File: field-smob.c

package info (click to toggle)
mpb 1.7.0-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 3,532 kB
  • sloc: ansic: 13,158; makefile: 210; lisp: 44; sh: 4
file content (631 lines) | stat: -rw-r--r-- 17,727 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/* Copyright (C) 1999-2014 Massachusetts Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <stdio.h>
#include <stdlib.h>

#include "config.h"

#include <check.h>
#include <mpiglue.h>
#include <mpi_utils.h>

#include "field-smob.h"

#include "mpb.h"

#ifndef HAVE_SCM_MAKE_SMOB_TYPE
/* null mark function, for smobs containing no SCM objects */
static SCM mark_null(SCM obj) { (void) obj; return SCM_BOOL_F; }
#endif

/*************************************************************************/

long scm_tc16_smob_field_smob = 0;

static SCM field_p(SCM obj)
{
     return ctl_convert_boolean_to_scm(FIELD_P(obj));
}

static SCM rscalar_field_p(SCM obj)
{
     return ctl_convert_boolean_to_scm(RSCALAR_FIELD_P(obj));
}

static SCM cscalar_field_p(SCM obj)
{
     return ctl_convert_boolean_to_scm(CSCALAR_FIELD_P(obj));
}

static SCM cvector_field_p(SCM obj)
{
     return ctl_convert_boolean_to_scm(CVECTOR_FIELD_P(obj));
}

static int print_field_smob(SCM obj, SCM port, scm_print_state *pstate)
{
     char buf[256];
     field_smob *pf = FIELD(obj);
     (void) pstate; /* unused argument */

     scm_puts("#<field ", port);
     sprintf(buf, "%dx%dx%d", pf->nx, pf->ny, pf->nz);
     scm_puts(buf, port);
     switch (pf->type) {
	 case RSCALAR_FIELD_SMOB:
	      scm_puts(" real scalar field", port);
	      break;
	 case CSCALAR_FIELD_SMOB:
	      scm_puts(" complex scalar field", port);
	      break;
	 case CVECTOR_FIELD_SMOB:
	      scm_puts(" complex vector field", port);
	      break;
     }
     if (pf->local_ny < pf->ny) {
	  sprintf(buf, ", y=%d-%d local",
		  pf->local_y_start, pf->local_y_start + pf->local_ny - 1);
	  scm_puts(buf, port);
     }
     scm_putc('>', port);
     return 1;
}

static size_t free_field_smob(SCM obj)
{
     field_smob *pf = FIELD(obj);
     free(pf->f.rs);
     free(pf);
     return 0;
}

#define mark_field_smob mark_null

SCM field2scm(field_smob *pf)
{
     SCM obj;
     NEWCELL_SMOB(obj, field_smob, pf);
     return obj;
}

/*************************************************************************/

void register_field_smobs(void)
{
#ifdef HAVE_SCM_MAKE_SMOB_TYPE
     scm_tc16_smob_field_smob = scm_make_smob_type("field", 0);
     scm_set_smob_free(scm_tc16_smob_field_smob, free_field_smob);
     scm_set_smob_print(scm_tc16_smob_field_smob, print_field_smob);
#else /* old way to register smobs */
     MAKE_SMOBFUNS(field_smob);
     REGISTER_SMOBFUNS(field_smob);
#endif

     gh_new_procedure("field?", field_p, 1, 0, 0);
     gh_new_procedure("rscalar-field?", rscalar_field_p, 1, 0, 0);
     gh_new_procedure("cscalar-field?", cscalar_field_p, 1, 0, 0);
     gh_new_procedure("cvector-field?", cvector_field_p, 1, 0, 0);
}

/*************************************************************************/

static field_smob curfield_smob;

field_smob *update_curfield_smob(void)
{
     CHECK(mdata, "init-params must be called before manipulating fields");
     curfield_smob.nx = mdata->nx;
     curfield_smob.ny = mdata->ny;
     curfield_smob.nz = mdata->nz;
     curfield_smob.N = mdata->fft_output_size;
     curfield_smob.local_ny = mdata->local_ny;
     curfield_smob.local_y_start = mdata->local_y_start;
     curfield_smob.last_dim = mdata->last_dim;
     curfield_smob.last_dim_size = mdata->last_dim_size;
     curfield_smob.other_dims = mdata->other_dims;
     curfield_smob.type_char = curfield_type;
     if (strchr("dhbecv", curfield_type)) { /* complex vector field */
	  curfield_smob.type = CVECTOR_FIELD_SMOB;
	  curfield_smob.f.cv = curfield;
     }
     else if (strchr("DHBnR", curfield_type)) { /* real scalar field */
	  curfield_smob.type = RSCALAR_FIELD_SMOB;
	  curfield_smob.f.rs = (real *) curfield;
     }
     else if (strchr("C", curfield_type)) { /* complex scalar field */
	  curfield_smob.type = CSCALAR_FIELD_SMOB;
	  curfield_smob.f.cs = curfield;
     }
     else {
	  curfield_smob.type = RSCALAR_FIELD_SMOB; /* arbitrary */
	  curfield_smob.f.rs = (real *) curfield;
	  if (!curfield_smob.f.rs)
	       curfield_smob.f.rs = (real *) mdata->fft_data;
	  return 0;
     }
     return &curfield_smob;
}

static void update_curfield(field_smob *pf)
{
     if (pf == &curfield_smob) {
	  curfield_type = curfield_smob.type_char;
	  curfield = curfield_smob.f.cv;
     }
}

boolean cur_fieldp(SCM obj)
{
     if (SCM_NIMP(obj) && SCM_SYMBOLP(obj)) {
	  char *s = ctl_symbol2newstr(obj);
	  int ret = !strcmp(s, "cur-field");
	  free(s);
	  return ret;
     }
     return 0;
}

/*************************************************************************/

field_smob *assert_field_smob(SCM fo)
{
     field_smob *f = SAFE_FIELD(fo);
     CHECK(f, "wrong type argument: expecting field");
     return f;
}

/*************************************************************************/

SCM rscalar_field_make(SCM f0)
{
     int i;
     field_smob *pf;
     field_smob *pf0 = assert_field_smob(f0);
     CHK_MALLOC(pf, field_smob, 1);
     *pf = *pf0;
     pf->type = RSCALAR_FIELD_SMOB;
     pf->type_char = 'R';
     CHK_MALLOC(pf->f.rs, real, pf->N);
     for (i = 0; i < pf->N; ++i)
	  pf->f.rs[i] = 0.0;
     scm_remember_upto_here_1(f0);
     return field2scm(pf);
}

SCM cscalar_field_make(SCM f0)
{
     int i;
     field_smob *pf;
     field_smob *pf0 = assert_field_smob(f0);
     CHK_MALLOC(pf, field_smob, 1);
     *pf = *pf0;
     pf->type = CSCALAR_FIELD_SMOB;
     pf->type_char = 'C';
     CHK_MALLOC(pf->f.cs, scalar_complex, pf->N);
     for (i = 0; i < pf->N; ++i)
	  CASSIGN_ZERO(pf->f.cs[i]);
     scm_remember_upto_here_1(f0);
     return field2scm(pf);
}

SCM cvector_field_make(SCM f0)
{
     int i;
     field_smob *pf;
     field_smob *pf0 = assert_field_smob(f0);
     CHECK(mdata, "init-params must be called before cvector-field-make");
     CHK_MALLOC(pf, field_smob, 1);
     *pf = *pf0;
     pf->type = CVECTOR_FIELD_SMOB;
     pf->type_char = 'c';
     CHK_MALLOC(pf->f.cv, scalar_complex, 3 * pf->N);
     for (i = 0; i < pf->N * 3; ++i)
	  CASSIGN_ZERO(pf->f.cv[i]);
     scm_remember_upto_here_1(f0);
     return field2scm(pf);
}

void cvector_field_nonblochB(SCM f)
{
     field_smob *pf = assert_field_smob(f);
     pf->type_char = 'v';
     update_curfield(pf);
     scm_remember_upto_here_1(f);
}

SCM field_make(SCM f0)
{
     field_smob *pf0 = assert_field_smob(f0);
     switch (pf0->type) {
	 case RSCALAR_FIELD_SMOB:
	      return rscalar_field_make(f0);
	 case CSCALAR_FIELD_SMOB:
	      return cscalar_field_make(f0);
	 case CVECTOR_FIELD_SMOB:
	      return cvector_field_make(f0);
     }
     scm_remember_upto_here_1(f0);
     return SCM_UNDEFINED;
}

static boolean fields_conform(field_smob *f1, field_smob *f2)
{
#define EQF(field) (f1->field == f2->field)
     return (EQF(nx) && EQF(ny) && EQF(nz) &&
	     EQF(N) && EQF(local_ny) && EQF(local_y_start) &&
	     EQF(last_dim) && EQF(last_dim_size) && EQF(other_dims));
#undef EQF
}

boolean fields_conformp(SCM f1o, SCM f2o)
{
     field_smob *f1 = assert_field_smob(f1o);
     field_smob *f2 = assert_field_smob(f2o);
     boolean ret = fields_conform(f1, f2);
     scm_remember_upto_here_2(f1o, f2o);
     return ret;
}

static void field_set(field_smob *fd, field_smob *fs)
{
     int i;

     CHECK(fd->type == fs->type && fields_conform(fd, fs),
	   "fields for field-set! must conform");
     switch (fs->type) {
         case RSCALAR_FIELD_SMOB:
	      CHECK(fs->type_char != '-', "must load field for field-set!");
	      for (i = 0; i < fs->N; ++i)
		   fd->f.rs[i] = fs->f.rs[i];
	      break;
         case CSCALAR_FIELD_SMOB:
	      CHECK(fs->type_char != '-', "must load field for field-set!");
	      for (i = 0; i < fs->N; ++i)
		   fd->f.cs[i] = fs->f.cs[i];
	      break;
         case CVECTOR_FIELD_SMOB:
	      CHECK(fs->type_char != '-', "must load field for field-set!");
	      for (i = 0; i < fs->N * 3; ++i)
		   fd->f.cv[i] = fs->f.cv[i];
	      break;
     }
     fd->type_char = fs->type_char;
     update_curfield(fd);
}

void field_setB(SCM dest, SCM src)
{
     field_smob *fd = assert_field_smob(dest);
     field_smob *fs = assert_field_smob(src);
     field_set(fd, fs);
     scm_remember_upto_here_2(dest, src);
}

void field_load(SCM src)
{
     field_smob *fs = assert_field_smob(src);
     CHECK(mdata, "init-params must be called before field-load");
     update_curfield_smob();
     CHECK(fields_conform(fs, &curfield_smob),
	   "argument for field-load must conform to current size");
     curfield_smob.type = fs->type;
     field_set(&curfield_smob, fs);
     scm_remember_upto_here_1(src);
}

void field_mapLB(SCM dest, function f, SCM_list src)
{
     field_smob *pd = assert_field_smob(dest);
     field_smob **ps;
     int i, j;
     CHK_MALLOC(ps, field_smob *, src.num_items);
     for (j = 0; j < src.num_items; ++j) {
	  ps[j] = assert_field_smob(src.items[j]);
	  CHECK(fields_conform(pd, ps[j]),
		"fields for field-map! must conform");
     }
     for (i = 0; i < pd->N; ++i) {
	  list arg_list = SCM_EOL;
	  SCM result;
	  for (j = src.num_items - 1; j >= 0; --j) {
	       SCM item = SCM_EOL;
	       switch (ps[j]->type) {
		   case RSCALAR_FIELD_SMOB:
			item = ctl_convert_number_to_scm(ps[j]->f.rs[i]);
			break;
		   case CSCALAR_FIELD_SMOB:
			item = cnumber2scm(cscalar2cnumber(ps[j]->f.cs[i]));
			break;
		   case CVECTOR_FIELD_SMOB:
			item =
			     cvector32scm(cscalar32cvector3(ps[j]->f.cv+3*i));
			break;
	       }
	       arg_list = gh_cons(item, arg_list);
	  }
	  result = gh_apply(f, arg_list);
	  switch (pd->type) {
	      case RSCALAR_FIELD_SMOB:
		   pd->f.rs[i] = ctl_convert_number_to_c(result);
		   break;
	      case CSCALAR_FIELD_SMOB:
		   pd->f.cs[i] = cnumber2cscalar(scm2cnumber(result));
		   break;
	      case CVECTOR_FIELD_SMOB:
		   cvector32cscalar3(pd->f.cv+3*i, scm2cvector3(result));
		   break;
	  }
     }
     if (src.num_items == 1 && ps[0]->type == pd->type)
	  pd->type_char = ps[0]->type_char;
     else if (src.num_items > 1)
	  switch (pd->type) {
	      case RSCALAR_FIELD_SMOB:
		   pd->type_char = 'R';
		   break;
	      case CSCALAR_FIELD_SMOB:
		   pd->type_char = 'C';
		   break;
	      case CVECTOR_FIELD_SMOB:
		   pd->type_char = 'c';
		   break;
	  }
     free(ps);
     update_curfield(pd);
     scm_remember_upto_here_1(dest);
}

/*************************************************************************/

static cvector3 cvector3_conj(cvector3 c)
{
     cvector3 cc;
     cc.x = cnumber_conj(c.x);
     cc.y = cnumber_conj(c.y);
     cc.z = cnumber_conj(c.z);
     return cc;
}

/* Compute the integral of f(r, {fields}) over the cell. */
cnumber integrate_fieldL(function f, SCM_list fields)
{
     int i, j, k, n1, n2, n3, n_other, n_last, rank, last_dim;
#ifdef HAVE_MPI
     int local_n2, local_y_start, local_n3;
#endif
     real s1, s2, s3, c1, c2, c3;
     int ifield;
     field_smob **pf;
     cnumber integral = {0,0};

     CHK_MALLOC(pf, field_smob *, fields.num_items);
     for (ifield = 0; ifield < fields.num_items; ++ifield) {
          pf[ifield] = assert_field_smob(fields.items[ifield]);
          CHECK(fields_conform(pf[0], pf[ifield]),
                "fields for integrate-fields must conform");
     }

     if (fields.num_items > 0) {
	  n1 = pf[0]->nx; n2 = pf[0]->ny; n3 = pf[0]->nz;
	  n_other = pf[0]->other_dims;
	  n_last = pf[0]->last_dim_size
	       / (sizeof(scalar_complex)/sizeof(scalar));
	  last_dim = pf[0]->last_dim;
     }
     else {
	  n1 = mdata->nx; n2 = mdata->ny; n3 = mdata->nz;
	  n_other = mdata->other_dims;
	  n_last = mdata->last_dim_size
	       / (sizeof(scalar_complex)/sizeof(scalar));
	  last_dim = mdata->last_dim;
     }
     rank = (n3 == 1) ? (n2 == 1 ? 1 : 2) : 3;

     s1 = geometry_lattice.size.x / n1;
     s2 = geometry_lattice.size.y / n2;
     s3 = geometry_lattice.size.z / n3;
     c1 = n1 <= 1 ? 0 : geometry_lattice.size.x * 0.5;
     c2 = n2 <= 1 ? 0 : geometry_lattice.size.y * 0.5;
     c3 = n3 <= 1 ? 0 : geometry_lattice.size.z * 0.5;

     /* Here we have different loops over the coordinates, depending
	upon whether we are using complex or real and serial or
        parallel transforms.  Each loop must define, in its body,
        variables (i2,j2,k2) describing the coordinate of the current
        point, and "index" describing the corresponding index in
	the curfield array.

        This was all stolen from maxwell_eps.c...it would be better
        if we didn't have to cut and paste, sigh. */

#ifdef SCALAR_COMPLEX

#  ifndef HAVE_MPI

     for (i = 0; i < n1; ++i)
	  for (j = 0; j < n2; ++j)
	       for (k = 0; k < n3; ++k)
     {
	  int i2 = i, j2 = j, k2 = k;
	  int index = ((i * n2 + j) * n3 + k);

#  else /* HAVE_MPI */

     if (fields.num_items > 0) {
	  local_n2 = pf[0]->local_ny;
	  local_y_start = pf[0]->local_y_start;
     }
     else {
	  local_n2 = mdata->local_ny;
	  local_y_start = mdata->local_y_start;
     }

     /* first two dimensions are transposed in MPI output: */
     for (j = 0; j < local_n2; ++j)
          for (i = 0; i < n1; ++i)
	       for (k = 0; k < n3; ++k)
     {
	  int i2 = i, j2 = j + local_y_start, k2 = k;
	  int index = ((j * n1 + i) * n3 + k);

#  endif /* HAVE_MPI */

#else /* not SCALAR_COMPLEX */

#  ifndef HAVE_MPI

     for (i = 0; i < n_other; ++i)
	  for (j = 0; j < n_last; ++j)
     {
	  int index = i * n_last + j;
	  int i2, j2, k2;
	  switch (rank) {
	      case 2: i2 = i; j2 = j; k2 = 0; break;
	      case 3: i2 = i / n2; j2 = i % n2; k2 = j; break;
	      default: i2 = j; j2 = k2 = 0;  break;
	  }

#  else /* HAVE_MPI */

     if (fields.num_items > 0) {
	  local_n2 = pf[0]->local_ny;
	  local_y_start = pf[0]->local_y_start;
     }
     else {
	  local_n2 = mdata->local_ny;
	  local_y_start = mdata->local_y_start;
     }

     /* For a real->complex transform, the last dimension is cut in
	half.  For a 2d transform, this is taken into account in local_ny
	already, but for a 3d transform we must compute the new n3: */
     if (n3 > 1) {
	  if (fields.num_items > 0)
	       local_n3 = pf[0]->last_dim_size / 2;
	  else
	       local_n3 = mdata->last_dim_size / 2;
     }
     else
	  local_n3 = 1;

     /* first two dimensions are transposed in MPI output: */
     for (j = 0; j < local_n2; ++j)
          for (i = 0; i < n1; ++i)
	       for (k = 0; k < local_n3; ++k)
     {
#         define i2 i
	  int j2 = j + local_y_start;
#         define k2 k
	  int index = ((j * n1 + i) * local_n3 + k);

#  endif /* HAVE_MPI */

#endif /* not SCALAR_COMPLEX */

	  {
	       list arg_list = SCM_EOL;
	       cnumber integrand;
	       vector3 p;

	       p.x = i2 * s1 - c1; p.y = j2 * s2 - c2; p.z = k2 * s3 - c3;

	       for (ifield = fields.num_items - 1; ifield >= 0; --ifield) {
		    SCM item = SCM_EOL;
		    switch (pf[ifield]->type) {
			case RSCALAR_FIELD_SMOB:
			     item = ctl_convert_number_to_scm(pf[ifield]->f.rs[index]);
			     break;
			case CSCALAR_FIELD_SMOB:
			     item = cnumber2scm(cscalar2cnumber(
				  pf[ifield]->f.cs[index]));
			     break;
			case CVECTOR_FIELD_SMOB:
                        item = cvector32scm(cscalar32cvector3(
			     pf[ifield]->f.cv+3*index));
                        break;
		    }
		    arg_list = gh_cons(item, arg_list);
	       }
	       arg_list = gh_cons(vector32scm(p), arg_list);
	       integrand = ctl_convert_cnumber_to_c(gh_apply(f, arg_list));
	       integral.re += integrand.re;
	       integral.im += integrand.im;

#ifndef SCALAR_COMPLEX
	       {
		    int last_index;
#  ifdef HAVE_MPI
		    if (n3 == 1)
			 last_index = j + local_y_start;
		    else
			 last_index = k;
#  else
		    last_index = j;
#  endif

		    if (last_index != 0 && 2*last_index != last_dim) {
			 int i2c, j2c, k2c;
			 i2c = i2 ? (n1 - i2) : 0;
                         j2c = j2 ? (n2 - j2) : 0;
			 k2c = k2 ? (n3 - k2) : 0;
                         p.x = i2c * s1 - c1;
                         p.y = j2c * s2 - c2;
			 p.z = k2c * s3 - c3;
			 arg_list = SCM_EOL;
			 for (ifield = fields.num_items - 1;
			      ifield >= 0; --ifield) {
			      SCM item = SCM_UNDEFINED;
			      switch (pf[ifield]->type) {
				  case RSCALAR_FIELD_SMOB:
				       item = ctl_convert_number_to_scm(
					    pf[ifield]->f.rs[index]);
				       break;
				  case CSCALAR_FIELD_SMOB:
				       item = cnumber2scm(cscalar2cnumber(
					    pf[ifield]->f.cs[index]));
				       break;
				  case CVECTOR_FIELD_SMOB:
				       item = cvector32scm(
					    cvector3_conj(cscalar32cvector3(
						 pf[ifield]->f.cv+3*index)));
				       break;
			      }
			      arg_list = gh_cons(item, arg_list);
			 }
			 arg_list = gh_cons(vector32scm(p), arg_list);
			 integrand =
			      ctl_convert_cnumber_to_c(gh_apply(f, arg_list));
			 integral.re += integrand.re;
			 integral.im += integrand.im;
		    }
	       }
#endif
	  }
     }

     free(pf);

     integral.re *= Vol / (n1 * n2 * n3);
     integral.im *= Vol / (n1 * n2 * n3);
     {
	  cnumber integral_sum;
	  mpi_allreduce(&integral, &integral_sum, 2, number,
			MPI_DOUBLE, MPI_SUM, mpb_comm);
	  return integral_sum;
     }
}