler on a particular system (apart from a few necessary exceptions) and the
rest of the source code refers to the six aforementioned macros for conditional compilation.

2. Make any required changes in ‘src/memory.c’ in order to support the new system.
The mpatrol library, like the system malloc library it is replacing, must have some way of
allocating memory from the system heap for a process. For UNIX systems, this is done
by calling sbrk() and/or mmap() but this is likely to be completely different for other
operating systems. The mpatrol library must also have some way of returning the allocated
heap memory back to the operating system, although on systems with virtual memory
this is not really an issue (see MP_DELETEHEAP in ‘src/config.h’). If there is currently no
support in the mpatrol library for allocating and returning system heap memory for the new
system then you must modify __mp_memalloc() and __mp_memfree() to add the support.
You should define MP_MMAP_SUPPORT in ‘src/config.h’ if the operating system is UNIX
and the system variant supports the mmap() system call.
Note that some (mainly embedded) systems may have no system heap available for a pro-
gram to use. If that is the case then the mpatrol library can be built to allocate memory
from a static array whose size is fixed at compile-time. The MP_ARRAY_SUPPORT macro
should be defined in ‘src/config.h’ and the MP_ARRAY_SIZE macro should be set to the
maximum number of bytes that the simulated heap should be able to hold. Keep in mind
that all of the internal mpatrol library data structures will also be allocated from this array
so it is important to make it large enough.
Operating systems with virtual memory allow mpatrol to protect certain regions of heap
memory to ensure that they are not overwritten. The MP_PROTECT_SUPPORT macro in
‘src/config.h’ controls whether the operating system supports this, and the __mp_
memprotect() and __mp_memquery() functions should be updated to support the new
system. You should also define MP_MINCORE_SUPPORT in ‘src/config.h’ if the operating
system is UNIX and the system variant supports the mincore() system call. The MP_
WATCH_SUPPORT macro controls the support of software watchpoints in a similar way and
the __mp_memwatch() function should be updated if they are supported.
If the new system is a UNIX system and it supports the ‘/proc’ filesystem then you may
wish to define MP_PROCFS_SUPPORT in ‘src/config.h’. However, this is only necessary if
there is a way to detect the filename the current process was invoked with (MP_PROCFS_
CMDNAME) or a way to obtain the filehandle of the executable file for the current process
(MP_PROCFS_EXENAME). It may also be necessary if MP_WATCH_SUPPORT is defined and the
only way to set the watchpoints is via a file in the ‘/proc’ filesystem (MP_PROCFS_CTLNAME).
Finally, you should add support for determining the system page size in pagesize() and the
process identifier for the current process in __mp_processid() if the system is not already
supported1. You will also have to add a way to determine the filename that the current
process was invoked with in progname(), otherwise the ‘PROGFILE’ option will always have
to be used in order to read symbols from the executable file. This can be done in a multitude
of ways, including examining global variables, making function calls to query the system or
traversing the call stack.

3. Make any required changes in ‘src/stack.c’ in order to support stack traversal in the new
processor architecture.

1 You will also have to make any changes to pagesize() in ‘src/mpalloc.c’ and possibly also have to define
MP_MEMALIGN_SUPPORT in ‘src/config.h’ if the new system supports the memalign() function.



Appendix H: Porting 187

If the new processor architecture is CISC (complex instruction set computer) then the
chances are that you can easily find the frame pointer and return address of the current stack
frame by simply looking at a constant offset from the parameter to the __mp_getframe()
function. The call chain can then be obtained by following the frame pointer at each stage.
This can sometimes be disrupted by optimisations that do not preserve the frame pointer
but this is usually confined to leaf routines and is not normally an issue. The Intel x86 and
Motorola 680x0 processor families are good examples to look at when implementing stack
traversal for a CISC processor.
On the other hand, things might not be so easy if the new processor architecture is RISC
(reduced instruction set computer). Such processors do not always have fixed format stack
frames2 and so other means might have to be used. The Alpha and MIPS processor families
are examples of these and code reading normally has to be used in order to find the call
instruction from the calling routine. This then has to be done for every function in the
call stack. An example of such code can be found for the generic MIPS implementation.
Any assembler code that needs to be written to support the stack traversal implementation
should be written in ‘src/machine.c’.
If the GNU compiler is being used then it might be possible to use its __builtin_frame_
address() and __builtin_return_address() builtin functions in order to provide stack
traversal. These can only be used if they return ‘NULL’ when the bottom of the call stack
is reached, but on many architectures the GNU compiler does not implement this correctly
and so this method of stack traversal cannot be used. Even if it can, it still imposes an upper
limit on the size of the stack that can be traversed. If this is not an issue then it can be
enabled with the MP_BUILTINSTACK_SUPPORT macro in ‘src/config.h’ and the maximum
size of the call stack that can be traversed can be set by changing the MP_MAXSTACK macro in
the same file. The MP_FULLSTACK macro in ‘src/config.h’ should be set for stack traversal
implementations that have no limit to the maximum size of the call stack that can be
traversed. Obviously that is not the case for MP_BUILTINSTACK_SUPPORT.
Some operating systems have library functions that provide stack traversal facilities
and so you may wish to make use of them by defining MP_LIBRARYSTACK_SUPPORT in
‘src/config.h’ and implementing the code to call them in ‘src/stack.c’. Examples of
systems that can make use of this capability are IRIX and Tru64, although they have a
drawback in that they recursively call malloc() and so work slower than they normally
would.
If any functions from an external system library were used to help implement stack traversal
for the new processor architecture then you may also have to modify the MP_SYSTEM_LIBS
definitions in ‘src/config.h’, the __mp_lib* definitions in ‘src/inter.c’ and the AC_
CHECK_LIB() calls in ‘extra/mpatrol.m4’.

4. Make any required changes in ‘src/symbol.c’ in order to support any new object file
formats and dynamic linkers.
The best place to find information on the object file format and dynamic linker interface
supported by a new system is the on-line manual pages and header files on that system. If
that fails then try the hardcopy technical reference manuals that came with the system or
the internet in order to find the information you need. There may also be standards that
define the object file format and dynamic linker interface across several systems.
If you defined a new FORMAT macro in ‘src/target.h’ then you must add the code to support
it in ‘src/symbol.c’. You will typically have to add new addsymbol() and addsymbols()
functions that are specific to the new object file format and then add support for that
format in __mp_addsymbols() and __mp_findsymbol(). If it is possible to easily read a
line number table from the object file format then you may also want to extend the __mp_

2 Although some do, and you can follow the instructions for CISC processors above in order to provide stack
traversal support for them.



188 mpatrol

findsource() function to handle the new format as well in order to support the ‘USEDEBUG’
option.
If you defined a new DYNLINK macro in ‘src/target.h’ then you must also add the
code to support it in ‘src/symbol.c’. You will normally only have to extend the __mp_
addextsymbols() function to support the new dynamic linker but there may be some extra
work required to translate the base addresses of any symbols read from shared libraries into
real addresses.
In both cases, try to base the new code on the structure of the existing code since it has
been proven to work well and there is no point in reinventing the wheel3. You might decide
to make changes to an existing implementation instead; this was done with the COFF and
XCOFF formats, for example.
If any functions from an external object file access library were used to help read symbols
from the new object file format then you may also have to modify the MP_SYMBOL_LIBS
definitions in ‘src/config.h’, the __mp_lib* definitions in ‘src/inter.c’ and the AC_
CHECK_LIB() calls in ‘extra/mpatrol.m4’.

5. Make any required changes in ‘src/signals.c’ in order to obtain the address of an illegal
memory access in the new system.
If the system supports the SA_SIGINFO flag when setting up a signal handler with
sigaction() then it supports architecture-independent determination of the address of an
illegal memory access and the MP_SIGINFO_SUPPORT macro should be set in ‘src/config.h’.
If this is not the case then an architecture-dependent method must be employed in order to
obtain this information. On UNIX systems, signal handlers can have additional arguments
that may be used to probe for the address of a segmentation violation or bus error. On
Windows systems, an exception record can be obtained whenever an access violation occurs.
In either case, the saved register containing the relevant address must be determined. If
this is not done then the mpatrol library will compile correctly, but the addresses of illegal
memory accesses can never be determined.

6. Make any required changes in ‘src/mutex.c’ in order to support threads in the new system.
The mpatrol library must be able to lock its data structures in a multithreaded environment
otherwise two threads may allocate memory at the same time and the heap would become
corrupted, for example. On operating systems that have virtual memory, processes have
their own address space and can have more than one thread of execution running at one
time. On other operating systems, there is only one process (the operating system) and the
threads are the user processes that all share the same address space. For that reason, you
may wish to use semaphores on such systems since they have no support for threads in a
conventional sense.
For systems that do support threads, mutexes should be used to lock the mpatrol library
data structures. On UNIX platforms, POSIX threads are used but this could easily be
extended to other threads implementations. On Windows platforms, Win32 API threads
are used. For other systems, POSIX threads are preferred but it should not be too hard to
add support for others. There should also be a way to return the current thread identifier.
You should also determine if it is necessary to define any special macros in order to obtain
all of the required threadsafe definitions from the system header files. Many compilers
require an option to be specified on the command line in order to compile threadsafe code,
but some still only require a preprocessor macro to be defined during compilation. For
example, the _REENTRANT macro is defined for Solaris systems so that mpatrol can make
use of the threadsafe definitions. Any such macros should be defined in ‘src/config.h’
when MP_THREADS_SUPPORT is defined.

3 You might also be interested to note that you can safely call malloc() in this code to allocate memory — just
remember to clean up after yourself!



Appendix H: Porting 189

The multithreaded version of the mpatrol library must be initialised before a process be-
comes multithreaded and so there must be a way to do this on a new system.

The MP_INIT_SUPPORT macro should be defined in ‘src/config.h’ if the new system sup-
ports ‘.init’ and ‘.fini’ sections that get executed before and after main() respectively.
Both the contents of the ‘.init’ section (which should call __mp_initmutexes() and __
mp_init()) and the ‘.fini’ section (which should call __mp_fini()) should be written in
‘src/machine.c’ in assembler code.

There are also other methods to initialise and terminate the mpatrol library in
‘src/inter.c’ so you may need to use one of them (or add a new method of your own)
for the new system. Note that if MP_USE_ATEXIT is defined in ‘src/config.h’ then
these methods of terminating the mpatrol library when a process ends are replaced by
registering the __mp_fini() function with atexit().

There may be problems if the mpatrol library is built to override malloc() and related func-
tions if the system C library calls them before the mpatrol library can be initialised. There
is a function in ‘src/inter.c’ on UNIX and Windows platforms called crt_initialised()
which checks to see if it is safe to initialise the mpatrol library, and if not the relevant func-
tions will use sbrk() to allocate the memory. You may have to modify crt_initialised()
to support the new system if there are initialisation problems.

If there are no special methods to initialise the multithreaded version of the mpatrol library
on a new system then it will simply be initialised at the first call to one of its functions,
hopefully before the process has become multithreaded.

If there is support for reading symbols from object files on the new system then you should
compile and run the following test with the mpatrol library to check to see if there is support
for calling functions by their start address. This is not always true on certain systems and
will most likely result in the test crashing if that is the case. If the test works then the
MP_INITFUNC_SUPPORT macro should be set in ‘src/config.h’.

#include <stdio.h>
#include "mpatrol.h"

void __mp_init_test(void)
{

puts("__mp_init_* functions work");
}

void __mp_fini_test(void)
{

puts("__mp_fini_* functions work");
}

int main(void)
{

malloc(1);
puts("there should be a line of output above and below");
return EXIT_SUCCESS;

}

If any functions from an external threads library were used to lock the data structures of
the multithreaded version of the mpatrol library then you may also have to modify the MP_



190 mpatrol

THREADS_LIBS definitions in ‘src/config.h’, the __mp_lib* definitions in ‘src/inter.c’
and the AC_CHECK_LIB() calls in ‘extra/mpatrol.m4’.

7. Make any required changes to ‘src/diag.c’ in order to support the new system.
If the directory separation characters used by filesystem pathnames on the new system
are different to those already supported then you must modify processfile(), __mp_
logfile(), __mp_proffile() and __mp_tracefile() in order to support them. The
mpatrol library needs to know how to extract and join the directory and filename com-
ponents in a pathname in order to support the special characters that may appear in the
filenames specified in the ‘LOGFILE’, ‘PROFFILE’ and ‘TRACEFILE’ options.

8. Make any required changes to ‘src/version.c’ in order to support the new system.
Different operating systems have different ways of embedding version information into li-
braries. For example, on AmigaOS the version command looks for the ‘$VER:’ string in a
binary file and displays any information following it. If the new system uses a special format
for embedding version information then an alternative definition for __mp_version should
be added to ‘src/version.c’. It might also be useful to make any necessary changes to
the mupdate shell script in the ‘bin’ directory in order to support the new format, although
that is not strictly required as it is only used when building automated mpatrol releases.
The RCS revision string of each mpatrol source file can also be embedded into the mpatrol
library and its tools. The way this is done is controlled by the MP_IDENT_SUPPORT macro
in ‘src/config.h’. If it is set then the system supports placing these strings in a special
section in the object file via the #ident directive, otherwise the strings will be placed in a
data section in the object file.

9. Make any required changes in ‘src/mpatrol.c’ in order to support executing external
commands.
The mpatrol command should be modified to support the execution of external commands
on a new operating system. The exec() family of functions are used on UNIX platforms,
while the spawn() family of functions are used on Windows platforms. The ANSI C
system() function is currently used on all other platforms, but that runs the command
indirectly via the system command line interpreter (shell) which is not usually very effi-
cient. You may also have to add the ability to find any commands using a search path.
If the new operating system can support the ‘--dynamic’ option of the mpatrol command
then the MP_PRELOAD_SUPPORT macro should be defined in ‘src/config.h’. The name of
the environment variable that must be used to specify the list of shared libraries to preload
should be given in MP_PRELOAD_NAME and the library separator string for the list should
be given in MP_PRELOAD_SEP. The MP_LIBNAME macro may also need to be modified if the
naming convention of shared libraries is different on the new system. Note that the __
mp_editfile() function in ‘src/diag.c’ may also need to be modified to prevent editor
processes from being affected by the ‘--dynamic’ option.

10. Make any required changes in ‘src/mptrace.c’ in order to support any new window systems.
The mptrace command may be built as a text-only command line tool, or it may be built
with GUI support if the MP_GUI_SUPPORT macro is defined in ‘src/config.h’. If it is built
with GUI support and the ‘--gui’ option is specified then it becomes an event-driven tool
and the code in ‘src/mptrace.c’ has been written to reflect that. The mptrace command
currently only has Motif GUI support but if you wish to add support for a new window
system then it shouldn’t be too hard to do. Note that you will probably have to add
additional libraries to the ‘Makefile’ when building mptrace with MP_GUI_SUPPORT defined.

11. Make any required changes to the shell scripts in the ‘bin’ directory.
The mpsym, mpedit and hexwords commands all require UNIX systems, or UNIX tools, to
run. If the new system has the ability to run these commands then you should check that
they run as expected. If not, you should make the necessary modifications to make them
work, although it should be in a generic fashion as there are no checks for specific platforms



Appendix H: Porting 191

or processors in these files. You may also wish to add support for other debuggers in mpsym
and other editors in mpedit.

12. Add a new subdirectory to the ‘build’ directory if a new operating system is being sup-
ported.
A new ‘Makefile’ should be added in the new subdirectory along with any extra system-
specific files that might be needed to build the mpatrol library on the new system. The new
‘Makefile’ should be based upon one of the existing ‘Makefile’s in the other subdirectories
but should obviously differ in the platform-dependent areas. You may wish to add more
than one ‘Makefile’ to support different types of compilers on the new operating system.
You must also decide which object files should get built into the mpatrol library. If it is
not safe to override the system malloc() routines on the new system then you should not
include ‘src/malloc.c’, and the same goes for ‘src/cplus.c’ and the C++ operators. If
there is no sbrk() function provided on the new operating system then you should include
‘src/sbrk.c’ if you need to call sbrk() in ‘src/inter.c’.
If the new operating system uses a special archive or package format then you should add
support for it by adding a new subdirectory to the ‘pkg’ directory. A ‘build’ script should
be added to the new subdirectory that will automatically build the archive or package file
from scratch. Include any additional files that you need to perform the build in the new
subdirectory as well.



192 mpatrol



Appendix I: Notes 193

Appendix I Notes

This section contains information about known bugs and limitations in the mpatrol library
as well as listing potential future enhancements.

Bugs should be reported to mpatrol@cbmamiga.demon.co.uk along with the details of the
operating system, processor architecture and object file format that the mpatrol library is being
used with — and don’t forget to include the version of the mpatrol library you are using! Keep
in mind that I only have access to a Pentium III Notebook PC running Red Hat Linux 7.1 and
Windows ME, so I will be most likely unable to reproduce most of the system-specific bugs. A
bug report that comes with an associated fix will be most welcome.

Enhancement requests and source code containing enhancements should also
be sent to mpatrol@cbmamiga.demon.co.uk or the mpatrol discussion group at
http://groups.yahoo.com/group/mpatrol/. If you are planning to implement an
enhancement, let me know first in case I am (or someone else is) working towards the same
goal — that way, work won’t be wasted. If you wish to send me source code changes please
send the changes as context diffs or in an e-mail attachment as a compressed tar archive.

I.1 Notes for all platforms

• Overriding the C++ operators to get source-level information using the preprocessor is still
a bit dodgy and isn’t likely to get much better, so MP_NONEWDELETE may have to be used a
lot. Explicit references to operator new rather than new are likely to result in compilation
errors, and the way that source level information is obtained for operator delete means
that the resulting code will not be thread-safe. It might also be an idea to provide an
allocation class from which user-defined memory allocators can be derived.

• Need to add support for other 64-bit processors in addition to the existing Alpha and SPARC
V9 support. This shouldn’t be too hard, but I haven’t got access to such processors to test
them, so I haven’t been able to yet. Also need to add support for building on targets and
architectures where no operating system features are required or even available.

• Need to improve the concurrency in the thread-safe version of the mpatrol library. Currently,
only one thread at a time is allowed to enter the mpatrol library, but it should be possible
to extend this to protect individual data structures. Note that this will not only help to
improve efficiency, but might also allow the mpatrol library to uncover bugs in thread-safe
code that are timing-dependent.

• Need to make the library re-entrant. This could be achieved by moving the static variables
in ‘memory.c’, ‘stack.c’, ‘mutex.c’, ‘diag.c’, ‘trace.c’, ‘option.c’ and ‘sbrk.c’ into the
infohead structure and then having an array of infohead structures from which to allocate
new memory headers when a new one is required. This is only necessary for Amiga shared
libraries and Netware NLMs since UNIX and Windows platforms allocate a new copy of
the data section in a shared library or DLL when it is opened by a new process.

• Some implementations of call stack traversal are limited and will only likely work for unop-
timised code. A much better solution would be write the implementations at a lower level
in assembly, but this is much less portable. Perhaps there is a library which can be used to
perform this across many operating systems and processor architectures, or maybe someone
would like to write one1? I can think of many applications that would benefit from such a
library besides this one2.

1 There is currently a library called StackTrace written by Bjorn Reese which invokes a debugger to generate a
stack traceback on certain UNIX platforms. This method would be too slow for mpatrol to use though.

2 Looking back at these statements about six months after they were written, it would appear that I have just
written such a library judging by the number of architectures for which stack traversal is now supported.

mailto:mpatrol@cbmamiga.demon.co.uk
mailto:mpatrol@cbmamiga.demon.co.uk
http://groups.yahoo.com/group/mpatrol/


194 mpatrol

• An alternative implementation for call stack traversal uses the functions __builtin_frame_
address() and __builtin_return_address() that are available when the library is com-
piled with gcc. However, they can only traverse a number of stack frames at compile-time,
not run-time so there is a maximum number of stack frames that can be traversed at any
one time. The implementation depends on both of these builtin functions returning ‘NULL’
when the top of stack is reached. If this is not the case then this method cannot be used
or should only be used with a small number of fixed stack frames. However, perhaps there
might even be a use for an option to limit the number of stack frames in stack tracebacks
for systems that have no such limitation.

• Is it worth adding functions to manually push and pop entries on the call stack for platforms
which have no support for call stack traversal? This is currently not a high-priority issue
since almost all of the platforms that mpatrol is available on have support for full call stack
traversal. However, it might be handy anyway as an additional debugging tool for entering
and leaving scopes.

• Need to change __mp_compareaddrs() so that it will improve the detection of when to free
memory allocations made by alloca() and its related functions. This will involve checking
the common return addresses in the call stacks instead of just checking them if the stack
depth is the same. Also, on systems that don’t have full call stack traversal, the minimum
number of bytes that stack frames should differ by should be platform-dependent since the
current value is way too high.

• Perhaps hash the call stacks when they are stored internally by the routines in ‘addr.c’.
This would make for quick checks to see if two call stacks are identical and it might save
some memory in the process.

• There is an issue with callback functions if they call mpatrol library functions, since this
may lead to recursion in some obscure cases. Callback functions could also be defined for
__malloc_hook(), __realloc_hook() and __free_hook() in much the same way as for
the GNU C library.

• Need to store filename and line number information in all call stacks so that the information
can be used at program termination. May also need to display this information in the __mp_
printinfo() function and add this information to the profiling output file so that mprof
can make use of it.

• In object file formats that support nested symbols (such as ELF), the current implemen-
tation will tend to show some shortcomings. This is because there is currently no nesting
count in the function that deals with symbol name lookup, so the wrong symbol name may
be displayed in diagnostics.

• In object file formats that don’t store the sizes of symbols (such as basic ‘a.out’, or when
using the GNU BFD library), the current implementation will simply assume that the
current symbol terminates at the beginning of the next symbol in the virtual address space.

• Perhaps add an option to prevent symbols from being read from object files. This might be
necessary if mpatrol is used in a program that loads shared libraries explicitly, or if there
is too much memory being used by mpatrol to store the symbol details.

• Add functions to start and stop profiling, and perhaps also to clear the profiling tables and
begin a new profiling output file. Should also write more information to the profiling output
file, such as the date that it was produced on and the word size of the processor that it was
produced on, so that mprof will not crash when reading a profiling output file produced on
a processor that has a different word size.

• Perhaps add the ability to profile memory operations such as memcpy() and memset() to
the existing memory allocation profiling facility. Also, add options to mprof to write out
files that can be used by chart drawing software for a better visualisation of the first few
profiling tables.

• Perhaps the allocation call graph table should have the capability to be sorted in mprof
and the ‘--leaks’ option should work with it as well. There should be better handling of



Appendix I: Notes 195

cycles in the call graph and there is currently a problem in that mprof cannot distinguish
between call sites with very low code addresses that have no symbols and that conflict with
existing symbol indices.

• Extend the mptrace command to graphically display the size of the heap plotted against
time and the allocation size frequency. Also rewrite the GUI support to use GNOME instead
of Motif, possibly also using GLADE.

• Possibly add widgets to the mptrace window to pause and quit. Might also be handy to
add the ability to write out charts summarising tracing information.

• Handle marked memory allocations in the leak table, and also perhaps write out to the
mpatrol log file when an allocation is marked so that the mleak command will work correctly.

• Improve the speed of watch points by setting a range of allocation indices for which they
will be used. This may require a lot of code changes in ‘alloc.c’.

• Add a software watch point facility that can be placed on ranges of addresses in the heap.
Then, if a heap operation touches the watch point, either the user can be notified or a
callback function can be called. The same could be done for local variables if the stack
frame can be easily determined, which would also allow detecting if a read from or write to
memory was performed just beyond the stack pointer.

• Add a CRC checksum to memory blocks and use it to check that freed memory allocations
have not been corrupted when the ‘NOFREE’ and ‘PRESERVE’ options are in use on platforms
which have no memory protection.

• Perhaps extend the ‘NOFREE’ option to prevent the mpatrol library from reusing freed mem-
ory allocations unless it really needs to. This would mean that no freed allocations would be
reused until there is no more free memory left and mpatrol would normally have to allocate
more from the system. It could then convert as many freed allocations to free memory as it
needs to fulfil the allocation request, although it would probably still have to abide by the
minimum number of freed allocations set by the ‘NOFREE’ option.

• Perhaps change the behaviour of the ‘NOFREE’ option so that it doesn’t prevent in-place
reallocations if there is enough memory to perform them. Then an option could be added
to force reallocations to always allocate new memory so that the behaviour could also be
used when the ‘NOFREE’ option is not used.

• Add an option to set up a timer that will automatically check the heap after a certain number
of clock cycles have elapsed. This could be useful in programs that have long periods of
time where no dynamic memory allocation functions are called, but heap allocations are
still manipulated. In addition, checks could automatically be made upon receipt of special
signals sent to the program by the user and information about the last successful verification
of the heap could be used to narrow down problems. Perhaps even some statistics could be
printed on receipt of a special signal as well.

• Add a diagnostic number count to each warning and error reported in the log file. This
could then be used to implement a ‘DIAGSTOP’ option which would stop the program running
after a certain number of diagnostics have been displayed.

• Add the ability to stop in a debugger when a memory allocation is made from a particular
file and line number, and perhaps also trap when a particular address is allocated as part
of a memory allocation.

• Perhaps add time information to the details stored about each memory allocation. This is
probably not useful unless the system provides a high-resolution timer.

• Add an option (perhaps ‘NOINTERNAL’) to suppress the display of internal (recursive) mem-
ory allocations in the mpatrol log file and also prevent information about such allocations
being written to the profiling output and tracing output files. Perhaps this could be made
the default so that they behave in the same way as marked allocations, in which case we
might want an option which prevents internal and marked allocations being hidden. This



196 mpatrol

could also be extended to prevent memory leaks from being reported if the original alloca-
tions were made from a given set of functions.

• Add a function to add a block of memory to the heap, possibly a memory-mapped file. Also
add a function that can shrink the heap if large areas of free memory exist.

• Maybe show the contents of the MPATROL_OPTIONS environment variable in the summary
as well.

• Add versions of mallopt(), mallinfo(), memorymap(), mallocctl(), mallocblksize()
and msize() which are provided in many other malloc libraries. These won’t necessarily
behave in exactly the same way as existing implementations, but at least there won’t be
link errors when compiling source code which uses them. Also, add support for setting as
many remaining options in __mp_setoption() as possible and perhaps even some options
before the mpatrol library has been initialised.

• Add similar functions to the GNU mcheck() and mprobe() functions. Perhaps also add an
mpatrol tool to add compatibility with the GNU memusage tool.

• Perhaps add debugging/tracing versions of the string manipulation functions, such as
strlen() and strcmp() in much the same way as was done for the memory operation
functions. The only problem with this would be locale support, but perhaps it might be
easier just to assume the C locale to begin with. Also need to have better detection of
internal and free blocks when displaying memory range errors.

• Add wide-character equivalents of memset(), etc. These are defined as wmemset(), etc.
and are now part of ANSI C. Also add wcsdup(), memdup() and xmemdup() as well as
mempcpy() and memrchr().

• Perhaps reimplement the standard I/O library for internal use by mpatrol, thus preventing
recursive calls to malloc() each time a write to the log file occurs on some systems. Example
code to do this was submitted by Alexander Barton (abarton@innotrac.com) and this may
well be incorporated into the library at some point in the future3.

• The ‘LOG*’ options could be extended to take a list of specific functions to log. They could
also only log operations spanning a range of addresses or allocation indices as well.

• Add an option to limit the size of each memory allocation to a maximum number of bytes.
This could be useful if a memory allocation function is called with an uninitialised variable.

• Add assertion macros to ‘mpatrol.h’ that can be used in program code. These could be
used to assert that pointers have not been freed, are valid heap addresses or are strings,
or perhaps even that the address is readable, writable and/or executable. They would be
disabled if NDEBUG is defined.

• Add support functions that could be added to user code to enter and leave scopes in a
source file and ensure that all allocations allocated within the scope are freed by the time
the scope has been exited.

• Add support for the ‘-finstrument-functions’ option of the GNU compiler. This would
allow mpatrol to keep track of the entry to and exit from every function, but would only
work for code compiled with this option.

• Extend the Checker-support functions to store and check information about access per-
missions within heap memory and perhaps also in the stack as well, and also improve the
diagnostics from the checker functions if they fail. Currently, the Checker-support functions
only ensure that no memory accesses cross allocation boundaries or access free memory.
Could also make use of the etext, edata and end pointers that are set at run-time on most
UNIX systems. Need to properly implement chkr_check_exec().

• Details of the segments which make up the executable file and any shared libraries could
be made use of in order to detect operations which cross such segments. For example, a

3 This code can be applied as an mpatrol library patch which can be downloaded from
http://www.cbmamiga.demon.co.uk/mpatrol/patches/mpatrol_patch1.tar.gz.

mailto:abarton@innotrac.com
http://www.cbmamiga.demon.co.uk/mpatrol/patches/mpatrol_patch1.tar.gz


Appendix I: Notes 197

memory operation may erroneously cross the data and BSS segments. The symbol table
for data symbols could also be used to provide much finer-grained error-checking. Need to
make use of the __mp_memquery() function.

• Add garbage detection support to mpatrol. This would be implemented as a function that
would traverse all of the roots of the memory in a process and look for pointers into free
memory or the lack of any pointers into allocated memory (to detect memory leaks).

• Add an option to specify that all failed memory allocations should abort (or at least give a
warning) instead of returning a ‘NULL’ pointer. Also, perhaps add an option to display the
partial contents of freed and unfreed allocations in the mpatrol log file.

• Perhaps add memory protection to the simulated sbrk heap.
• Add an option to force the mpatrol library to return ‘NULL’ if it is asked to allocate a zero-

sized block of memory. This might be useful for SVID compliant programs. Perhaps also
extend the mpatrol library to allow zero-sized blocks. I suspect the easiest way to do this
is to have a special address that is always returned for such blocks and that will have the
appropriate size of overflow buffers depending on the options used.

• Add an option to report if one thread resizes or frees another thread’s allocations. This
may not be useful in most cases, but it might be possible to track down some obscure bugs
in some situations.

• Perhaps add internationalisation support through the use of locales and message catalogs.
Unfortunately, there does not appear to be a unified method for doing this across all plat-
forms and there may also be issues with third-party libraries calling malloc() and other
related routines when the mpatrol library is attempting to initialise itself.

• There is currently a problem when the mpatrol library encounters an illegal memory access
on UNIX and Windows platforms, and there is a further illegal memory access when it is
displaying the summary. This should be prevented by disabling the signal handler at its
first entry.

• Need to make the mpalloc library threadsafe4. This is only likely to be an issue when calling
MP_FAILURE(). Should also add something similar to xmalloc_set_program_name() in
order to show the program name when a memory allocation fails. If the C++ operators fail
to allocate memory in libmpalloc then there should probably also be an exception thrown to
mimic the behaviour of libmpatrol, although this isn’t a big issue since the program should
be completely recompiled to remove mpatrol debugging before a release. In the same vein,
perhaps there should be some sort of support for set_new_handler() in libmpalloc.

• Add an option to write the mpatrol log file in HTML format, or even better XML format.
Need to also extend what is written out by the ‘--hatf-file’ option.

• The mpsym command could optionally preserve any stack traceback lines that already have
symbolic or debugging information associated with them. It could also support more de-
buggers other than just gdb. Finally, it could support ‘-’ as the filename for reading the
mpatrol log file from the standard input file stream.

• A good idea might be to have the mpatrol command read options from a configuration file
instead of an environment variable, but that will only work if it doesn’t involve allocating
any memory before the mpatrol library has been initialised.

• Perhaps incorporate a C++ encoded name demangler into the mpatrol library. The most
likely candidate is the GNU demangler that comes with the libiberty library, but that
currently allocates temporary space on the heap using xmalloc() which means that it will
run unbearably slowly under mpatrol5.

4 And perhaps also make the mptools library threadsafe as well
5 If you really really want this functionality then code to do this is available as an mpatrol library patch which

can be downloaded from http://www.cbmamiga.demon.co.uk/mpatrol/patches/mpatrol_patch4.tar.gz.

http://www.cbmamiga.demon.co.uk/mpatrol/patches/mpatrol_patch4.tar.gz


198 mpatrol

• Add a script to wrap around various popular C and C++ compiler drivers so that linking
with the mpatrol library is much less laborious. In addition, a user-defined command or
script file could be executed at the end of every invocation of the mpatrol command.

• Add a script to automatically run the mpatrol library tests. It could be quite hard to verify
the tests since the heap addresses are likely to be different on every new build and will
certainly be different across different platforms.

• Improve the autoconf, automake and libtool support. Also update the mupdate shell script
to automatically update the version numbers contained in the files in the ‘pkg’ directory.

• The postscript version of the quick reference card seems to print at an unusual offset on
some printers. In addition, the mpatrol manual should also be formatted in DocBook format
once a suitable TEXinfo to DocBook translator is available.

• Perhaps add benchmark tests for dynamic memory allocation functions and memory op-
eration functions. Obviously the mpatrol library would perform much worse than normal
malloc libraries, but it would help to see just how much worse so that speed improvements
could be made.

• Add support for the BeOS operating system, as well as MacOS, NeXT and OS/2. Perhaps
MS-DOS might be possible as well.

I.2 Notes for UNIX platforms

• Need to improve watch point facility in order to speed it up by an order of magnitudes. This
will most likely involve removing all watch points when entering the library and replacing
them when returning to user code.

• Improve use of watch points by allowing an option which will only install write watch points
instead of both read and write watch points. Not only will this speed up the use of watch
points, but will also cause less problems with reading from misaligned memory allocations.

• There seems to be a problem on some UNIX systems in that the mprotect() call will not
work unless it is used on memory that has been allocated with mmap(). This needs to be
investigated further.

• There is currently a problem in that the call stack displayed from within the illegal memory
access signal handler is not necessarily accurate with respect to the function at the top of
the stack. In addition, signal handlers shouldn’t technically call I/O functions in case of
additional signals being caught so this may need to be improved.

• Need to add a way of initialising the thread-safe version of the library when it is not
compiled on a system that supports ‘.init’ sections, or if it is not compiled with the GNU
C compiler, or if it is not compiled with a C++ compiler. Also perhaps need to support
other threads packages instead of just POSIX threads.

• Need to add support for call stack traversal for the Itanium processor architecture. The
current implementation of call stack traversal for the Motorola 88xx0 family is also a bit
flaky and so should only be used when the library and program are built unoptimised. This
could be improved on DG/UX platforms by making use of the TDESC information stored
in the object files.

• Need to add support for obtaining the program name from the stack for the Alpha, Itanium
and Motorola 88xx0 processor architectures. If there is no support for determining the
filename that a program was invoked with then the ‘PROGFILE’ option can be used to
specify the program name at run-time.

• If the MP_LIBRARYSTACK_SUPPORT preprocessor macro is defined when building the mpatrol
library on IRIX platforms then the ‘libexc’ library must also be linked in. However,
execution speed will fall dramatically since the unwind() function within that library calls
malloc(), free() and other memory operation functions every time it is invoked. The only



Appendix I: Notes 199

reason to use this library rather than the default method of stack traversal on MIPS would
be if that method failed due to a bug (in which case it should be reported anyway).

• The mpatrol library unwind() function on MIPS platforms may have problems with call
stack traversal in alternative stacks, such as those used by signal handlers. The call stack
will then terminate at the point at which the handler was called rather than unwinding to
the top of the stack.

• The library cannot currently read any symbols from shared objects that have been read via
dlopen(), shl_load() or similar functions6. In addition, symbols cannot currently be read
from any COFF or XCOFF shared libraries on LynxOS and some work needs to be done
to build the mpatrol library as a shared library on LynxOS.

• Perhaps add support for reading HP/UX executable files and libraries in the SOM object
file format without needing to use the GNU BFD library.

• Perhaps add support for other popular text editors in the mpedit command. Also add a
way to specify editor options to the mpedit command.

• Add support for SCO UNIX, Ultrix and other non-System V UNIX operating systems. Also
test on NetBSD, OpenBSD and SunOS as support has been written for these systems but
is untested. The SunOS port requires an ANSI C compiler, though.

• The ‘--dynamic’ option to the mpatrol command does not always work on systems whose
dynamic linkers support the LD_PRELOAD or _RLD_LIST environment variables. This is
because the object file format access libraries do not exist in shared form on such systems.

• Perhaps add files to build the mpatrol library and tools as BSD packages.

I.3 Notes for Amiga platforms

The Amiga has now been re-released as a completely new machine which comes with a
completely new operating system. As a result, I will not be implementing any of the following
features (or fixing any of the following problems) in mpatrol for the old AmigaOS. Support for
the new AmigaOS may be added in the future.
• Perhaps add support for building mpatrol as an Amiga shared library. I attempted to do

this in a previous release of mpatrol, but it would have involved too many source changes
to get working fully. Perhaps it’s not even worth implementing as the archive library works
fine. However, if it is built as a shared library and malloc() and related functions are
dynamically linked in some executable files then perhaps it would be possible to override
these functions, thus getting the ‘--dynamic’ option in the mpatrol command to work.

• Need to fix the problem where the maximum guaranteed alignment of an internal mpatrol li-
brary memory allocation is 8 bytes. However, this limitation does not affect the memalign()
and related functions, and should not have any effect on the running of mpatrol since no
datatypes require an alignment of more than 8 bytes.

• Need to add proper support for call stack traversal for both the Motorola 680x0 and Pow-
erPC processor architectures. When gcc is being used then up to two stack frames can be
traversed, but this should really be extended without requiring MP_BUILTINSTACK_SUPPORT.
When SAS/C is being used then there is no support for call stack traversal.

• Need to add proper support for reading symbols from Amiga executable files. When gcc is
being used then the BFD library routines will be called to determine the symbols from the
executable file, but this will only work for objects compiled with gcc and there currently
appears to be a problem getting the ‘USEDEBUG’ option to work. When SAS/C is being
used then there is no support for reading symbols from executable files. Also need to add
support for reading symbols from any shared libraries that are required by the program.

6 There is an mpatrol library patch that supports reading symbols from shared libraries opened by
dlopen() which can be downloaded from http://www.cbmamiga.demon.co.uk/mpatrol/patches/mpatrol_

patch2.tar.gz.

http://www.cbmamiga.demon.co.uk/mpatrol/patches/mpatrol_patch2.tar.gz
http://www.cbmamiga.demon.co.uk/mpatrol/patches/mpatrol_patch2.tar.gz


200 mpatrol

• Possibly make use of other software such as Enforcer, Mungwall or MuLib in order to
provide some form of memory protection. The features of SegTracker could also be put to
good use so that the file and hunk location of entries on the call stack could be determined.

• Could add support for the ‘EDIT’ and ‘LIST’ options. This would probably involve finding a
way to invoke a shell script without having to search for the script file or allocating memory
in the process.

• Add GUI support for the mptrace command.
• When using SAS/C it is currently not possible to override the definition of malloc(), etc.,

without including the ‘mpatrol.h’ header file first. This is because the compiler startup
code and libraries call malloc() before everything is set up, and so the library cannot
properly initialise itself if the malloc() that the startup code finds is the malloc() in the
mpatrol library. This restriction does not exist when using gcc.

• Add support for the Amiga in the threads test in ‘tests/pass/test5.c’. The Amiga
doesn’t really have support for threads but its processes are similar enough to threads.

• Perhaps add an Installer installation script with icons.

I.4 Notes for Windows platforms

• Need to add support for processors other than the Intel 80x86. However, about 99% of
Windows platforms run on this processor family — does anyone really use Windows with
other processors? Also finish Cygwin support, although this is effectively mpatrol built
with ‘-DTARGET=TARGET_UNIX’ support on Windows platforms.

• Perhaps add support for compiling the mpatrol library with gcc on Windows platforms so
that the GNU BFD library can be used as well.

• There seems to be a problem when mixing the archive version of the mpatrol library and
the Microsoft C run-time library DLL, and vice versa. This needs to be looked into, but
for the moment, don’t mix them.

• The library cannot currently read any symbols from DLLs that have been read via
LoadLibrary().

• There seems to be a disparity between different versions of the imagehlp library. It would ap-
pear that the latest incarnation of the imagehlp library has had some functions removed and
placed in a new library called debughlp. Perhaps this simply means that ‘debughlp.lib’
needs to be linked in as well, but maybe there’s more to it than that.

• Perhaps add support for the mpatrol command’s ‘--dynamic’ option by preloading the
mpatrol DLL from the mpatrol command.

• Could add support for the ‘EDIT’ and ‘LIST’ options. This would probably involve finding a
way to invoke a batch file without having to search for the batch file or allocating memory
in the process.

• Add GUI support for the mptrace command.
• Add a Windows resource file to the mpatrol library with copyright and version information.
• Perhaps add an InstallShield installation script with icons.

I.5 Notes for Netware platforms

There doesn’t appear to have been any interest in the Netware version of mpatrol and as a
result I will not be implementing any of the following features (or fixing any of the following
problems) in mpatrol for Netware. I don’t even have access to a Netware machine so someone
else would have had to have done it anyway.



Appendix I: Notes 201

• The library has not yet been built (let alone tested) on Netware platforms. The names of
the system functions that the library calls for Netware were obtained by looking at Novell’s
developer documentation, so they may not even compile correctly without modification.

• Need to add support for building the mpatrol library as an NLM. This is not currently a
high priority requirement as the archive library should suffice for most purposes. However,
if it is built as an NLM and malloc() and related functions are dynamically linked in some
executable files then perhaps it would be possible to override these functions, thus getting
the ‘--dynamic’ option in the mpatrol command to work.

• Need to add support for processors other than the Intel 80x86. However, about 99% of
Netware platforms run on this processor family — does anyone really use Netware with
other processors?

• Need to add way to determine when the base of the stack has been reached during call
stack traversal, since on Netware every application is really a thread running under one
large process.

• Need to add support for reading symbols from Netware load modules. Also need to add
support for reading symbols from any NLMs that are required by the program. This may
be possible in a limited fashion by using the GNU BFD library, but may only work with
code compiled with gcc.

• Could add support for the ‘EDIT’ and ‘LIST’ options. This would probably involve finding a
way to invoke a batch file without having to search for the batch file or allocating memory
in the process.

• Add GUI support for the mptrace command.
• Need to investigate if it is safe (or even possible) to override the definitions of malloc(),

etc., without including the ‘mpatrol.h’ header file first. Currently, non-macro definitions
for these functions have been disabled in the Netware version of the library in case they
affect other NLMs that are currently running.



202 mpatrol



Appendix J: Frequently asked questions 203

Appendix J Frequently asked questions

This section contains frequently asked questions about the mpatrol library and their corre-
sponding answers or solutions.

J.1 Documentation

1. I can’t seem to format the TEXinfo manual for mpatrol into anything that I can view or
print. What am I doing wrong?
You’ll need to have the appropriate document formatting programs installed on your system
before you can do this, and even then you’ll also need to have suitable software for viewing
or printing the formatted documents. The mpatrol distribution should already contain the
latest mpatrol manual in a variety of formats and should also contain a file telling you where
to get programs that can be used to view or print these files. Alternatively, you can browse
the latest mpatrol manual on-line at http://www.cbmamiga.demon.co.uk/mpatrol/.

2. I’d like to convert the mpatrol manual to a different documentation format but there is no
support for that format in the ‘Makefile’. How would I go about doing this?
Since TEXinfo is intended to be converted to other documentation formats it should be
fairly easy for you to find a tool which will convert it into your desired format. I plan
to also provide the mpatrol manual in DocBook format if and when a suitable TEXinfo
to DocBook converter becomes available, but I won’t provide preformatted versions of the
mpatrol manual in any other format which isn’t already supported.

3. Why is the reference card not centred in the middle of the page when I print it?
The reference card has three columns in landscape format and as a result requires smaller
margins than LaTEX normally uses. When dvips converts the DVI file to a postscript file it
refers to a configuration file set up for a specific printer so that it knows what that printer’s
capabilities are. However, you can instruct dvips to offset the page by a given amount with
the ‘-O’ option so that it appears centred when printed. I find that ‘-O -0.75in,0.25in’
works for me. Note that the default paper size for the reference card is DIN A4, but you
can change it to US letter in the LaTEX source file.

4. How do I install the mpatrol manual as a GNU info file?
Assuming you have the GNU info file built and copied to your system’s info file directory,
you should use the install-info command to place an entry for mpatrol in your system’s
GNU info directory file, otherwise the GNU info reader may not be able to locate the
mpatrol entry. You may also need to modify your INFOPATH environment variable if you
installed the GNU info file in a non-standard place.

5. How do I install the mpatrol manual pages?
This is very system-dependent, but need only be done on UNIX systems since they cannot be
used on other platforms. The unformatted manual pages exist in ‘man/man1’ and ‘man/man3’
and should be copied to your system’s manual page directory. If you don’t have the nroff,
troff or groff commands installed on your system then you may also need to copy the
formatted manual pages, located in ‘man/cat1’ and ‘man/cat3’. You may also need to
modify your MANPATH environment variable if you installed the manual pages in a non-
standard place, and some systems require you to update the whatis database after installing
new manual pages, by running makewhatis, catman or equivalent.
Alternatively, the mpatrol manual pages can be built in a variety of different documentation
formats that can be viewed or printed without the need for a man command. If you have
the correct tools installed on your system then you should be able to do this by examining
the ‘Makefile’ in the ‘man’ directory. The mpatrol distribution should already contain the
latest mpatrol manual pages in a variety of formats and should also contain a file telling
you where to get programs that can be used to view or print these files.

http://www.cbmamiga.demon.co.uk/mpatrol/


204 mpatrol

6. Why does the ‘libmpatrol.3’ manual page not display correctly when I view it with the
man command?
This is likely to be due to the tbl command not being run to process the tables when
the man command displays the manual page. Many UNIX systems look at the first line
of the manual page to see what filters to run the page through before it is displayed, but
some systems do not recognise this and instead rely on an environment variable such as
MANROFFSEQ to specify which filters are to be run. Look at the manual page for the man
command on your system to find out more information.

J.2 Building

1. Why does the ‘Makefile’ assume that I am building mpatrol on platform X when I am
really building on platform Y?
The ‘src/config.h’ and ‘src/target.h’ header files attempt to obtain as much infor-
mation from the compiler as possible, mainly from any predefined preprocessor macros
that it defines during compilation. If this information is incorrect then you can override
the TARGET, SYSTEM, ARCH, ENVIRON, FORMAT and DYNLINK preprocessor macros defined in
‘src/target.h’ to suit your particular system by explicitly defining them in CFLAGS within
the ‘Makefile’ when you build mpatrol. You could also choose to build different versions
of mpatrol with different settings of ENVIRON, FORMAT or DYNLINK on a single system if you
wish to by changing ENVIRON, FORMAT or DYNLINK for different builds.

2. The processor family I am compiling on supports both 32-bit and 64-bit modes of operation.
How do I specify which I want?
You will have to look at the documentation for the compiler you are using in order to find
out how to specify which operating environment you wish to target. For example, if you
are using the Sun C compiler on a SPARC V9 Solaris machine then you should specify
the ‘-xarch=v9’ option in the ‘Makefile’ when you are building mpatrol in order to target
the 64-bit environment. If you think that you are already using the correct option, but
the mpatrol code is still being built to support the wrong environment then you could try
explicitly setting the ENVIRON preprocessor macro in the ‘Makefile’.

3. I cannot include ‘mpatrol.h’ from my C++ source code as I get lots of compilation errors.
Why is this and what can I do to prevent them?
The most likely reason that you are getting errors is because you are calling placement
new, and the way that mpatrol derives source information from calls to operator new is
by defining a macro called new, thus causing lots of problems when calling placement new
or explicitly calling operator new. You can either try not to use placement new or you
can define the preprocessor macro MP_NOCPLUSPLUS when compiling your source file, which
will disable the overriding of any C++ operators in ‘mpatrol.h’. Alternatively, if you define
MP_NONEWDELETE then you can use MP_NEW, MP_NEW_NOTHROW and MP_DELETE in order to
call the mpatrol versions of the C++ operators.

4. I still have the above problem, but I don’t think it’s due to placement new since the compiler
complains about operator new[], so could that be a clue?
Yes. The most likely reason is that the C++ compiler does not support the array new and
delete operators. These were introduced some time before the standardisation of the C++
language but some compilers may not yet have support for them. It may be that you have
to use a special compiler option to enable support for these operators, but if not you will
probably have to edit ‘mpatrol.h’ to temporarily allow your files to compile.

5. I tried both of the above suggestions, but I still can’t get my C++ source code to compile.
I’m using an old C++ compiler so could that be a problem?
Yes. The ‘mpatrol.h’ header file defines new versions of the C++ dynamic memory alloca-
tion operators using exceptions and namespaces as required by the ANSI C++ standard. If



Appendix J: Frequently asked questions 205

your C++ compiler has no support for these then you should compile your C++ source files
with MP_NOCPLUSPLUS defined. You may also be using an older C++ library in which the
‘new’ header file does not define set_new_handler() to be in the std namespace. You will
then have to change the ‘mpatrol.h’ header file and ‘cplus.c’ source file accordingly.

6. I’m calling operator new (not the nothrow version) from my C++ source code but when my
program runs out of memory the ‘OUTMEM’ error is given in the mpatrol log file rather than
throwing a std::bad_alloc exception. Why is this?
Sounds like the mpatrol library was built with a C compiler. In order for the mpatrol
versions of operator new and operator new[] to throw an exception when they run out
of memory, the mpatrol library must have been built with a C++ compiler. The ‘OUTMEM’
error is only given when there is no way to throw an exception.

7. Why am I unable to call the mpatrol version of alloca()? I only ever seem to call the
default version.
Most implementations of the alloca() function are compiler builtins which will be con-
verted to inline assembler or object code in order for them to be able to dynamically modify
the calling function’s stack frame at run-time. As a result, the call to alloca() is recognised
as an intrinsic keyword and is dealt with specially by the compiler. However, if this can be
intercepted by the preprocessor before the compiler parses the source code then the call can
be redirected to another function. This is one of the functions of the ‘mpatrol.h’ header
file, which means that it must be included before the first call the alloca(). If alloca.h
is also being included then mpatrol.h must be included after it, otherwise it may redefine
alloca() back to the default version.

8. Why do some of the ‘Makefile’s contain the ‘-fno-inline-functions’ option as part of
OFLAGS?
The ‘-fno-inline-functions’ option is a gcc-specific option which instructs the compiler
not to inline any functions. This is necessary on some platforms where function call stack
traversal is supported, since function inlining may significantly alter the layout of a pro-
gram’s stack. Normally this option is only required when building the mpatrol library, but
on some platforms function call stack traversal may not work properly unless this option
(or equivalent) is used for all compiled code.

9. What does the MP_ALIGN definition in ‘mpatrol.h’ do?
It is a preprocessor macro function that is used to return the minimum alignment in bytes
required for a specified type at compile-time. It is used in the MP_MALLOC family of functions
to specify the required alignment of the memory allocation that is to be used to store the
specified type. Some compilers provide a feature that can be used to determine the minimum
alignment of a type at compile-time. For all others, this macro evaluates to ‘0’.

10. What does the MP_INLINE definition in ‘mpatrol.h’ do?
It is used in the definition of the debugging versions of the C++ operators in ‘mpatrol.h’
so that they are inlined correctly. We want to define the C++ operators so that they will be
inlined in every source file that uses them and also not clash with the versions defined in the
mpatrol library or the standard C++ library. Traditionally, this is done by defining them
to be static inline, which means that any non-inlined definition will be local to each
object file. An even better technique is available with the new C++ standard which allows
extern inline definitions, meaning that no definition will be available if the function is
not inlined. Unfortunately, if optimisation is turned off in the compiler then no inlining
will usually be performed and so the definitions will be real functions. Luckily, on ELF
platforms the extern inline function definition will have a weak visibility and so will not
clash with library functions.

11. Why do I get different stack traces in the mpatrol log file from the C++ operators in
‘mpatrol.h’ when optimisation is turned on and off in the compiler?
When the compiler is optimising it will invariably be performing inlining, in which case
each inlined function will share the stack frame of its caller when it is called — the mpatrol



206 mpatrol

library cannot detect this. In order to cope in both situations, the non-inlined case will
contain the name of the C++ operator at the top of its stack, even though it will be removed
in the inlined case.

12. How do I build the mptrace command with GUI support?
The GUI support for the mptrace command is currently written to use Motif and X Win-
dows and so can only be built on systems with these libraries and run on systems with an
X server. This will most likely be possible only on UNIX platforms. LessTif can be used
instead of Motif if that is all that is available on your system. The UNIX ‘Makefile’ has a
macro called GUISUP which can be set to true or false depending on whether you wish to
have GUI support or not. The default is false. GUI support is automatically enabled on
platforms that support it if the ‘configure’ script in ‘pkg/auto’ is used.

13. How do I build the mptrace command without GUI support?
This is done by default on most platforms when using the ‘Makefile’s in the ‘build’ di-
rectory. However, if for some reason that is not the case then on UNIX platforms you will
have to set the GUISUP ‘Makefile’ macro to false when compiling mptrace. You might
need to do this if your UNIX system does not have the correct header files and libraries
installed needed for GUI support. If you are using the ‘configure’ script in ‘pkg/auto’
then GUI support will be automatically disabled on platforms that do not support it, but
you can force it to be disabled by using the ‘--without-x’ option.

J.3 Linking

1. Why do I get undefined symbols when linking with the mpatrol library?
This is most likely caused by the mpatrol library requiring additional symbols defined
in an object file access library. If mpatrol was built with FORMAT=FORMAT_COFF or
FORMAT=FORMAT_XCOFF then you’ll need to add ‘-lld’ (or equivalent) to the compiler com-
mand line straight after ‘-lmpatrol’. If mpatrol was built with FORMAT=FORMAT_ELF32 or
FORMAT=FORMAT_ELF64 then you’ll need to add ‘-lelf’ (or equivalent) to the compiler com-
mand line straight after ‘-lmpatrol’. If mpatrol was built with FORMAT=FORMAT_BFD then
you’ll need to add ‘-lbfd -liberty’ (or equivalent) instead. If you are using the thread-safe
version of mpatrol then you may also need to link with the system threads library.

2. Why do I still get undefined symbols on HP/UX, IRIX, Tru64 or Windows platforms,
despite following the above instructions?
If the symbol is called U_get_previous_frame on HP/UX then you still need to link with
the system stack traceback library, ‘libcl.sl’. If the symbols are called exc_setjmp and
unwind on IRIX or Tru64 and you defined the MP_LIBRARYSTACK_SUPPORT preprocessor
macro when building the mpatrol library then you still need to link with the system ex-
ception library, ‘libexc.so’. If the symbols all begin with Sym on Windows platforms then
you still need to link with the system symbol access library, ‘imagehlp.lib’.

3. I tried all of the above, but why is the SymGetLineFromAddr symbol still undefined on
Windows platforms?
This is due to the ‘imagehlp.lib’ or ‘imagehlp.dll’ libraries on your system being out
of date. The SymGetLineFromAddr() function was added to this library at a much later
date from the original release so if you want the USEDEBUG option to work you should try
to get an updated library from Microsoft. Alternatively, you can disable the call to it in
__mp_findsource() but the ‘USEDEBUG’ option will no longer work.

4. Why is the mpatrol library unable to read any symbols from DLLs despite the fact that my
program uses them?
Windows executable files and DLLs only contain a list of symbol names which are imported
and exported but do not contain details of such symbols at the same level as object files.



Appendix J: Frequently asked questions 207

To do this requires the symbolic information to be retained by the linker, but this has not
been done for the system DLLs. The mpatrol library uses the imagehlp system library to
read symbols from DLLs but this will only work if the required system debugging symbols
are installed on your machine. In Visual C++, this can be done by selecting the ‘Windows
NT Symbols Setup’ start menu item.

5. Why do I get duplicate definitions of symbols when linking with the mpatrol library?
This is most likely caused by your code, or a library, providing definitions of malloc() and
free() which conflict with those defined in the mpatrol library. You’ll need to disable these
in order to perform a successful link and use the replacements in mpatrol instead.

6. Why do I get xmalloc() as a multiply-defined symbol when I link with the archive version
of the mpatrol library?
If the mpatrol library was built with FORMAT=FORMAT_BFD then it is because the libiberty
library contains definitions of the xmalloc() family of functions as well. You should re-
build the mpatrol library without the definitions of the relevant xmalloc() functions in
‘malloc.c’. You’re also likely to get this error if you link with the archive version of the
mpatrol library and one or more of the xmalloc() family of functions is defined in another
archive library that you are linking with.

7. I linked my program to a shared library version of mpatrol. Now, when I try to run my
program, the system complains that it cannot find the mpatrol library. How do I get this
to work?
You need to tell the system where to find the shared library version of the mpatrol library,
either by setting your LD_LIBRARY_PATH environment variable (or just PATH on Windows
platforms), or by embedding the full path to the library into the executable when you link
your program by setting the LD_RUN_PATH environment variable.

8. I linked my program to a shared library version of mpatrol. Will future releases of mpatrol
remain compatible with this version or will I have to relink my program?
Backwards compatibility is not generally guaranteed, but should be preserved if only the
bug fix part of the mpatrol version number has changed, with the major and minor versions
staying the same. For example, versions 1.0.3 and 1.0.8 should be compatible, but upgrading
to version 1.1.0 may require a relink.

9. I have linked my program with the DLL version of the mpatrol library on Windows but
it crashes when I run it. I suspect that the crash is occurring when the mpatrol library is
being initialised, so what is going wrong?
There appears to be a problem when using the mpatrol DLL and the static version of the
Microsoft C run-time library, and also a problem when using the static version of mpatrol
and the Microsoft C run-time library DLL. Luckily, if you ensure that you use either both
static libraries or both DLLs at the same time then the problem should go away. There
doesn’t seem to be an easier way around it at this time or, for that matter, an explanation
for why it happens.

10. Why are mpatrol library functions not called from shared libraries on AIX?
AIX uses static shared libraries instead of dynamic shared libraries, which means that all
shared library bindings are resolved at link time rather than load time (i.e. you must specify
which shared libraries resolve all of the undefined symbols that result when building a shared
library). If you would like mpatrol library functions to be called from a shared library, you
must rebuild the shared library with ‘-lmpatrol’ on the link line. However, this means
that you cannot override malloc(), etc., in shared libraries that you cannot rebuild unless
you link statically with the archive library versions instead.

J.4 Running



208 mpatrol

1. I’ve just linked and run my program with the mpatrol library, but the resulting log file
doesn’t contain any useful information. Why does it not contain a list of all memory
transactions or show any unfreed memory allocations?
By default, the mpatrol library will only write a summary of library settings and statistics
to the log file, and that will only occur on successful program termination (i.e. when exit()
is called). If this does not appear then it is likely that your program (or some other library
function) called abort() due to a fatal error. However, there are a multitude of different
options that you can pass to the mpatrol library via the MPATROL_OPTIONS environment
variable that will allow you to control what is logged and what is not. Note that the mpatrol
command will always log all calls to allocate, reallocate and free memory by default.

2. Why does my C++ program crash at program termination when it is linked with the mpatrol
library and it appears to be doing nothing wrong?
If your program contains file-scope objects whose constructors get called before main() and
whose destructors get called after main() then it is likely that one of these destructors
is allocating memory after the mpatrol library has terminated. This should already be
resolved if you built the mpatrol library on a platform that supports ‘.init’ and ‘.fini’
sections or if you built it with the GNU compiler or a C++ compiler. However, in certain
circumstances this may not work so you may wish to try terminating the mpatrol library by
getting it to register itself with atexit() instead, which will hopefully resolve the problem.
You can do this by rebuilding the mpatrol library with the MP_USE_ATEXIT preprocessor
macro defined.

3. I linked my program with the mpatrol library to trace all of its memory operations, such
as memcpy() and memcmp(), but I get nothing in the log file. Why is this?
On systems that do not support ‘.init’ and ‘.fini’ sections or are not gcc or C++ based
then the memory operation functions will not automatically initialise the mpatrol library
since on many systems the startup routines call them very early on. On such systems, if
your program does not call any memory allocation functions to initialise the mpatrol library
then you must explicitly call the __mp_init() function. All memory operation functions
following that call with then be traced.

4. Why does the ‘USEDEBUG’ option not work for me?
Firstly, you have to ensure that you have built the mpatrol library with support for the
GNU BFD object file access library by compiling with the FORMAT=FORMAT_BFD preprocessor
macro definition, or you are running on a Windows platform. Secondly, you have to ensure
that you have compiled all relevant object files with debugging information enabled (usually
by adding an option to the compiler command line), although the mpatrol library does not
need to be compiled this way. The file and line number information will hopefully then
appear in the log file for all symbols that have associated debugging information. If none
of the above suggestions work, you may still be able to get this information with the mpsym
command.

5. Why does the mpatrol command ignore the current value of the MPATROL_OPTIONS envi-
ronment variable?
Because I would most likely get lots of bug reports or queries from people who had forgotten
that they had set some options in the environment variable and had then not seen the
expected behaviour from the options they specified to the mpatrol command. Recently,
though, I’ve added the ‘--read-env’ option so that this can be achieved.

6. Why do I get an error from the dynamic linker about not being able to locate ‘libiberty.so’
when I use the ‘--dynamic’ option with the mpatrol command?
The GNU libiberty library is required when the mpatrol library is build with support for the
GNU BFD library but is unfortunately only available in archive form on many systems. See
the section on the mpatrol command (see Section 9.1 [The mpatrol command], page 53) for
information on how to get around this problem, either by embedding the libiberty library



Appendix J: Frequently asked questions 209

into the mpatrol library when you are building it, or by converting the archive form of the
libiberty library into its corresponding shared library version.

7. Why does the mpatrol library not read the symbols in my executable file on Windows
platforms?
If the mpatrol library was compiled with the FORMAT=FORMAT_PE preprocessor macro defined
then you must ensure that you compile your files with debugging information enabled (using
the ‘-Z7’ or ‘-Zi’ options in Visual C++) and that you tell the linker that you wish to preserve
the debugging information in the executable file (using the ‘-debug’ and ‘-pdb:none’ options
in the Microsoft linker). Unfortunately, if you do not do this then the final executable file will
not have a symbol table and so the mpatrol library cannot give symbolic stack tracebacks.

8. Why do some mpatrol log file entries only contain a partial call stack rather than following
the function call stack back to the call to main()?
This could be because the mpatrol library was compiled with limited call stack traversal
support via the MP_BUILTINSTACK_SUPPORT configuration macro. However, it could also
mean that the mpatrol library encountered a corrupt frame pointer when traversing the
call stack and had to terminate the recursion. The frame pointer must be preserved from
function to function on most platforms, otherwise the stack cannot be traversed. See your
compiler manual for further details.

9. I am trying to use the mpatrol command to debug an executable file that was not originally
compiled with the mpatrol library. However, even though it runs successfully, no mpatrol
log file is produced. Why is this?
First, check that you are passing the ‘--dynamic’ option to the mpatrol command and,
if necessary, the ‘--threads’ option as well. If that doesn’t work then check that the
executable file has been dynamically linked; statically linked executables cannot be forced
to use the mpatrol library. If it still doesn’t work then it may be that the dynamic linker on
your system doesn’t have the ability to preload any shared libraries that have been specified
in a special environment variable, in which case you can’t use this feature.

10. I am attempting to run a multithreaded C++ program with the mpatrol library on Linux.
However, my program crashes before main() and the debugger shows that the failure is in
__sigaction() which is called from __mp_initsignals(). Is the fault with the mpatrol
library?
There have been many reports of this problem and it turns out to be an issue with shared
library dependencies. ELF shared libraries may contain initialisation functions that are
executed before main(). However, sometimes the order in which these functions are exe-
cuted is critical. In this case it is likely that the mpatrol and pthreads libraries are being
initialised in the wrong order. You must ensure that ‘-lpthread’ appears near the very
end of the link line after all user libraries, and you must also ensure that none of the user
libraries have a dependency on ‘libpthread.so’. You can verify this by running the ldd
command on them.

11. I know that there’s a definite heap corruption problem in my program as it keeps crashing
in unrelated code due to pointer corruption, and when I link with the mpatrol library it
stops crashing. What can I do?
Try as many of the relevant mpatrol run-time options as possible and make sure that you
closely examine the mpatrol log file for warnings and errors — your problem may have been
noticed by the mpatrol library but it may not have considered it a fatal error and continued
execution. If this still doesn’t show up anything then you can probably rest assured that
you have a memory corruption problem but you may need to use a commercial product
such as Purify to isolate it. If that fails then you’ll just have to employ the traditional
debugging method of single-stepping through your program in a debugger until something
unusual or unexpected happens.

12. If I link my program to version 1.0 of the mpatrol library then I cannot interrupt it using
the keyboard, which I would normally be able to do without using mpatrol. Is this a bug?



210 mpatrol

Not really, but it is undesirable behaviour in most cases, which is why it was removed in
later releases of mpatrol and replaced with the ‘SAFESIGNALS’ option. The reason that the
program could not be interrupted using the keyboard was that mpatrol would ignore such
signals when its library code was being executed, otherwise user-defined signal handlers that
used malloc() and related functions would have the capability to cause lots of undesirable
side effects. However, this does not normally happen, which is why the behaviour was
moved to an option for those that needed it.

13. Why does mpatrol not report an illegal memory access when it can be detected by a de-
bugger?
First of all, illegal memory accesses can only be detected on systems that support virtual
memory, so that precludes AmigaOS and Netware. Secondly, it might be possible that
something is overriding the illegal memory access handler that mpatrol sets up when it is
first initialised. If your program, or an external library, sets up a signal handler that handles
SIGBUS or SIGSEGV (or their equivalent on Windows platforms) then mpatrol will no longer
be able to catch illegal memory accesses. You can either try to live with that, or you could
try disabling the overriding handlers.

14. How do I set a breakpoint on the malloc() function when it is implemented as a prepro-
cessor macro in ‘mpatrol.h’?
There are four different mpatrol interface functions which are used to allocate memory,
duplicate strings, reallocate memory and deallocate memory. If you look in ‘mpatrol.h’
you should be able to see the name of the function that will be called when the macro is
invoked. The same goes for the memory operation functions.

15. I’ve linked and run my program with mpatrol under UNIX and it uses a large amount of
heap memory. However, it crashes near the end of execution and then proceeds to freeze
up the whole system, sometimes requiring a reboot. What am I doing wrong?
The most common possible explanation for this is that you are running your program with
too much access to system resources. What is likely to be happening is that when your
program crashes the system attempts to dump the entire process image to a core file for
later debugging in a non-symbolic debugger. If the process has a huge heap then the core
file is also going to be huge, thus resulting in a massive file that may lead to the system
thrashing while it attempts to write it to the disk. Technically, the system has not frozen,
but it is likely to take a long time to finish writing the file. The best solution involves
setting your program’s maximum core file size to a reasonable limit (or just zero), and also
possibly limiting your program’s maximum data segment size as well. These can be set
from the shell but the exact details on how to do this differ between shells.

16. Why does my program run so slowly after I link it with the mpatrol library?
Normal malloc libraries are optimised for speed but will typically fall over at the slightest
hint of an error. Debugging malloc libraries are written to provide as much debugging
information as possible whilst performing a multitude of additional checks, which is why
they may run much slower. However, you can control which checks are performed (and
when) by using the MPATROL_OPTIONS environment variable. Performance may also be lost
if you make lots of small memory allocations rather than fewer larger allocations, but that is
mainly due to the overhead of storing the extra tracing details for each memory allocation.

17. My program is written in C++ and is linked to the mpatrol library, but how do I go about
demangling the C++ symbol names that are shown in the stack tracebacks in the resulting
log file?
Because there is no standard way of mangling C++ symbol names, various compilers and
operating systems have taken different approaches to C++ name mangling, many of which
differ significantly from the method suggested in The Annotated C++ Reference Manual by
Margaret Ellis and Bjarne Stroustrup. However, most compilers come with a demangling
tool which can be used in a command pipe to accept mangled names on its standard input
file stream and demangle them on its standard output file stream, and so can be used to



Appendix J: Frequently asked questions 211

process the mpatrol log file. Note that mpatrol automatically demangles C++ symbol names
on Windows platforms as Microsoft’s name mangling is quite unreadable and would be hard
to demangle using a command line tool.

18. Why does my program not stop when the mpatrol library notices an error?
The library was written to give as much information as possible and so sometimes, when
a non-fatal error is discovered, the library will write the error message to the log file and
continue in the hope of being able to uncover more errors during the execution of the
program. This means that you should always check the number of warnings and errors
given in the summary at the end of program execution, and then search backwards in the
log file for ‘WARNING’ or ‘ERROR’.

19. I have linked my program with the mpatrol library on an Amiga or Netware machine, but
when it runs it still crashes the entire system. Why is this?
AmigaOS and Netware do not have virtual memory and so do not have memory protection
turned on by default. This means that any rogue write to an erroneous address may actually
overwrite the data of another process or perhaps even the operating system, thus bringing
the entire machine down. There are several third-party system utilities available for the
Amiga to add memory protection to machines with built-in MMUs, which can then be
used in conjunction with mpatrol. I’m not sure about the availability of such software for
Netware.

20. I have built the mpatrol library with gcc on AmigaOS and have successfully linked it to
my program. However, why are none of the options in the MPATROL_OPTIONS environment
variable recognised when I run it?
The getenv() function in the GNU C library is not compatible with the AmigaDOS SetEnv
and GetEnv commands since it does not treat environment variables as files located in ‘ENV:’
and is only compatible with software that uses the ixemul library. However, the env com-
mand that comes with most GNU software distributions allows you to set an environment
variable that the GNU getenv() function can read when you are running in AmigaDOS.

21. How do I suppress all diagnostic output from the mpatrol library?
You can do this by setting the mpatrol log file to be your system’s bit bucket, which is
‘/dev/null’ on UNIX platforms and ‘NIL:’ on AmigaOS. There doesn’t appear to be an
equivalent way to do this on Windows or Netware.

J.5 Files

1. Why is there a ‘libmpatrol.o’ target in the UNIX and Amiga ‘Makefile’s?
This is simply used to build the mpatrol library as one large object file for full incorporation
into other libraries and was used during the development of mpatrol. On UNIX platforms
some linkers support the ‘-r’ option for combining many object files into one large object
file, but this is not universally supported, hence the reason for using the compiler instead.
Because all of the source files are compiled at once, there may be conflicts with system header
files when malloc() and its related functions are being compiled, which is why such an
object file is not built by default. In addition, platforms which require the assembler routines
in ‘machine.c’ cannot build the mpatrol library as one large object file from ‘library.c’.
Note that the Windows and Netware ‘Makefile’s use ‘libmpatrol.obj’.

2. What are the ‘CVS’ subdirectories that come with the mpatrol distribution?
CVS stands for Concurrent Versions System and is a project version control system. All of
the source files that comprise an mpatrol release are stored in a central CVS repository so
that previous releases can be easily retrieved, but the CVS system needs to have a way of
determining the versions of currently checked-out files, hence the ‘CVS’ subdirectories. The
‘.cvsignore’ files within these directories simply inform CVS about which files to ignore



212 mpatrol

when looking for changes. You shouldn’t need to worry about them, so just ignore them,
and in later releases they should have been removed before a distribution was made.

3. Why does the mpsym command not work for me?
Firstly, you have to ensure that you have compiled all relevant object files with debugging
information enabled (usually by adding an option to the compiler command line). The file
and line number information will hopefully then appear in the log file for all symbols that
have associated debugging information when you run the mpsym command on the log file.
Alternatively, it could be that your system does not have gdb or any of the required UNIX
text processing tools installed, in which case you might want to try installing them.

4. How can I customise the mpedit command if I do not have the appropriate permissions to
edit the file that was installed on my system?
You just need to take a copy of the installed mpedit command and place it somewhere that
will be picked up earlier on your command search path. You can then edit your copy of the
file and add support for your favourite text editor.

5. What does the mupdate shell script do?
This is for my use in order to automate every new release of mpatrol. You should never
need to run this script and it should not be installed anywhere on your system. This script
also uses and modifies the ‘VERSION’ file and updates the ‘NEWS’ and ‘ChangeLog’ files.



Appendix K: Related software 213

Appendix K Related software

The mpatrol library was designed to solve most common heap-related problems, but there
may be some cases where a different approach is needed, or a commercial package is required.
I have attempted to provide an overview of the different types of malloc libraries and memory
debuggers available below, along with a comprehensive list of related software.

The most basic type of heap debugging system simply requires the redefinition of malloc(),
realloc() and free() (and related functions) with debugging versions that record the file and
line number at which allocations occur. This might require modifications to the source code
in order to call these new functions or it can be done through preprocessor macros which will
require all source files using the memory allocation functions to be recompiled. Such a system
will most likely live on top of the existing system malloc library, but will provide an additional
layer with which to store more information for debugging purposes. MEM by Walter Bright is
a good example of this type of library.

On many operating systems it is usually possible to write replacements for the normal memory
allocation routines and place them in a library so that they can be linked in to override the system
malloc library without requiring recompilation of any source files. Such malloc libraries must
take control of the heap directly and so usually contain more features, including being able to
track memory leaks and place fence posts around allocations. Dbmalloc by Conor P. Cahill and
Dmalloc by Gray Watson are two of the most popular of these types of libraries since they are
available on a wide range of platforms. Electric Fence by Bruce Perens also makes use of the
memory protection facilities found in UNIX systems in order to force programs that access free
or freed memory or read or write beyond the bounds of a memory allocation to crash at the point
that the illegal memory access is made, rather than crashing at the next memory allocation.

For debugging all memory access errors (not just those on the heap) it is necessary to modify
(instrument) the machine code that is to be run so that each individual load from memory and
store to memory will be checked. One method of doing this is to modify the code produced by a
compiler (such as is done by Checker written by Tristan Gingold) but this has the disadvantage
of only working within the object files that have been produced by that compiler. It is also
possible to modify the source code itself using source to source translation (such as is done by
Parasoft Insure++) or instrument all accesses to memory in assembler source files (as performed
by APurify written by Samuel Devulder). However, both of these methods suffer from the same
drawback as compiler-generated instrumentation. Yet another alternative is to wait until link-
time and then instrument the individual object files and libraries before they are linked into an
executable file. This is effectively what Purify from Rational Software does, although Memory
Advisor from PLATINUM Technology does roughly the same except that it disassembles the
object files into a platform-independent format before instrumenting them.

Rather than modifying a program in order to add debugging code, it is sometimes possible
to use a dedicated memory debugger in order to quickly catch any problems. ZeroFault from
The Kernel Group debugs all memory-related operations in a program while it is running, whilst
AProbe from OC Systems allows users to dynamically add probe modules at run-time in order
to locate errors or perform profiling. If such a memory debugger is not available for your system,
you may still be able to dynamically link a malloc library into your application at run-time if
the operating system supports it. NJAMD by Mike Perry makes extensive use of this feature
on some UNIX systems. On operating systems that do not support virtual memory but have
hardware memory protection, it is sometimes possible to trap memory errors before they bring
down the whole system. On the Amiga, Enforcer by Michael Sinz runs in the background and
detects many common memory access errors in running applications, whilst on the Macintosh,
QC by Onyx Technology provides roughly the same functionality.



214 mpatrol

A list of over ninety different items of software which help in debugging dynamic memory
allocation problems is given below1. They all provide some of the features that mpatrol contains
and you may wish to use one of them to solve your problem if you have trouble using mpatrol.
I have only ever used CSRI malloc, Dbmalloc, Dmalloc, Electric Fence and Mprof, so I can’t
vouch for any of the others, although if you have any recommendations feel free to let me know
so I can add them to this list. In particular, there seems to be a shortage of such programs
for Netware platforms. Note that there is a comparison of a few of the following programs
at http://www.consistent.org/terran/memorycheck.shtml which might help illustrate the
differences between the various tools.
• AProbe

Author OC Systems (info@ocsystems.com)

License Commercial Software

Platforms Various UNIX, Windows

Location http://www.aprobe.com/

Overview Instruments a program using Dynamic Action Linking in order to track down
memory corruption and monitor memory usage, among other things.

• APurify

Author Samuel Devulder (Samuel.Devulder@info.unicaen.fr)

License Free Software

Platforms AmigaOS

Location http://wuarchive.wustl.edu/~aminet/dirs/dev_debug.html

Overview Instruments an assembler source file to insert code that checks all memory
accesses.

• BoundsChecker

Author NuMega Corporation (info@numega.com)

License Commercial Software

Platforms Windows, MS-DOS

Location http://www.numega.com/

Overview Detects and diagnoses errors in static, stack and heap memory and in memory
and resource leaks.

• C++ Debugging Support Library (libcwd)

Author Carlo Wood carlo@alinoe.com

License Q Public License

Platforms Various UNIX

Location http://sourceforge.net/projects/libcw/

Overview A C++ debugging library that can also detect memory corruption and memory
leaks.

1 This list can be considered to be a slightly more up to date version of Debugging Tools for Dynamic Storage
Allocation and Memory Management (http://www.cs.colorado.edu/~zorn/MallocDebug.html) by Ben Zorn
(zorn@microsoft.com).

http://www.consistent.org/terran/memorycheck.shtml
mailto:info@ocsystems.com
http://www.aprobe.com/
mailto:Samuel.Devulder@info.unicaen.fr
http://wuarchive.wustl.edu/~aminet/dirs/dev_debug.html
mailto:info@numega.com
http://www.numega.com/
mailto:carlo@alinoe.com
http://sourceforge.net/projects/libcw/
http://www.cs.colorado.edu/~zorn/MallocDebug.html
mailto:zorn@microsoft.com


Appendix K: Related software 215

• Ccmalloc

Author Armin Biere (biere@inf.ethz.ch)

License GNU General Public License

Platforms Various UNIX

Location http://www.inf.ethz.ch/personal/biere/projects/ccmalloc/

Overview Can interface with gdb to find memory leaks, multiple deallocations and mem-
ory corruptions in C or C++ programs.

• Chaperon

Author John Reiser (jreiser@BitWagon.com)

License Commercial Software

Platforms Linux

Location http://www.bitwagon.com/chaperon.html

Overview Runs existing Intel Linux binary application programs, but checks for and re-
ports bad behaviour in accessing memory.

• Checker

Author Tristan Gingold (bug-checker@gnu.org)

License GNU General Public License

Platforms Various UNIX

Location http://www.gnu.org/software/checker/checker.html

Overview Detects illegal memory accesses when reading from uninitialised memory, writ-
ing to freed memory or outside memory blocks. Also contains a garbage collec-
tor for detecting memory leaks.

• CMEM

Author Brett Hunsaker (hunsaker@eisner.decus.org)

License Free Software

Platforms VMS

Location http://www.openvms.compaq.com/freeware/CMEM/

Overview Provides debugging versions of the C run-time library memory allocation rou-
tines, with support for stack tracebacks and page protection.

• CMM (Customisable Memory Manager)

Author Giuseppe Attardi (attardi@di.unipi.it), Tito Flagella (tito@di.unipi.it)
and Pietro Iglio (iglio@di.unipi.it)

License Free Software

Platforms Various UNIX, Windows, MacOS, DOS

Location ftp://ftp.di.unipi.ti/pub/project/posso/cmm/

Overview A memory management facility supporting memory intensive applications in
C++, with support for multiple heaps (each one optionally implementing a dif-
ferent storage discipline) and garbage collection.

mailto:biere@inf.ethz.ch
http://www.inf.ethz.ch/personal/biere/projects/ccmalloc/
mailto:jreiser@BitWagon.com
http://www.bitwagon.com/chaperon.html
mailto:bug-checker@gnu.org
http://www.gnu.org/software/checker/checker.html
mailto:hunsaker@eisner.decus.org
http://www.openvms.compaq.com/freeware/CMEM/
mailto:attardi@di.unipi.it
mailto:tito@di.unipi.it
mailto:iglio@di.unipi.it
ftp://ftp.di.unipi.ti/pub/project/posso/cmm/


216 mpatrol

• CSRI malloc

Author Mark Moraes (moraes@deshaw.com)

License Free Software

Platforms Various UNIX

Location ftp://ftp.cs.toronto.edu/pub/moraes/malloc.tar.gz

Overview A library of dynamic memory allocation functions with limited debugging and
profiling support and detection of memory leaks. Also comes with a graphical
tool to display a dynamic picture of the heap.

• Dbmalloc

Author Conor P. Cahill (cpcahil@virtech.vti.com)

License Free Software

Platforms Various UNIX

Location http://dickey.his.com/dbmalloc/dbmalloc.html

Overview Provides replacements for memory management library functions and provides
a full set of debugging features which detect memory overruns and other types
of misuse.

• Dbmalloc

Author Michael McTernan (mm7323@bris.ac.uk)

License Free Software

Platforms Various UNIX, Windows

Location http://www.cs.bris.ac.uk/~mm7323/DbMalloc/

Overview A drop-in replacement for the C memory allocation functions, providing facili-
ties for quickly finding memory leaks.

• Debauch

Author Jon A. Christopher (jac8792@tamu.edu)

License GNU General Public License

Platforms Linux

Location http://mackerel.tamu.edu/jon/gnu/

Overview A memory allocation debugger for C which will detect memory leaks, corrupted
memory, stores to freed memory and more.

• Debug Heap

Author IBM Corporation (info@ibm.com)

License Commercial Software

Platforms IBM AS/400

Location http://www.as400.ibm.com/developer/porting/heapexternal.html

Overview A heap debugging environment with stack traceback for IBM AS/400 servers.

• DebugObject

Author Beniamin Cherniavsky (cben@israel.crosswinds.net)

mailto:moraes@deshaw.com
ftp://ftp.cs.toronto.edu/pub/moraes/malloc.tar.gz
mailto:cpcahil@virtech.vti.com
http://dickey.his.com/dbmalloc/dbmalloc.html
mailto:mm7323@bris.ac.uk
http://www.cs.bris.ac.uk/~mm7323/DbMalloc/
mailto:jac8792@tamu.edu
http://mackerel.tamu.edu/jon/gnu/
mailto:info@ibm.com
http://www.as400.ibm.com/developer/porting/heapexternal.html
mailto:cben@israel.crosswinds.net


Appendix K: Related software 217

License GNU General Public License

Platforms Various UNIX, Windows

Location http://www.crosswinds.net/~cben/objc/

Overview A set of classes for debugging dynamic memory problems in Objective C.

• Dmalloc

Author Gray Watson (gray@burger.letters.com)

License Free Software

Platforms Various UNIX, Windows, MS-DOS

Location http://www.dmalloc.com/

Overview A drop-in replacement for the system’s memory management routines, provid-
ing powerful debugging facilities configurable at run-time. Formerly known as
Malloc Dbg.

• DPCRTLMM

Author David Duncan Ross Palmer (overlord@daybologic.co.uk)

License GNU General Public License

Platforms Various UNIX, Windows, MS-DOS

Location http://www.daybologic.co.uk/dev/dpcrtlmm/

Overview Detects failures to release memory and attempts to release memory which has
not been allocated, and can also provide statistics and logging facilities.

• Electric Fence

Author Bruce Perens (bruce@pixar.com)

License GNU General Public License

Platforms Various UNIX

Location ftp://ftp.perens.com/pub/ElectricFence/

Overview Uses virtual memory hardware to protect dynamically allocated memory in
order to detect illegal memory accesses.

• Enforcer

Author Michael Sinz (Enforcer@sinz.org)

License Free Software

Platforms AmigaOS

Location http://www.iam.com/amiga/enforcer.html

Overview Sets up MMU tables to watch for illegal accesses to memory, such as the low
page and non-existent pages.

• FDA (Free Debug Allocator)

Author Thomas Helvey (tomh@inxpress.net)

License GNU General Public License

Platforms Linux, Windows

http://www.crosswinds.net/~cben/objc/
mailto:gray@burger.letters.com
http://www.dmalloc.com/
mailto:overlord@daybologic.co.uk
http://www.daybologic.co.uk/dev/dpcrtlmm/
mailto:bruce@pixar.com
ftp://ftp.perens.com/pub/ElectricFence/
mailto:Enforcer@sinz.org
http://www.iam.com/amiga/enforcer.html
mailto:tomh@inxpress.net


218 mpatrol

Location http://www.debian.org/Packages/unstable/devel/fda.html

Overview Provides routines that can be plugged in to replace malloc(), calloc(),
realloc() and free().

• Fortify

Author Simon Bullen (sbullen@cybergraphic.com.au)

License Free Software

Platforms AmigaOS

Location http://www.geocities.com/SiliconValley/Horizon/8596/fortify.html

Overview Provides a fortified shell for memory allocations, trapping memory leaks, writes
beyond and before memory blocks and writes to freed memory.

• Gabe’s Debug Library

Author Gabriel Sechan gsechan@hotmail.com

License Free Software

Platforms Windows

Location http://sourceforge.net/projects/debuglib/

Overview A debugging library for C++ which performs dynamic memory management
and looks for potential problems and memory leaks.

• GC (Garbage Collector)

Author Hans-J. Boehm (boehm@acm.org)

License Free Software

Platforms Various UNIX, AmigaOS, Windows, MS-DOS, MacOS

Location http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Overview A general-purpose, garbage-collecting storage allocator that is intended to be
used as a plug-in replacement for malloc(), but can also be used to detect
memory leaks.

• GCAlloc

Author Joel Bartlett (bartlett@decwrl.dec.com)

License Free Software

Platforms Various UNIX

Location ftp://gatekeeper.dec.com/pub/DEC/CCgc/

Overview A highly-portable generational, mostly-copying garbage collector for C++.

• GlowCode

Author Electric Software, Inc. (info@glowcode.com)

License Commercial Software

Platforms Windows

Location http://www.glowcode.com/

Overview Provides a profiler, call coverage tool and resource browser which can detail
memory leaks.

http://www.debian.org/Packages/unstable/devel/fda.html
mailto:sbullen@cybergraphic.com.au
http://www.geocities.com/SiliconValley/Horizon/8596/fortify.html
mailto:gsechan@hotmail.com
http://sourceforge.net/projects/debuglib/
mailto:boehm@acm.org
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
mailto:bartlett@decwrl.dec.com
ftp://gatekeeper.dec.com/pub/DEC/CCgc/
mailto:info@glowcode.com
http://www.glowcode.com/


Appendix K: Related software 219

• GMemLogger

Author Yves Mettier (ymettier@libertysurf.fr)

License GNU General Public License

Platforms Linux

Location http://sourceforge.net/projects/gmemlogger/

Overview Logs allocated memory for the purpose of detecting memory leaks.

• Great Circle

Author Geodesic Systems (info@geodesic.com)

License Commercial Software

Platforms Various UNIX, Windows

Location http://www.geodesic.com/

Overview Provides complete heap profiling, allowing programmers to see what parts of a
program are using the most memory with symbolic stack tracing.

• HeapAgent

Author MicroQuill (info@microquill.com)

License Commercial Software

Platforms Windows

Location http://www.microquill.com/

Overview Instruments the heap to provide heap error detection without the need to re-
compile any source code.

• HeapCheck

Author Thanassis Tsiodras (ttsiod@softlab.ntua.gr)

License GNU General Public License

Platforms Windows

Location http://www.image.ece.ntua.gr/~ttsiod/HeapCheck.html

Overview A debugging memory allocator that can detect invalid read/write accesses to
heap memory, and also detects memory leaks.

• HeapManager

Author Andrew Wulf (heapmanager@biit.com)

License Free Software

Platforms MacOS

Location http://www.biit.com/

Overview Provides a general-purpose dynamic memory allocation debugging package with
symbolic stack traceback.

• IDH

Author Ivan Skytte Jorgensen (isj@image.dk)

License Free Software

mailto:ymettier@libertysurf.fr
http://sourceforge.net/projects/gmemlogger/
mailto:info@geodesic.com
http://www.geodesic.com/
mailto:info@microquill.com
http://www.microquill.com/
mailto:ttsiod@softlab.ntua.gr
http://www.image.ece.ntua.gr/~ttsiod/HeapCheck.html
mailto:heapmanager@biit.com
http://www.biit.com/
mailto:isj@image.dk


220 mpatrol

Platforms Various UNIX

Location http://www.platypus.adsl.dk/idh/index.html/

Overview Detects most overwrites, stale pointers, wild pointers, double-free and invalid
mix of heap management functions.

• Insure++

Author ParaSoft (info@parasoft.com)

License Commercial Software

Platforms Various UNIX, Windows

Location http://www.parasoft.com/

Overview Uses Source Code Instrumentation and Runtime Pointer Tracking technologies
to pinpoint memory corruption, memory leaks, operations on unrelated pointers
and more. The Inuse graphical memory usage display tool is also provided with
this software.

• JMalloc

Author Jeff Dunlop

License Free Software

Platforms Windows, MS-DOS

Location http://www.snippets.org/

Overview Provides tracing and debugging for malloc() and operator new.

• JProbe

Author KL Group (info@klgroup.com)

License Commercial Software

Platforms Various UNIX, Windows

Location http://www.klgroup.com/

Overview Helps pinpoint memory leaks in Java applications by tracking which objects
hold references to other objects, and allows visualisation of memory usage in
real-time.

• Leak

Author Christopher Phillips (pefv700@hermes.chpc.utexas.edu)

License Free Software

Platforms Various UNIX

Location http://sources.isc.org/devel/memleak/leak.txt

Overview Logs all calls to malloc() and related functions to database files with the file-
name and line number, then attempts to validate reallocations and deallocations
and detect memory leaks.

• Leak

Author Josh McCormick (jmccorm@galstar.com)

License Free Software

Platforms Various UNIX

http://www.platypus.adsl.dk/idh/index.html/
mailto:info@parasoft.com
http://www.parasoft.com/
http://www.snippets.org/
mailto:info@klgroup.com
http://www.klgroup.com/
mailto:pefv700@hermes.chpc.utexas.edu
http://sources.isc.org/devel/memleak/leak.txt
mailto:jmccorm@galstar.com


Appendix K: Related software 221

Location http://www.galstar.com/~jmccorm/leak/

Overview A simple shell script that monitors the system looking for processes which leak
memory.

• LeakBug

Author Christian Hammond (chipx86@portaldesign.net), Domenico Andreoli
(cavok@filibusta.crema.unimi.it) and Gerry Jo Jellestad (gerry@c64.org)

License GNU General Public License

Platforms Various UNIX

Location http://www.gnupdate.org/

Overview A memory leak tracer that specializes in detecting leaks from a program’s own
calls to malloc(), strdup(), etc, but does not detect leaks from outside li-
braries.

• Leakers

Author Gabriel M. Deal (gmd@yellowleaf.org)

License GNU General Public License

Platforms Various UNIX

Location http://www.yellowleaf.org/gmd/software/leakers/

Overview Detects memory allocation errors by writing a log file and then examining it
for memory leaks and attempts to free memory multiple times.

• LeakTracer

Author Erwin Andreasen (erwin@andreasen.org)

License Free Software

Platforms Various UNIX

Location http://www.andreasen.org/LeakTracer/

Overview Detects memory leaks in C++ programs by overriding operator new and
operator delete.

• Leaky

Author Kipp Hickman (kipp@netscape.com)

License Netscape Public License

Platforms Linux

Location http://www.mozilla.org/unix/leaky.html

Overview A program which helps find memory leaks and helps debug reference count
problems with xpcom objects.

• LibKmalloc

Author Akira Higuchi (a@kondara.org)

License GNU General Public License

Platforms Linux

Location http://www.kondara.org/~a/libkmalloc.html

http://www.galstar.com/~jmccorm/leak/
mailto:chipx86@portaldesign.net
mailto:cavok@filibusta.crema.unimi.it
mailto:gerry@c64.org
http://www.gnupdate.org/
mailto:gmd@yellowleaf.org
http://www.yellowleaf.org/gmd/software/leakers/
mailto:erwin@andreasen.org
http://www.andreasen.org/LeakTracer/
mailto:kipp@netscape.com
http://www.mozilla.org/unix/leaky.html
mailto:a@kondara.org
http://www.kondara.org/~a/libkmalloc.html


222 mpatrol

Overview A tiny malloc debugger which detects multiple frees and buffer overruns and
underruns.

• LibSafe

Author AT&T Bell Labs (libsafe@research.bell-labs.com)

License GNU General Public License

Platforms Linux

Location http://www.bell-labs.com/org/11356/libsafe.html

Overview Protects a process against the exploitation of buffer overflow vulnerabilities in
process stacks.

• Malloc Debug

Author Brandon S. Allbery allbery@ncoast.org

License Free Software

Platforms Various UNIX

Location http://www.leo.org/pub/comp/usenet/comp.sources.misc/malloc-debug/

Overview A debugging malloc package with stack traceback capability.

• Malloc Debug Library

Author Rammi (rammi@quincunx.escape.de)

License Free Software

Platforms Various UNIX

Location http://www.escape.de/users/quincunx/rmdebug.html

Overview Implements wrappers for the normal heap handling functions.

• MallocTrace

Author Mark Brader (msb@sq.sq.com)

License Free Software

Platforms Various UNIX

Location ftp://ftp.uu.net/usenet/comp.sources.unix/volume18/malloc-trace.Z

Overview A malloc package with call stack tracebacks.

• MalTrace

Author Michael Schwartz (schwartz@cs.washington.edu)

License Free Software

Platforms Various UNIX

Location http://www.mit.edu/afs/sipb/user/tytso/News/maltrace

Overview Traces all calls to malloc() and free() in order to detect memory leaks.

• Mark Malloc

Author Sed (sed@free.fr)

License Free Software

mailto:libsafe@research.bell-labs.com
http://www.bell-labs.com/org/11356/libsafe.html
mailto:allbery@ncoast.org
http://www.leo.org/pub/comp/usenet/comp.sources.misc/malloc-debug/
mailto:rammi@quincunx.escape.de
http://www.escape.de/users/quincunx/rmdebug.html
mailto:msb@sq.sq.com
ftp://ftp.uu.net/usenet/comp.sources.unix/volume18/malloc-trace.Z
mailto:schwartz@cs.washington.edu
http://www.mit.edu/afs/sipb/user/tytso/News/maltrace
mailto:sed@free.fr


Appendix K: Related software 223

Platforms Various UNIX

Location http://sed.free.fr/mark_malloc

Overview Marks memory allocations in order to detect memory leaks.

• MCheck

Author Ronald Veldema (rveldema@cs.vu.nl)

License GNU General Public License

Platforms Linux

Location http://www.cs.vu.nl/~rveldema/mcheck/mcheck.html

Overview A memory usage and malloc checker for C and C++. Comes with a Java appli-
cation for browsing the trace files produced.

• MEM

Author Walter Bright

License Free Software

Platforms MS-DOS

Location http://www.snippets.org/

Overview A set of functions for debugging pointer and memory allocation problems.

• MemCheck

Author Stratosware Corporation (info@stratosware.com)

License Commercial Software

Platforms Windows

Location http://www.stratosware.com/

Overview Detects various run-time errors related to operating system resources and pro-
vides information on memory leaks.

• MemCheck

Author IBM Corporation (info@ibm.com)

License Commercial Software

Platforms IBM OS/390

Location http://www.s390.ibm.com/oe/tools/memcheck_2_1.html

Overview Aids the discovery of memory leaks in single- and multi-threaded C/C++ pro-
grams.

• MemDebug

Author Rene Schmit (rene.schmit@bss.lu)

License Free Software

Platforms Various UNIX, Windows, MS-DOS, MacOS

Location http://www.bss.lu/Memdebug/Memdebug.html

Overview Provides memory management error detection, memory usage error detection,
memory usage profiling and error simulation.

http://sed.free.fr/mark_malloc
mailto:rveldema@cs.vu.nl
http://www.cs.vu.nl/~rveldema/mcheck/mcheck.html
http://www.snippets.org/
mailto:info@stratosware.com
http://www.stratosware.com/
mailto:info@ibm.com
http://www.s390.ibm.com/oe/tools/memcheck_2_1.html
mailto:rene.schmit@bss.lu
http://www.bss.lu/Memdebug/Memdebug.html


224 mpatrol

• MemLeak

Author Keith Packard (keithp@ncd.com)

License Free Software

Platforms Various UNIX

Location ftp://ftp.x.org/pub/R6.4/xc/util/memleak/

Overview Replaces the C library allocation functions and provides extensive memory
checking, locating lost memory, detecting free memory still in use and stores to
free memory along with stack tracebacks.

• Memory Advisor

Author PLATINUM Technology (info@platinum.com)

License Commercial Software

Platforms Various UNIX

Location http://www.platinum.com/

Overview Disassembles an object module into system-independent assembler code, inserts
error checking instructions, then re-assembles the code. Can also replace exist-
ing malloc libraries in order to provide greater error checking. Formerly known
as Sentinel.

• Memory Sleuth

Author TurboPower (info@turbopower.com)

License Commercial Software

Platforms Windows

Location http://www.turbopower.com/

Overview Quickly tracks down memory leaks and resource allocation errors with
C++Builder and Delphi.

• Memprof

Author Owen Taylor (otaylor@redhat.com)

License GNU General Public License

Platforms Linux

Location http://people.redhat.com/otaylor/memprof/

Overview A tool for profiling memory usage and detecting memory leaks.

• Memproof

Author AutomatedQA (info@totalqa.com)

License Free Software

Platforms Windows

Location http://www.totalqa.com/

Overview A memory and resource leak debugger for Borland’s family of Windows com-
pilers.

• MemTest

mailto:keithp@ncd.com
ftp://ftp.x.org/pub/R6.4/xc/util/memleak/
mailto:info@platinum.com
http://www.platinum.com/
mailto:info@turbopower.com
http://www.turbopower.com/
mailto:otaylor@redhat.com
http://people.redhat.com/otaylor/memprof/
mailto:info@totalqa.com
http://www.totalqa.com/


Appendix K: Related software 225

Author Jim Buchanan (jbuchana@iquest.net)

License Free Software

Platforms Various UNIX

Location ftp://ftp.loxinfo.co.th/pub/unix/utils/mem_test-0_10_tar.gz

Overview Helps locate memory leaks in a program under development by creating a log
file that records most memory allocations and deallocations.

• MemTrace

Author Nico Hoogervorst (nico@knoware.nl)

License Free Software

Platforms Windows

Location http://utopia.knoware.nl/users/nico/tools/c/memtrace/

Overview A simple enhancement for C source code which makes it easier to find memory
leaks.

• MemTrace

Author Frank Pilhofer (fp@informatik.uni-frankfurt.de)

License Free Software

Platforms Various UNIX

Location http://www.informatik.uni-frankfurt.de/~fp/Tools/MemTrace/

Overview Searches for memory leaks in a program and uses various platform-specific fea-
tures to record a stack trace each time a memory chunk is allocated.

• MemWatch

Author Johan Lindh (johan@link-data.com)

License Free Software

Platforms Various UNIX, Windows

Location http://www.link-data.com/

Overview A fault-tolerant memory leak and corruption detection tool.
• MemWatch

Author Doug Walker (walker@unx.sas.com)

License Free Software

Platforms AmigaOS

Location http://wuarchive.wustl.edu/~aminet/dirs/dev_debug.html

Overview Provides replacement memory allocation routines for adding lots of memory
debugging features that you link into your program.

• MemWatch

Author Sundial Services (info@sundialservices.com)

License Free Software

Platforms Windows

Location http://www.sundialservices.com/download/memwatch.pas

mailto:jbuchana@iquest.net
ftp://ftp.loxinfo.co.th/pub/unix/utils/mem_test-0_10_tar.gz
mailto:nico@knoware.nl
http://utopia.knoware.nl/users/nico/tools/c/memtrace/
mailto:fp@informatik.uni-frankfurt.de
http://www.informatik.uni-frankfurt.de/~fp/Tools/MemTrace/
mailto:johan@link-data.com
http://www.link-data.com/
mailto:walker@unx.sas.com
http://wuarchive.wustl.edu/~aminet/dirs/dev_debug.html
mailto:info@sundialservices.com
http://www.sundialservices.com/download/memwatch.pas


226 mpatrol

Overview Provides replacement dynamic memory allocation functions for Delphi which
look for memory underwrites and overwrites.

• MM (Shared Memory Library)

Author Ralf S. Engelschall (rse@engelschall.com)

License Free Software

Platforms Various UNIX, Windows

Location http://www.engelschall.com/sw/mm/

Overview Simplifies the usage (and can help debug) the use of shared memory between
related processes.

• MM

Author Dave Clements (clements@cs.uoregon.edu)

License Free Software

Platforms Various UNIX

Location http://www.cirl.uoregon.edu/clements/memoryManager.html

Overview Overrides the C dynamic memory allocation functions to provide better debug-
ging capabilities.

• Mmalloc

Author Mike Haertel (mike@ai.mit.edu) and Fred Fish (fnf@cygnus.com)

License GNU General Public License

Platforms Various UNIX

Location http://www.gnu.org/

Overview Uses mmap() to allocate separate pools of memory which can be mapped onto
files for later reuse.

• MPR

Author Taj Khattra (taj.khattra@pobox.com)

License Free Software

Platforms Linux

Location http://metalab.unc.edu/pub/Linux/devel/lang/c/mpr-2.0.tar.gz

Overview Attempts to find memory leaks in C/C++ programs by writing a log file during
program execution, which can then be processed for obtaining further informa-
tion.

• Mprof

Author Ben Zorn (zorn@microsoft.com)

License Free Software

Platforms Various UNIX

Location ftp://gatekeeper.dec.com/pub/misc/mprof-3.0.tar.Z

Overview Profiles the dynamic memory allocation behaviour of programs by logging de-
tails for each function than makes a memory allocation, including call stack
tracebacks.

mailto:rse@engelschall.com
http://www.engelschall.com/sw/mm/
mailto:clements@cs.uoregon.edu
http://www.cirl.uoregon.edu/clements/memoryManager.html
mailto:mike@ai.mit.edu
mailto:fnf@cygnus.com
http://www.gnu.org/
mailto:taj.khattra@pobox.com
http://metalab.unc.edu/pub/Linux/devel/lang/c/mpr-2.0.tar.gz
mailto:zorn@microsoft.com
ftp://gatekeeper.dec.com/pub/misc/mprof-3.0.tar.Z


Appendix K: Related software 227

• MSS (Memory Supervision System)

Author Juan Jesus Alcolea Picazo (a920101@zipi.fi.upm.es) and Peter Palotas
(blizzar@hem1.passagen.se)

License GNU General Public License

Platforms Linux, Windows, MS-DOS

Location http://hem.passagen.se/blizzar/mss/

Overview Full-featured malloc library for C and C++ providing detection of memory leaks,
use of uninitialised memory and out of range block accesses as well as lots of
tracing facilities.

• MTrace

Author Morris R. Dovey (mrdovey@iedu.com)

License Free Software

Platforms Various UNIX, Windows

Location http://www.iedu.com/mrd/c/mtrace.c

Overview A very simple malloc tracing package.

• MuForce

Author Thomas Richter (thor@einstein.math.tu-berlin.de)

License Free Software

Platforms AmigaOS

Location http://www.math.tu-berlin.de/~thor/thor/index.html

Overview Uses the MMU to monitor the system for any writes to non-existent memory
and reports them over the serial port or any other output stream.

• MuGuardianAngel

Author Thomas Richter (thor@einstein.math.tu-berlin.de)

License Free Software

Platforms AmigaOS

Location http://www.math.tu-berlin.de/~thor/thor/index.html

Overview An extension to the MuForce program which protects free memory and detects
all illegal memory accesses.

• MuLib

Author Thomas Richter (thor@einstein.math.tu-berlin.de)

License Free Software

Platforms AmigaOS

Location http://www.math.tu-berlin.de/~thor/thor/index.html

Overview Provides access to the MMU in modern Amigas so that features such as virtual
memory can be implemented.

• MULTI

Author Green Hills Software, Inc. (sales@ghs.com)

mailto:a920101@zipi.fi.upm.es
mailto:blizzar@hem1.passagen.se
http://hem.passagen.se/blizzar/mss/
mailto:mrdovey@iedu.com
http://www.iedu.com/mrd/c/mtrace.c
mailto:thor@einstein.math.tu-berlin.de
http://www.math.tu-berlin.de/~thor/thor/index.html
mailto:thor@einstein.math.tu-berlin.de
http://www.math.tu-berlin.de/~thor/thor/index.html
mailto:thor@einstein.math.tu-berlin.de
http://www.math.tu-berlin.de/~thor/thor/index.html
mailto:sales@ghs.com


228 mpatrol

License Commercial Software

Platforms Various UNIX, Windows

Location http://www.ghs.com

Overview Inserts special checks into a program to watch for and report a broad variety
of run-time errors, including freeing unallocated memory and memory leaks.

• Mungwall

Author Commodore-Amiga, Inc. (info@amiga.de)

License Free Software

Platforms AmigaOS

Location http://wuarchive.wustl.edu/~aminet/dirs/dev_debug.html

Overview Patches the system to check for free memory corruption.

• NJAMD (Not Just Another Malloc Debugger)

Author Mike Perry (mikepery@fscked.org)

License GNU General Public License

Platforms Various UNIX

Location http://fscked.org/proj/njamd.shtml/

Overview Helps track down a wide range of memory allocation problems and is divided
into a front end executable and a library back end.

• ObjectCenter

Author CenterLine Development Systems (info@centerline.com)

License Commercial Software

Platforms Various UNIX

Location http://www.centerline.com/

Overview Provides a C and C++ programming environment that can detect memory leaks,
duplicate frees and illegal access errors including loads from uninitialised ob-
jects.

• Optimizeit

Author Intuitive Systems, Inc. (info@optimizeit.com)

License Commercial Software

Platforms Various UNIX, Windows

Location http://www.optimizeit.com/

Overview Attempts to locate memory leaks and performance bottlenecks in Java pro-
grams.

• Plumber

Author Owen O’Malley (omalley@ics.uci.edu)

License GNU General Public License

Platforms Linux, Solaris, SunOS

http://www.ghs.com
mailto:info@amiga.de
http://wuarchive.wustl.edu/~aminet/dirs/dev_debug.html
mailto:mikepery@fscked.org
http://fscked.org/proj/njamd.shtml/
mailto:info@centerline.com
http://www.centerline.com/
mailto:info@optimizeit.com
http://www.optimizeit.com/
mailto:omalley@ics.uci.edu


Appendix K: Related software 229

Location http://www.ics.uci.edu/~softtest/plumber.html

Overview A tool that replaces the normal Ada and C/C++ dynamic memory allocation
functions and detects unfreed memory blocks.

• Purify

Author Rational Software (info@rational.com)

License Commercial Software

Platforms Various UNIX, Windows

Location http://www.rational.com/

Overview Uses Object Code Insertion technology to provide run-time error checking and
memory leak detection.

• QC

Author Onyx Technology (sales@onyx-tech.com)

License Commercial Software

Platforms MacOS

Location http://www.onyx-tech.com/

Overview Runs in the background as a control panel and detects various memory errors
which can then be caught and run under a debugger.

• SBase

Author Ben Lilburne (blilburn@cit.nepean.uws.edu.au)

License Free Software

Platforms Various UNIX, Windows

Location http://www.cit.uws.edu.au/~blilburn/sbase/

Overview A set of classes for debugging dynamic memory problems in Objective C.

• SCID

Author Richard Mills (rich@xerp.freeserve.co.uk)

License GNU General Public License

Platforms Various UNIX

Location http:///www.xerp.demon.co.uk/

Overview A program that tries to help locate bugs caused by the reading and writing of
invalid pointers in C code by source code insertion.

• SmartAlloc

Author John Walker

License Free Software

Platforms Various UNIX, MS-DOS

Location http://www.fourmilab.ch/smartall/

Overview Detects orphaned buffers of dynamic memory allocations and also helps to find
other common problems in management of dynamic storage.

http://www.ics.uci.edu/~softtest/plumber.html
mailto:info@rational.com
http://www.rational.com/
mailto:sales@onyx-tech.com
http://www.onyx-tech.com/
mailto:blilburn@cit.nepean.uws.edu.au
http://www.cit.uws.edu.au/~blilburn/sbase/
mailto:rich@xerp.freeserve.co.uk
http:///www.xerp.demon.co.uk/
http://www.fourmilab.ch/smartall/


230 mpatrol

• SmartHeap

Author MicroQuill (info@microquill.com)

License Commercial Software

Platforms Various UNIX, Windows, OS/2, MS-DOS, MacOS

Location http://www.microquill.com/

Overview Provides optimised heap performance along with detecting memory leaks, mem-
ory overwrites, double-freeing, wild pointers, invalid parameters, etc.

• Spotlight

Author Onyx Technology (sales@onyx-tech.com)

License Commercial Software

Platforms MacOS

Location http://www.onyx-tech.com/

Overview Performs memory protection on PowerPC executables and helps detect memory
leaks.

• StackTrace

Author Bjorn Reese (breese@mail1.stofanet.dk)

License Free Software

Platforms Various UNIX

Location http://home1.stofanet.dk/breese/debug/debug.tar.gz

Overview Provides code to generate a stack trace of the program at any point during
execution using either a debugger or built-in methods found in the GNU C
compiler or on some systems.

• TestCenter

Author CenterLine Development Systems (info@centerline.com)

License Commercial Software

Platforms Various UNIX

Location http://www.centerline.com/

Overview Detects memory leaks, duplicate frees and illegal access errors including loads
from uninitialised objects.

• Third Degree

Author Digital Equipment Corporation (info@digital.com)

License Commercial Software

Platforms Digital UNIX

Location http://www.digital.com/

Overview A tool that performs memory access checks and memory leak detection of C,
C++ and Fortran programs at run-time. Applications are modified using ATOM
to determine if any memory locations are accessed when not properly allocated
or initialised.

mailto:info@microquill.com
http://www.microquill.com/
mailto:sales@onyx-tech.com
http://www.onyx-tech.com/
mailto:breese@mail1.stofanet.dk
http://home1.stofanet.dk/breese/debug/debug.tar.gz
mailto:info@centerline.com
http://www.centerline.com/
mailto:info@digital.com
http://www.digital.com/


Appendix K: Related software 231

• Vmalloc

Author Kiem-Phong Vo (kpv@research.att.com)

License AT&T Source Code License

Platforms Various UNIX, Windows

Location http://akpublic.research.att.com/sw/tools/vmalloc/

Overview A discipline and method library for dynamic memory allocation, with support
for regions, debugging and profiling.

• Wipeout

Author Olaf Barthel (olsen@sourcery.han.de)

License Free Software

Platforms AmigaOS

Location http://wuarchive.wustl.edu/~aminet/dirs/dev_debug.html

Overview Runs in the background checking free memory for corruption.

• YaMa

Author Venkatesha Murthy G. (gvmt@vsnl.com)

License Free Software

Platforms Linux

Location http://www.geocities.com/ipsgvm/libyama/

Overview A memory allocator with leak tracing and some anti-heap corruption facilities.

• YAMD (Yet Another Malloc Debugger)

Author Nate Eldredge (neldredge@hmc.edu)

License GNU General Public License

Platforms Linux, MS-DOS

Location http://www3.hmc.edu/~neldredge/yamd/

Overview A tool for finding bugs related to dynamic memory allocation in C and C++,
and includes paging mechanisms to catch bugs immediately.

• ZeroFault

Author The Kernel Group (info@zerofault.com)

License Commercial Software

Platforms AIX UNIX

Location http://www.zerofault.com/

Overview Uses run-time emulator technology to provide run-time error checking and mem-
ory leak detection.

However, before you try out any of the above software, there may already be a malloc library
with debugging support on your system that might be suitable for solving your problem. For
example, on Solaris the following libraries are available:

malloc(3c) Trade-off between performance and efficiency.

mailto:kpv@research.att.com
http://akpublic.research.att.com/sw/tools/vmalloc/
mailto:olsen@sourcery.han.de
http://wuarchive.wustl.edu/~aminet/dirs/dev_debug.html
mailto:gvmt@vsnl.com
http://www.geocities.com/ipsgvm/libyama/
mailto:neldredge@hmc.edu
http://www3.hmc.edu/~neldredge/yamd/
mailto:info@zerofault.com
http://www.zerofault.com/


232 mpatrol

malloc(3x)
Slower performance, space-efficient.

bsdmalloc(3x)
Better performance, space-inefficient.

mtmalloc(3t)
Thread-safe memory allocator.

mapmalloc(3x)
Uses mmap() instead of sbrk() to allocate heap space.

watchmalloc(3x)
Uses watch point areas to check for overflows.

On platforms with the GNU C library, such as Linux, there are several environment vari-
ables that can be used to enable various debugging features of malloc(), etc. There are also
extra functions provided in the library which can be used to aid in debugging, and some shell
scripts which can translate return addresses or locate unfreed memory allocations in the log files
produced. Useful information on the debugging features available within the GNU C library is
located at http://sdb.suse.de/sdb/en/html/aj_debug.html.

If you suspect that the debugging problem you are looking at is likely to be related to UNIX
system calls then some systems come with the strace or truss commands which allow you
to trace all of the system calls that a program makes when running. This can sometimes be
invaluable in pinpointing the exact point at which a program fails, but as it only operates at
the system call level, no information about individual memory allocations is available.

On Windows 2000 (and probably later releases of the operating system as well) there is a
utility called pageheap which acts in a similar way to the mpatrol command in that it overrides
the definitions of malloc() and related functions for any programs that it runs. It has a similar
behaviour to the ‘--page-alloc-upper’ option but has far less features. However, it could be
very useful if you can’t get mpatrol to work for you.

http://sdb.suse.de/sdb/en/html/aj_debug.html


Appendix L: References 233

Appendix L References

This section contains references to interesting papers and resources on related topics and the
field of memory management in general. The vast majority of theoretical information can be
found at the Memory Management Reference, although this does tend to concentrate on garbage
collection. The other references take a more practical approach to memory management and in
some cases provide implementation details. Let me know if you’d like to see any other references
or resources added to this list.
• Avoiding Motif Memory Leaks

Author Kenton Lee (kenton@rahul.net)

Location http://www.rahul.net/kenton/txa/mar96.html

Overview An article on avoiding memory leaks in Motif applications.
• C++ FAQ Lite: Freestore Management

Author Marshall Cline (cline@parashift.com)

Location http://www.parashift.com/c++-faq-lite/freestore-mgmt.html

Overview Everything you ever wanted to know about C++ memory management.
• Debugging Memory On Linux

Author Petr Sorfa (editor@ssc.com)

Location http://www.linuxjournal.com/article.php?sid=4681

Overview An article detailing the tools available to debug memory problems on Linux.
• Effective C++ Memory Allocation

Author Aaron Dailey (adailey@chaparraltec.com)

Location http://www.embedded.com/1999/9901/9901feat2.htm

Overview Documents techniques for better use of the C++ dynamic memory allocation
operators.

• How To Debug Memory Leaks

Author The Mozilla Organization (webmaster@mozilla.org)

Location http://www.lxr.mozilla.org/mozilla/source/xpcom/doc/MemoryTools.html

Overview A list of memory analysis tools that the Mozilla team have developed in order
to quickly spot and fix memory leaks.

• Just Say No To Memory Leaks

Author Steve Litt (slitt@troubleshooters.com)

Location http://www.troubleshooters.com/codecorn/memleak.htm

Overview An article discussing memory leaks and how to avoid them.
• A Memory Allocator

Author Doug Lea (dl@gee.cs.oswego.edu)

Location http://gee.cs.oswego.edu/dl/html/malloc.html

Overview Information on general memory allocation principles.

• The Memory Management Reference

Author XANALYS Software Tools (mm-web@xanalys.com)

mailto:kenton@rahul.net
http://www.rahul.net/kenton/txa/mar96.html
mailto:cline@parashift.com
http://www.parashift.com/c++-faq-lite/freestore-mgmt.html
mailto:editor@ssc.com
http://www.linuxjournal.com/article.php?sid=4681
mailto:adailey@chaparraltec.com
http://www.embedded.com/1999/9901/9901feat2.htm
mailto:webmaster@mozilla.org
http://www.lxr.mozilla.org/mozilla/source/xpcom/doc/MemoryTools.html
mailto:slitt@troubleshooters.com
http://www.troubleshooters.com/codecorn/memleak.htm
mailto:dl@gee.cs.oswego.edu
http://gee.cs.oswego.edu/dl/html/malloc.html
mailto:mm-web@xanalys.com


234 mpatrol

Location http://www.xanalys.com/software_tools/mm/

Overview Links to many documents and research papers in the field of memory manage-
ment, and has a large glossary which lists and explains related terms.

• My Rant on C++’s operator new

Author David Mazieres (dm@cs.nyu.edu)

Location http://www.pdos.lcs.mit.edu/~dm/c++-new.html

Overview Provides a scathing critique on the C++ dynamic memory allocation operators.

• The Virtual Memory Tutorial

Author The Hyperlearning Center (webmaster@cne.gmu.edu)

Location http://www.cne.gmu.edu/modules/vm/

Overview Provides a comprehensive tutorial on virtual memory, as well as detailing its
history, theory and implementation.

• X Window System Memory Leaks and Other Memory Bugs

Author Kenton Lee (kenton@rahul.net)

Location http://www.rahul.net/kenton/txa/feb96.html

Overview An article on debugging memory problems in X applications.

http://www.xanalys.com/software_tools/mm/
mailto:dm@cs.nyu.edu
http://www.pdos.lcs.mit.edu/~dm/c++-new.html
mailto:webmaster@cne.gmu.edu
http://www.cne.gmu.edu/modules/vm/
mailto:kenton@rahul.net
http://www.rahul.net/kenton/txa/feb96.html


Appendix M: About the author 235

Appendix M About the author

I live in Edinburgh (the capital city of Scotland) and work for an American company called
Analog Devices which designs and manufactures digital and analogue electronic equipment, as
well as Digital Signal Processors (DSPs). The company I used to work for was called Edinburgh
Portable Compilers, a small Edinburgh-based company which designed, wrote and sold compilers
for various programming languages and operating systems (mainly UNIX variants). A few years
ago it became a wholly-owned subsidiary of Analog Devices and our focus was shifted to write
C and C++ compilers for the various ADI DSPs.

I started working at EPC immediately after obtaining my honours degree in Computer Science
at Edinburgh University. My interests lie in operating systems and programming tools so this
was an ideal working environment for me to apply my knowledge and learn more about the bits
and pieces that most programmers and computer users know little or nothing about.

Writing compilers is a complex business that most people take for granted. The popular
view is that once you have a lexer and a parser for a particular programming language then you
are 90% of the way to having a compiler. However, modern compilers are required to perform
more and more aggressive optimisations on user code, all of which require complex algorithms,
and most of which are applied at the code-generator level. Add accurate debugging information
generation, C++ exceptions and templates, inline assembler support and an efficient run-time
library and you begin to see why writing and maintaining a compiler is not a solo effort!

I originally wrote the mpatrol library in my spare time with the intention of selling it to
EPC as a comprehensive memory debugging solution for integration with their UNIX compilers.
Unfortunately, EPC was taken over by ADI before it was finished and ADI had no use for such
a library in their DSP toolchain. However, I still feel that it was worth the effort (not least
because of all the knowledge of other operating systems that I gained whilst writing it), and I
hope you do too!



236 mpatrol



Appendix N: Copying 237

Appendix N Copying

GNU LIBRARY GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is
numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Library General Public License, applies to some
specially designated Free Software Foundation software, and to any
other libraries whose authors decide to use it. You can use it for
your libraries, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if
you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link a program with the library, you must provide
complete object files to the recipients so that they can relink them
with the library, after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright
the library, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain
that everyone understands that there is no warranty for this free
library. If the library is modified by someone else and passed on, we



238 mpatrol

want its recipients to know that what they have is not the original
version, so that any problems introduced by others will not reflect on
the original authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that companies distributing free
software will individually obtain patent licenses, thus in effect
transforming the program into proprietary software. To prevent this,
we have made it clear that any patent must be licensed for everyone’s
free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary
GNU General Public License, which was designed for utility programs. This
license, the GNU Library General Public License, applies to certain
designated libraries. This license is quite different from the ordinary
one; be sure to read it in full, and don’t assume that anything in it is
the same as in the ordinary license.

The reason we have a separate public license for some libraries is that
they blur the distinction we usually make between modifying or adding to a
program and simply using it. Linking a program with a library, without
changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in
a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License
treats it as such.

Because of this blurred distinction, using the ordinary General
Public License for libraries did not effectively promote software
sharing, because most developers did not use the libraries. We
concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the
users of those programs of all benefit from the free status of the
libraries themselves. This Library General Public License is intended to
permit developers of non-free programs to use free libraries, while
preserving your freedom as a user of such programs to change the free
libraries that are incorporated in them. (We have not seen how to achieve
this as regards changes in header files, but we have achieved it as regards
changes in the actual functions of the Library.) The hope is that this
will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, while the latter only
works together with the library.

Note that it is possible for a library to be covered by the ordinary
General Public License rather than by this special one.



Appendix N: Copying 239

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which
contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Library
General Public License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:



240 mpatrol

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify



Appendix N: Copying 241

that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.



242 mpatrol

Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer’s own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.



Appendix N: Copying 243

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not



244 mpatrol

excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Library General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is



Appendix N: Copying 245

copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.



246 mpatrol

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That’s all there is to it!



Function index 247

Function index

__mp_addallocentry . . . . . . . . . . . . . . . . . . . . . . . . . . 148

__mp_addfreeentry . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

__mp_atexit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

__mp_check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

__mp_clearleaktable . . . . . . . . . . . . . . . . . . . . . . . . . 148

__mp_cmpcontents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

__mp_edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

__mp_epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

__mp_function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

__mp_getoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

__mp_info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

__mp_iterate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

__mp_iterateall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

__mp_leaktable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

__mp_libversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

__mp_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

__mp_locprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

__mp_logaddr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

__mp_logmemory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

__mp_logstack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

__mp_memorymap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

__mp_nomemory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

__mp_printf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

__mp_printinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

__mp_prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

__mp_readcontents . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

__mp_remcontents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

__mp_setmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

__mp_setoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

__mp_setuser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

__mp_snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

__mp_startleaktable . . . . . . . . . . . . . . . . . . . . . . . . . 148

__mp_stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

__mp_stopleaktable . . . . . . . . . . . . . . . . . . . . . . . . . . 149

__mp_strerror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

__mp_summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

__mp_symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

__mp_syminfo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

__mp_view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

__mp_vlocprintf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

__mp_vprintf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

__mp_writecontents . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A
alloca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B
bcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

bcopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

bzero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

C
calloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

cfree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

D
dealloca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

E
expand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

F
free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

M
malloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

memalign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

memccpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

memchr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

memcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

memcpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

memmem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

memmove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

memset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

MP_CALLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

MP_FAILURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

MP_FREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

MP_MALLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

MP_REALLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

MP_STRDUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

O
operator delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

operator delete[]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

operator new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

operator new[] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

P
pvalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

R
realloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

reallocf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

recalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



248 mpatrol

S

set_new_handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

strdup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

strdupa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

strndup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

strndupa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

strnsave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

strsave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

V
valloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

X
xcalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
xfree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
xmalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
xrealloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
xstrdup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



Index 249

Index

-
–addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
–alloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
–alloc-byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
–alloc-stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
–allow-oflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
–auto-save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
–base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
–call-graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
–check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
–check-all. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
–check-allocs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
–check-fork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–check-frees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–check-memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–check-reallocs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
–def-align. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
–dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
–fail-freq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–fail-seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
–free-byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–free-stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–graph-file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
–gui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
–hatf-file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
–height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
–help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–ignore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
–internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
–large-bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–leak-table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
–limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
–log-all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
–log-allocs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–log-file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–log-frees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–log-memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–log-reallocs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
–max-stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
–maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
–medium-bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
–no-free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–no-protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–oflow-byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–oflow-size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

–oflow-watch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–page-alloc-lower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–page-alloc-upper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–preserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–prof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
–prof-file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–prog-file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–read-env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–realloc-stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–safe-signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–show-all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–show-env . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–show-free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–show-freed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–show-map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–show-symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–show-unfreed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–sim-file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
–skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
–small-bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
–source-dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
–space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
–stack-depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
–threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
–trace-file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
–unalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
–unfreed-abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
–use-debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
–use-mmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
–verbose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
–version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
–view-height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
–view-width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
–width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

.

.cshrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

.cvsignore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

.gdbinit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

.profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

mp errno. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
mp fini functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
mp init functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

RLD LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3
32-bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204



250 mpatrol

6
64-bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

A
a.out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

ABI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

adding mpatrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

address space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

address, physical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

address, virtual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ADI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

AIX, IBM RS/6000 . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

all (make target) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

alloca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

allocated blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

allocation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

allocation bin table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

allocation bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

allocation boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

allocation byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

allocation index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

allocation information . . . . . . . . . . . . . . . . . . . . . . . . . 147

allocation type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ALLOCBYTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

ALLOCSTOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

ALLOVF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

ALLOWOFLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

ALLZER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

AM WITH MPATROL . . . . . . . . . . . . . . . . . . . . . . . . . 16

amalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Amiga 4000/040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Amiga notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

AmigaOS, Motorola 680x0 . . . . . . . . . . . . . . . . . . . . . 183

Aminet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Analog Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

ANSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

application binary interface . . . . . . . . . . . . . . . . . . . . . 22

AProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

APurify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

AR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

archive library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

arenas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

assembler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ATOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

author, contacting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

author, details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

autoconf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

automake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

AutomatedQA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

AUTOSAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B
backwards compatibility . . . . . . . . . . . . . . . . . . . . . . . 207
BADALN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
base address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
bash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
BASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
batch testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
best fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
BFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
binary file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
bit bucket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
BoundsChecker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
breakpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
bsdmalloc(3x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
buffers, overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
bug reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
building questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
building the library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
bus errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
bytes compared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
bytes copied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
bytes located . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
bytes set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

C
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
C++ Debugging Support Library (libcwd) . . . . . . . 214
C++ mangled names . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
call sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
call stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
call-by-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
callback functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
calling convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Ccmalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
CenterLine Development Systems . . . . . . . . . . . . . . 228
CFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
ChangeLog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Chaperon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
CHECK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
CHECKALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
CHECKALLOCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
CHECKFORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
CHECKFREES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
CHECKMEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
CHECKREALLOCS . . . . . . . . . . . . . . . . . . . . . . . . . . 154
CHECKSUMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
children . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
CISC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
clean (make target) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



Index 251

cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
clobber (make target) . . . . . . . . . . . . . . . . . . . . . . . . . . 13
CMEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
CMM (Customisable Memory Manager) . . . . . . . . 215
COFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
command line options . . . . . . . . . . . . . . . . . . . . . . . . . 161
command pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Commodore-Amiga, Inc. . . . . . . . . . . . . . . . . . . . . . . . 228
common variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
condenseleaklog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
configure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
contacting the author . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
context listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
core file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
corruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
crash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
csh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
CSRI malloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
CVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

D
data sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Dbmalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Debauch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Debian package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Debug Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
debugging information . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DebugObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
decimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
declarations, tentative . . . . . . . . . . . . . . . . . . . . . . . . . . 19
DEFALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Dell Inspiron 7500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
demangler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
DG/UX, Intel 80x86 . . . . . . . . . . . . . . . . . . . . . . . . . . 179
DG/UX, Motorola 88xx0 . . . . . . . . . . . . . . . . . . . . . . 179
diagnostic messages . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Digital Equipment Corporation . . . . . . . . . . . . . . . . 230
direct allocation table . . . . . . . . . . . . . . . . . . . . . . . . . . 63
direct allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
distclean (make target) . . . . . . . . . . . . . . . . . . . . . . . . . 13
DLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Dmalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DocBook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
documentation formats . . . . . . . . . . . . . . . . . . . . . . . . 203
documentation questions. . . . . . . . . . . . . . . . . . . . . . . 203
dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
dotty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
DPCRTLMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
DRS/NX, SPARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

dumping memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
duplicate symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
DVI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
DWARF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
dynamic link libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 24
dynamic linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
dynamic linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
dynamic memory allocations . . . . . . . . . . . . . . . . . . . . 20
DYNIX/ptx, Intel 80x86 . . . . . . . . . . . . . . . . . . . . . . . 180
DYNLINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

E
Edinburgh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Edinburgh Portable Compilers . . . . . . . . . . . . . . . . . 235
EDIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
EDITOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Electric Fence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Electric Software, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . 218
ELF32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
ELF64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
elvis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
embedded libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
embedded systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
endianness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Enforcer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
entry-point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
ENVIRON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
EPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
epilogue function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
error abbreviation code . . . . . . . . . . . . . . . . . . . . . . . . 100
error severity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
errors, run-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
exec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
executable files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
extern inline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
extra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

F
FAILFREQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
FAILSEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
failure frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
failure seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
fatal errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
fault, page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
FDA (Free Debug Allocator) . . . . . . . . . . . . . . . . . . . 217
features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
fence posts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



252 mpatrol

file formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
file scope variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
files questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
files, mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
first fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
fitting allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
fork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
forked processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
format string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Fortify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
FORTRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
frame pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
FRDCOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
FRDOPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
FRDOVF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
FRECOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
free blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
free byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
free memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
FreeBSD, Intel 80x86 . . . . . . . . . . . . . . . . . . . . . . . . . . 180
FREEBYTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
freed blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
freed memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
freed queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
FREESTOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
FREMRK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
FRENUL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
FREOPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
frequently asked questions . . . . . . . . . . . . . . . . . . . . . 203
FreshMeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
function call stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
functions, callback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
functions, handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
future enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . 193

G
g++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Gabe’s Debug Library . . . . . . . . . . . . . . . . . . . . . . . . . 218
garbage collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
GC (Garbage Collector) . . . . . . . . . . . . . . . . . . . . . . . 218
GCAlloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
gcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
gdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
general errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Geodesic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
getting updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
GlowCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
GMemLogger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
GNU C library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
gprof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
graph specification file . . . . . . . . . . . . . . . . . . . . . . . . . . 59
graphical user interface . . . . . . . . . . . . . . . . . . . . . . . . . 74
GraphViz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Great Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Green Hills Software, Inc. . . . . . . . . . . . . . . . . . . . . . . 227

GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

GUISUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

H
halting the library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

handler functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

hash table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

HATF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

HAVE MPALLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

HAVE MPATROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Heap Allocation Trace Format . . . . . . . . . . . . . . . . . . 73

heap corruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

heap usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

HeapAgent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

HeapCheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

heapdiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

HeapManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

HELP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

hexadecimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

hexwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

hexwords command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

hidden memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

HP/UX, HP PA/RISC . . . . . . . . . . . . . . . . . . . . . . . . 180

Hyperlearning Center. . . . . . . . . . . . . . . . . . . . . . . . . . 234

I
IBM Corporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

IDH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

illegal memory accesses . . . . . . . . . . . . . . . . . . . . . . . . 108

ILLMEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 93

improving performance . . . . . . . . . . . . . . . . . . . . . . . . . 89

INCOMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

INFOPATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

information about an allocation . . . . . . . . . . . . . . . . 147

inline functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Insure++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

internal blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Intuitive Systems, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . 228

Inuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

IRIX, MIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

J
JMalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

JProbe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220



Index 253

K
Kernel Group, The . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
KL Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
known bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
ksh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

L
LARGEBOUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
LaTEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
LD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
LD LIBRARY PATH . . . . . . . . . . . . . . . . . . . . . . . . . . 207
LD PRELOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
LD RUN PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
ldconfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Leak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
leak table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
LeakBug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Leakers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
LEAKTABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
LeakTracer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Leaky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
LessTif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
LhA archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
LibKmalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
library behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
library functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
library settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
library statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
library, archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
library, building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
library, mpatrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
library, shared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
library, thread-safe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
LibSafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
libtool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
LIMIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
limiting available memory. . . . . . . . . . . . . . . . . . . . . . . 36
line number table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
linking questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
links, symbolic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
lint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
lint (make target) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Linux Software Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Linux, Intel 80x86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Linux, Motorola 680x0 . . . . . . . . . . . . . . . . . . . . . . . . 181
list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
local static variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
log file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
LOGALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
LOGALLOCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
LOGDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

LOGFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
LOGFREES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
LOGMEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
LOGREALLOCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
low memory handler function . . . . . . . . . . . . . . . . . . 102
LSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
LynxOS, Intel 80x86 . . . . . . . . . . . . . . . . . . . . . . . . . . 181
LynxOS, PowerPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

M
magic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
make . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Malloc Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Malloc Debug Library . . . . . . . . . . . . . . . . . . . . . . . . . 222
malloc libraries for Solaris . . . . . . . . . . . . . . . . . . . . . 231
malloc(3c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
malloc(3x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Malloc Dbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
MallocTrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
mallopt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
MalTrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
mangled names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
MANPATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
MANROFFSEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
manual layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
manual pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
map of memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
mapmalloc(3x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
mapping files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Mark Malloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
marked blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
MAXALN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
MCheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
md5sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
MEDIUMBOUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
MEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
MemCheck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
MemDebug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
MemLeak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Memory Advisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
memory allocation profiling . . . . . . . . . . . . . . . . . . . . . 59
memory allocation tracing . . . . . . . . . . . . . . . . . . . . . . 73
memory allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
memory allocations, dynamic . . . . . . . . . . . . . . . . . . . 20
memory allocations, stack . . . . . . . . . . . . . . . . . . . . . . . 19
memory allocations, static . . . . . . . . . . . . . . . . . . . . . . 19
memory blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
memory debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
memory dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
memory leak table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
memory leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
memory management interface . . . . . . . . . . . . . . . . . . 21
Memory Management Reference . . . . . . . . . . . . . . . . 233
memory management unit . . . . . . . . . . . . . . . . . . . . . . 21
memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



254 mpatrol

memory mapped files . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
memory protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Memory Sleuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
memory, physical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
memory, virtual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Memprof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Memproof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
MemTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
MemTrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
MemWatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
message passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
mgauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MicroQuill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Microsoft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
misaligned data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
misaligned memory accesses . . . . . . . . . . . . . . . . . . . . . 22
MISMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
mkfifo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
mknod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
mleak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
mleak command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
MM (Shared Memory Library) . . . . . . . . . . . . . . . . . 226
Mmalloc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
mmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
MMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Motif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Mozilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
MP ALIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
MP BUILTINSTACK SUPPORT . . . . . . . . . . . . . . . 23
MP DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
MP GUI SUPPORT . . . . . . . . . . . . . . . . . . . . . . . . . . 206
MP INLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
MP LIBRARYSTACK SUPPORT . . . . . . . . . . . . . . . 23
MP NEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
MP NEW NOTHROW . . . . . . . . . . . . . . . . . . . . . . . . 143
MP NOCPLUSPLUS . . . . . . . . . . . . . . . . . . . . . . . . . . 143
MP NONEWDELETE . . . . . . . . . . . . . . . . . . . . . . . . 143
MP USE ATEXIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
mpatrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
mpatrol command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
mpatrol features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
mpatrol library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
mpatrol.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
mpatrol.log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
mpatrol.out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
mpatrol.trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
MPATROL OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . 153
MPATROL SOURCEPATH. . . . . . . . . . . . . . . . . . . . . 56
MPATROL VERSION . . . . . . . . . . . . . . . . . . . . . . . . 137
mpdebug.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
mpedit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
mpedit command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
MPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
mprof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Mprof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

mprof command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
mpsym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
mpsym command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
mptrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
mptrace command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
MSS (Memory Supervision System) . . . . . . . . . . . . 227
mtmalloc(3t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
mtrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
MuForce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
MuGuardianAngel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
MuLib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
MULTI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
multi-processor systems . . . . . . . . . . . . . . . . . . . . . . . . . 24
Mungwall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
mupdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
mutexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

N
nano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
NDEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Netware notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
NEWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
NJAMD (Not Just Another Malloc Debugger). . . 228
NOFREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
non-static local variables . . . . . . . . . . . . . . . . . . . . . . . . 19
NOPROTECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
NOTALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
notes for all platforms . . . . . . . . . . . . . . . . . . . . . . . . . 193
notes for Amiga platforms . . . . . . . . . . . . . . . . . . . . . 199
notes for Netware platforms . . . . . . . . . . . . . . . . . . . . 200
notes for UNIX platforms . . . . . . . . . . . . . . . . . . . . . . 198
notes for Windows platforms . . . . . . . . . . . . . . . . . . . 200
NULOPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
NuMega Corporation . . . . . . . . . . . . . . . . . . . . . . . . . . 214

O
object files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ObjectCenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
OC Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
octal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
OFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
OFLOWBYTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
OFLOWSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
OFLOWWATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Onyx Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
operating systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Optimizeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
option summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
original implementation. . . . . . . . . . . . . . . . . . . . . . . . . 93
other programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
OUTMEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
overflow buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
overflow byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



Index 255

overflow size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

overwrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

P
page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

page fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

page size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

PAGEALLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

pageheap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

parallel programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

parameter variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Parasoft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

parents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Pascal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

PE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

peak memory usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

performance bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . 90

performance improvements . . . . . . . . . . . . . . . . . . . . . . 89

performance times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

physical address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

physical memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

pico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

PKG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

platform-independent notes . . . . . . . . . . . . . . . . . . . . 193

platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

PLATINUM Technology . . . . . . . . . . . . . . . . . . . . . . . 224

Plumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

porting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

POSIX threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

postscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

prelinker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

PRESERVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

preserve freed contents . . . . . . . . . . . . . . . . . . . . . . . . . 30

prevent freeing memory . . . . . . . . . . . . . . . . . . . . . . . . . 30

printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

process id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

PROF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

profdiff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

PROFDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

PROFFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

profiling file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

PROGFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

program counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

prologue function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

PRVFRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Purify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Q
QC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
quick reference card . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

R
random failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Rational Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
re-entrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
read protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
REALLOCSTOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
recompilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
recoverable errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Red Hat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
reference card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
related software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
release builds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
removing mpatrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
reporting bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
return address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
RISC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
RNGOVF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
RNGOVL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
RPM package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
RSZNUL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
RSZZER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
run-time errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
running questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

S
SAFESIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
SBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
sbrk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
SCID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Scotland. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
SD/UX package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Sentinel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
severity of errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
SFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
shared libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
shared library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
shared memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
SHOWALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
SHOWFREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
SHOWFREED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
SHOWMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
SHOWSYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
SHOWUNFREED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
signal handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



256 mpatrol

signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
similar programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
simulation, trace-driven . . . . . . . . . . . . . . . . . . . . . . . . . . 9
single-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
SINIX, MIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
slot tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
SMALLBOUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
SmartAlloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
SmartHeap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Solaris malloc libraries . . . . . . . . . . . . . . . . . . . . . . . . 231
Solaris, Intel 80x86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Solaris, SPARC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
source code documentation . . . . . . . . . . . . . . . . . . . . . 14
SourceForge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Spotlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
stack memory allocations . . . . . . . . . . . . . . . . . . . . . . . 19
stack tracebacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
stack unwinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
StackTrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
static inline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
static memory allocations . . . . . . . . . . . . . . . . . . . . . . . 19
statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
strace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Stratosware Corporation . . . . . . . . . . . . . . . . . . . . . . . 223
stress testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
stripped executable file . . . . . . . . . . . . . . . . . . . . . . . . . 28
STROVF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
summary of options . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
supported systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
SuSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
SVR4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
swap file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
swap in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
swap out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
symbol summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
symbol tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
symbolic links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
system page size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
systems, embedded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

T
TAR archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
TARGET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
tcsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
tentative declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
test suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
TestCenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
TEXinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
text editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
TFLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Third Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

thrashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

thread-safe library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

threads library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

TRACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

trace-driven simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

tracebacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

TRACEDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

TRACEFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

tracing file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

tree structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Tru64, Alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

TurboPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

type of allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

U
undefined symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

underwrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

unfreed allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

UNFREEDABORT . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

UNIX notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

UnixWare, Intel 80x86 . . . . . . . . . . . . . . . . . . . . . . . . . 183

updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

USEDEBUG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

USEMMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

using mpatrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

using with a debugger . . . . . . . . . . . . . . . . . . . . . . . . . . 32

utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

V
variable length arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 20

variables, file scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

variables, local static . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

variables, non-static local . . . . . . . . . . . . . . . . . . . . . . . 19

variables, parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

VAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

vi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

virtual address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

virtual memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Virtual Memory Tutorial . . . . . . . . . . . . . . . . . . . . . . 234

Vmalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230



Index 257

W
warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
watch points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
watchmalloc(3x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Windows notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Windows symbols setup . . . . . . . . . . . . . . . . . . . . . . . 206
Windows, Intel 80x86 . . . . . . . . . . . . . . . . . . . . . . . . . 184
WinSite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Wipeout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

X
X Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

XANALYS Software Tools . . . . . . . . . . . . . . . . . . . . . 233
XCOFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
xemacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
xmem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Y
YaMa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
YAMD (Yet Another Malloc Debugger) . . . . . . . . . 231

Z
ZERALN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
ZeroFault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
ZIP archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



258 mpatrol


	mpatrol
	Foreword
	Overview
	Features
	Installation
	Integration
	Adding mpatrol
	Removing mpatrol

	Memory allocations
	Static memory allocations
	Stack memory allocations
	Dynamic memory allocations

	Operating system support
	Virtual memory
	Call stacks and symbol tables
	Threads

	Using mpatrol
	Library behaviour
	Logging and tracing
	General errors
	Overwrites and underwrites
	Using with a debugger
	Testing
	Library functions
	Leak table

	Tools
	Dbmalloc-compatible functions
	Dmalloc-compatible functions
	Determining heap differences
	Memory allocation gauge
	Memory allocation tracing

	Utilities
	The mpatrol command
	The mleak command
	The mpsym command
	The mpedit command
	The hexwords command

	Profiling
	Tracing
	Heap corruption
	Memory leaks
	Improving performance
	How it works
	Examples
	Getting started
	Detecting incorrect reuse of freed memory
	Detecting use of free memory
	Using overflow buffers
	Checking memory accesses
	Bad memory operations
	Incompatible function calls
	The alloca() functions
	The MP_MALLOC() functions
	Additional useful information

	Tutorial
	Functions
	C dynamic memory allocation functions
	C dynamic memory extension functions
	C dynamic memory alternative functions
	C{@char 43}{@char 43} dynamic memory allocation functions
	C memory operation functions
	mpatrol library functions
	Environment
	Options
	Diagnostic messages
	Library performance
	File formats
	Profiling file format
	Tracing file format
	Supported systems
	Porting
	Notes
	Notes for all platforms
	Notes for UNIX platforms
	Notes for Amiga platforms
	Notes for Windows platforms
	Notes for Netware platforms
	Frequently asked questions
	Documentation
	Building
	Linking
	Running
	Files
	Related software
	References
	About the author
	Copying
	Function index
	Index

