1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
# Data file for mpc_sqr.
#
# Copyright (C) INRIA, 2008, 2010
#
# This file is part of the MPC Library.
#
# The MPC Library is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation; either version 2.1 of the License, or (at your
# option) any later version.
#
# The MPC Library is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
# License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with the MPC Library; see the file COPYING.LIB. If not, write to
# the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
# MA 02111-1307, USA.
#
# The line format respects the parameter order in function prototype as
# follow:
#
# PREC_ROP_RE ROP_RE PREC_ROP_IM ROP_IM PREC_OP_RE OP_RE PREC_OP_IM OP_IM RND_RE RND_IM
#
# see sin.dat for precisions
# special values (following ISO C99 standard)
0 0 53 nan 53 +inf 53 -inf 53 -inf N N
0 0 53 +inf 53 +inf 53 -inf 53 -1 N N
0 0 53 +inf 53 nan 53 -inf 53 -0 N N
0 0 53 +inf 53 nan 53 -inf 53 +0 N N
0 0 53 +inf 53 -inf 53 -inf 53 +1 N N
0 0 53 nan 53 -inf 53 -inf 53 +inf N N
0 0 53 nan 53 nan 53 -inf 53 nan N N
0 0 53 -inf 53 +inf 53 -1 53 -inf N N
0 0 53 +1 53 +0 53 -1 53 -0 N N
0 0 53 +1 53 -0 53 -1 53 +0 N N
0 0 53 -inf 53 -inf 53 -1 53 +inf N N
0 0 53 nan 53 nan 53 -1 53 nan N N
0 0 53 -inf 53 nan 53 -0 53 -inf N N
0 0 53 -1 53 +0 53 -0 53 -1 N N
0 0 53 0 53 +0 53 -0 53 -0 N N
0 0 53 0 53 -0 53 -0 53 +0 N N
0 0 53 -1 53 -0 53 -0 53 +1 N N
0 0 53 -inf 53 nan 53 -0 53 +inf N N
0 0 53 nan 53 nan 53 -0 53 nan N N
0 0 53 -inf 53 nan 53 +0 53 -inf N N
0 0 53 -1 53 -0 53 +0 53 -1 N N
0 0 53 0 53 -0 53 +0 53 -0 N N
0 0 53 0 53 +0 53 +0 53 +0 N N
0 0 53 -1 53 +0 53 +0 53 +1 N N
0 0 53 -inf 53 nan 53 +0 53 +inf N N
0 0 53 nan 53 nan 53 +0 53 nan N N
0 0 53 -inf 53 -inf 53 +1 53 -inf N N
0 0 53 +1 53 -0 53 +1 53 -0 N N
0 0 53 +1 53 +0 53 +1 53 +0 N N
0 0 53 -inf 53 +inf 53 +1 53 +inf N N
0 0 53 nan 53 nan 53 +1 53 nan N N
0 0 53 nan 53 -inf 53 +inf 53 -inf N N
0 0 53 +inf 53 -inf 53 +inf 53 -1 N N
0 0 53 +inf 53 nan 53 +inf 53 -0 N N
0 0 53 +inf 53 nan 53 +inf 53 +0 N N
0 0 53 +inf 53 +inf 53 +inf 53 +1 N N
0 0 53 nan 53 +inf 53 +inf 53 +inf N N
0 0 53 nan 53 nan 53 +inf 53 nan N N
0 0 53 nan 53 nan 53 nan 53 -inf N N
0 0 53 nan 53 nan 53 nan 53 -1 N N
0 0 53 nan 53 nan 53 nan 53 -0 N N
0 0 53 nan 53 nan 53 nan 53 +0 N N
0 0 53 nan 53 nan 53 nan 53 +1 N N
0 0 53 nan 53 nan 53 nan 53 +inf N N
0 0 53 nan 53 nan 53 nan 53 nan N N
# pure real argument
+ 0 53 0x12345676543230p+52 2 +0 53 0x1111111000000f 17 +0 N N
- 0 53 0x1234567654322fp+52 3 -0 54 -0x1111111000000f 16 +0 Z N
+ 0 53 0x12345676543230p+52 4 -0 55 0x1111111000000f 15 -0 U N
- 0 53 0x1234567654322fp+52 5 +0 56 -0x1111111000000f 14 -0 D N
- 0 53 0x1234567654322fp+52 6 +0 57 0x1111111000000f 13 +0 Z Z
+ 0 53 0x12345676543230p+52 7 -0 58 -0x1111111000000f 12 +0 U Z
- 0 53 0x1234567654322fp+52 8 -0 59 0x1111111000000f 11 -0 D Z
+ 0 53 0x12345676543230p+52 9 +0 60 -0x1111111000000f 10 -0 N Z
+ 0 53 0x12345676543230p+52 10 +0 61 0x1111111000000f 9 +0 U U
- 0 53 0x1234567654322fp+52 11 -0 62 -0x1111111000000f 8 +0 D U
+ 0 53 0x12345676543230p+52 12 -0 63 0x1111111000000f 7 -0 N U
- 0 53 0x1234567654322fp+52 13 +0 64 -0x1111111000000f 6 -0 Z U
- 0 53 0x1234567654322fp+52 14 +0 65 0x1111111000000f 5 +0 D D
+ 0 53 0x12345676543230p+52 15 -0 66 -0x1111111000000f 4 +0 N D
- 0 53 0x1234567654322fp+52 16 -0 67 0x1111111000000f 3 -0 Z D
+ 0 53 0x12345676543230p+52 17 +0 68 -0x1111111000000f 2 -0 U D
# pure imaginary argument
- 0 53 -0xE1000002000000p+56 53 +0 53 +0 53 0xf0000001111111 N N
+ 0 53 -0xe1000001fffff8p+56 52 -0 51 -0 54 0xf0000001111111 Z N
+ 0 53 -0xe1000001fffff8p+56 51 -0 49 +0 55 -0xf0000001111111 U N
- 0 53 -0xe1000002000000p+56 50 +0 47 -0 56 -0xf0000001111111 D N
+ 0 53 -0xe1000001fffff8p+56 49 +0 45 +0 57 0xf0000001111111 Z Z
+ 0 53 -0xe1000001fffff8p+56 48 -0 43 -0 58 0xf0000001111111 U Z
- 0 53 -0xe1000002000000p+56 47 -0 41 +0 59 -0xf0000001111111 D Z
- 0 53 -0xe1000002000000p+56 46 +0 39 -0 60 -0xf0000001111111 N Z
+ 0 53 -0xe1000001fffff8p+56 45 +0 37 +0 61 0xf0000001111111 U U
- 0 53 -0xe1000002000000p+56 44 -0 35 -0 62 0xf0000001111111 D U
- 0 53 -0xe1000002000000p+56 43 -0 33 +0 63 -0xf0000001111111 N U
+ 0 53 -0xe1000001fffff8p+56 42 +0 31 -0 64 -0xf0000001111111 Z U
- 0 53 -0xe1000002000000p+56 41 +0 29 +0 65 0xf0000001111111 D D
- 0 53 -0xe1000002000000p+56 40 -0 27 -0 66 0xf0000001111111 N D
+ 0 53 -0xe1000001fffff8p+56 39 -0 25 +0 67 -0xf0000001111111 Z D
+ 0 53 -0xe1000001fffff8p+56 38 +0 23 -0 68 -0xf0000001111111 U D
# IEEE-754 double precision
- + 53 0x10000000020000p+04 53 0x10000000effff 53 0x400008000180fp-22 53 0x7ffff0077efcbp-32 N N
- - 53 0x3ffffffffffffd 53 0x7ffffffffffff4p+52 53 0x1fffffffffffff 53 0x1ffffffffffffe Z N
+ + 53 0x1c16e5d4c4d5e7p-45 53 -0x7ffffff800007p-47 53 0xf 53 -0x1111111000000fp-53 U N
- + 53 0xfdbac097c8dc50p+2096 53 0x7f6e5d4c3b2a2p+1036 53 0xfedcba9876543p+1024 53 0x10000000000001p-42 D N
+ - 53 -0x10000000020000p+04 53 0x10000000efffefp-04 53 0x7ffff0077efcbp-32 53 0x400008000180fp-22 Z Z
+ + 53 0x3ffffffffffffe 53 -0x7ffffffffffff4p+52 53 0x1fffffffffffff 53 -0x1ffffffffffffe U Z
- - 53 0xe0b72ea626af3p-44 53 0x7ffffff800007p-47 53 0xf 53 0x1111111000000fp-53 D Z
- - 53 -0xfdbac097c8dc58p+2096 53 0x7f6e5d4c3b2a1cp+1032 53 -0x10000000000001p-42 53 -0xfedcba9876543p+1024 N Z
+ + 53 0x10000000020001p+04 53 -0x10000000efffefp-04 53 0x400008000180fp-22 53 -0x7ffff0077efcbp-32 U U
- + 53 -0x3ffffffffffffe 53 -0x7ffffffffffff4p+52 53 -0x1ffffffffffffe 53 0x1fffffffffffff D U
- + 53 -0x1C16E5D4C4D5E7p-45 53 0x1ffffffe00001dp-49 53 -0x1111111000000fp-53 53 -0xf N U
+ + 53 -0xfdbac097c8dc50p+2096 53 -0x7f6e5d4c3b2a1cp+1032 53 0x10000000000001p-42 53 -0xfedcba9876543p+1024 Z U
- - 53 -0x10000000020001p+04 53 -0x10000000effff 53 -0x7ffff0077efcbp-32 53 0x400008000180fp-22 D D
- - 53 0x3ffffffffffffd 53 -0x7ffffffffffff8p+52 53 -0x1fffffffffffff 53 0x1ffffffffffffe N D
+ - 53 -0xE0B72EA626AF3p-44 53 -0x1FFFFFFE00001Dp-49 53 0x1111111000000fp-53 53 -0xf Z D
+ - 53 0xfdbac097c8dc58p+2096 53 -0x7f6e5d4c3b2a2p+1036 53 -0xfedcba9876543p+1024 53 0x10000000000001p-42 U D
# improve test coverage:
# For op=x+i*y, we need a case where x+y and x-y are inexact at the
# higher computing precision, and where x and y do not have too
# distinct exponents so that Karatsuba gets triggered...
# (2^44 + i*(2^29 + 1))^2 \approx (2^88-2^58) + i*2^45*(2^29+1)
+ 0 30 309485009533114692573069312 30 18889465966662952943616 30 17592186044416 30 536870913 N N
# ...and a case where x+y or x-y are 0.
0 0 4 0 4 2 4 1 4 1 N N
# a few values, previously hard-coded in tsqr.c
0 0 8 7 8 24 8 4 8 3 N N
+ + 8 0b1.1000111e-3 8 0b1.1100111e-3 27 0b1.11111011011000010101000000e-2 27 0b1.11010001010110111001110001e-3 N N
# bug 20090930, infinite loop
+ + 3464 inf 3464 inf 866 -0x2.5763c6519ef1510f8afa101a210b8030b1909cc17004db561a25d9b53e2c08c41c01e8bbac5af6299b9d8786030aa14943d841798c8c369287942e4d4cec42a60ab0922af931159805e631128e97f973754ad53972d5d320a651a3b4a667f0ef2b92dbd698d159c3642675140@192158913 866 -0xd.15f2d530934dd930d66e89d70762d2337a8f973dd6915eb6b532fd372fcc955df1d852632d4e46fe64154ceda991a1302caf1b0ec622497e3e5724dd05b1c89a06e28d7e18e8af58f5ff4c9998cb31714688867524f41e0b31e847c1bf40de5127f858069998efd7c3e599080@192158893 N N
# bug 20091001, infinite loop
? + 2256 0 2256 -0 564 0xc.87999bfd1cb1a64288881e214b7cf1af979863b23c030b79c4a8bebb39177967608388a2e4df527977e7755a25df8af8f72fdd6dd2f42bd00de83088b4e9b59ce85caf2e6b0c0@-184298749 564 -0x2.5109af459d4daf357e09475ec991cdc9b02c8f7dfacdc060d2a24710d09c997f8aea6dbd46f10828c30b583fdcc90d7dcbb895689d594d3813db40784d2309e450d1fb6e38da8@-184298726 N N
|