1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
# Data file for mpc_sqrt.
#
# Copyright (C) INRIA, 2008, 2010
#
# This file is part of the MPC Library.
#
# The MPC Library is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation; either version 2.1 of the License, or (at your
# option) any later version.
#
# The MPC Library is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
# License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with the MPC Library; see the file COPYING.LIB. If not, write to
# the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
# MA 02111-1307, USA.
#
# The line format respects the parameter order in function prototype as
# follow:
#
# INEX_RE INEX_IM PREC_ROP_RE ROP_RE PREC_ROP_IM ROP_IM PREC_OP_RE OP_RE PREC_OP_IM OP_IM RND_RE RND_IM
#
# see sin.dat for precisions
# special values (following ISO C99 standard)
0 0 53 +inf 53 -inf 53 -inf 53 -inf N N
0 0 53 +0 53 -inf 53 -inf 53 -1 N N
0 0 53 +0 53 -inf 53 -inf 53 -0 N N
0 0 53 +0 53 +inf 53 -inf 53 +0 N N
0 0 53 +0 53 +inf 53 -inf 53 +1 N N
0 0 53 +inf 53 +inf 53 -inf 53 +inf N N
0 0 53 nan 53 inf 53 -inf 53 nan N N
0 0 53 +inf 53 -inf 53 -1 53 -inf N N
0 0 53 +0 53 -1 53 -1 53 -0 N N
0 0 53 +0 53 +1 53 -1 53 +0 N N
0 0 53 +inf 53 +inf 53 -1 53 +inf N N
0 0 53 nan 53 nan 53 -1 53 nan N N
0 0 53 +inf 53 -inf 53 -0 53 -inf N N
0 0 53 +1 53 -1 53 -0 53 -2 N N
0 0 53 +0 53 -0 53 -0 53 -0 N N
0 0 53 +0 53 +0 53 -0 53 +0 N N
0 0 53 +1 53 +1 53 -0 53 +2 N N
0 0 53 +inf 53 +inf 53 -0 53 +inf N N
0 0 53 nan 53 nan 53 -0 53 nan N N
0 0 53 +inf 53 -inf 53 +0 53 -inf N N
0 0 53 +1 53 -1 53 +0 53 -2 N N
0 0 53 +0 53 -0 53 +0 53 -0 N N
0 0 53 +0 53 +0 53 +0 53 +0 N N
0 0 53 +1 53 +1 53 +0 53 +2 N N
0 0 53 +inf 53 +inf 53 +0 53 +inf N N
0 0 53 nan 53 nan 53 +0 53 nan N N
0 0 53 +inf 53 -inf 53 +1 53 -inf N N
0 0 53 +1 53 -0 53 +1 53 -0 N N
0 0 53 +1 53 +0 53 +1 53 +0 N N
0 0 53 +inf 53 +inf 53 +1 53 +inf N N
0 0 53 nan 53 nan 53 +1 53 nan N N
0 0 53 +inf 53 -inf 53 +inf 53 -inf N N
0 0 53 +inf 53 -0 53 +inf 53 -1 N N
0 0 53 +inf 53 -0 53 +inf 53 -0 N N
0 0 53 +inf 53 +0 53 +inf 53 +0 N N
0 0 53 +inf 53 +0 53 +inf 53 +1 N N
0 0 53 +inf 53 +inf 53 +inf 53 +inf N N
0 0 53 +inf 53 nan 53 +inf 53 nan N N
0 0 53 +inf 53 -inf 53 nan 53 -inf N N
0 0 53 nan 53 nan 53 nan 53 -1 N N
0 0 53 nan 53 nan 53 nan 53 -0 N N
0 0 53 nan 53 nan 53 nan 53 +0 N N
0 0 53 nan 53 nan 53 nan 53 +1 N N
0 0 53 +inf 53 +inf 53 nan 53 +inf N N
0 0 53 nan 53 nan 53 nan 53 nan N N
# purely real argument
# sqrt(x +i*0) = sqrt(x) +i*0, when x>0
# sqrt(x -i*0) = sqrt(x) -i*0, when x>0
# sqrt(x +i*0) = +0 +i*sqrt(-x) +i*0, when x<0
# sqrt(x -i*0) = +0 -i*sqrt(-x) +i*0, when x<0
+ 0 53 0x16a09e667f3bcdp-52 53 +0 53 2 17 +0 N N
0 + 53 +0 53 0x16a09e667f3bcdp-52 54 -2 16 +0 Z N
+ 0 53 0x16a09e667f3bcdp-52 53 -0 55 2 15 -0 U N
0 - 53 +0 53 -0x16a09e667f3bcdp-52 56 -2 14 -0 D N
- 0 53 0x5a827999fcef30p-54 53 +0 57 2 13 +0 Z Z
0 - 53 +0 53 0x5a827999fcef30p-54 58 -2 12 +0 U Z
- 0 53 0x5a827999fcef30p-54 53 -0 59 2 11 -0 D Z
0 + 53 +0 53 -0x5a827999fcef30p-54 60 -2 10 -0 N Z
+ 0 53 0x16a09e667f3bcdp-52 53 +0 61 2 9 +0 U U
0 + 53 +0 53 0x16a09e667f3bcdp-52 62 -2 8 +0 D U
+ 0 53 0x16a09e667f3bcdp-52 53 -0 63 2 7 -0 N U
0 + 53 +0 53 -0x5a827999fcef30p-54 64 -2 6 -0 Z U
- 0 53 0x5a827999fcef30p-54 53 +0 65 2 5 +0 D D
0 - 53 +0 53 0x5a827999fcef30p-54 66 -2 4 +0 N D
- 0 53 0x5a827999fcef30p-54 53 -0 67 2 3 -0 Z D
0 - 53 +0 53 -0x16a09e667f3bcdp-52 68 -2 2 -0 U D
# purely imaginary argument
# sqrt(+/-0 +i*y) = sqrt(y/2) * (1 +i), when y >0
# sqrt(+/-0 +i*y) = sqrt(-y/2) * (1 -i), when y < 0
+ + 53 0x16a09e667f3bcdp-52 53 0x16a09e667f3bcdp-52 53 +0 53 4 N N
- + 53 0x5a827999fcef30p-54 53 0x16a09e667f3bcdp-52 51 -0 54 4 Z N
+ - 53 0x16a09e667f3bcdp-52 53 -0x16a09e667f3bcdp-52 49 +0 55 -4 U N
- - 53 0x5a827999fcef30p-54 53 -0x16a09e667f3bcdp-52 47 -0 56 -4 D N
- - 53 0x5a827999fcef30p-54 53 0x5a827999fcef30p-54 45 +0 57 4 Z Z
+ - 53 0x16a09e667f3bcdp-52 53 0x5a827999fcef30p-54 43 -0 58 4 U Z
- + 53 0x5a827999fcef30p-54 53 -0x5a827999fcef30p-54 41 +0 59 -4 D Z
+ + 53 0x16a09e667f3bcdp-52 53 -0x5a827999fcef30p-54 39 -0 60 -4 N Z
+ + 53 0x16a09e667f3bcdp-52 53 0x16a09e667f3bcdp-52 37 +0 61 4 U U
- + 53 0x5a827999fcef30p-54 53 0x16a09e667f3bcdp-52 35 -0 62 4 D U
+ + 53 0x16a09e667f3bcdp-52 53 -0x5a827999fcef30p-54 33 +0 63 -4 N U
- + 53 0x5a827999fcef30p-54 53 -0x5a827999fcef30p-54 31 -0 64 -4 Z U
- - 53 0x5a827999fcef30p-54 53 0x5a827999fcef30p-54 29 +0 65 4 D D
+ - 53 0x16a09e667f3bcdp-52 53 0x5a827999fcef30p-54 27 -0 66 4 N D
- - 53 0x5a827999fcef30p-54 53 -0x16a09e667f3bcdp-52 25 +0 67 -4 Z D
+ - 53 0x16a09e667f3bcdp-52 53 -0x16a09e667f3bcdp-52 23 -0 68 -4 U D
# bugs fixed in r160 2008-07-15
- + 19 0b11101001001001001100p+39 19 -0b1010110101100111011p-236 19 0b1.101010001010100000p+117 19 -0b1.001110111101100001p-158 N Z
- + 2 0b11p+100 2 -0b11p+100 2 -0 2 -0b11p+203 N Z
0 + 2 0 2 -0b10p+117 2 -0b11p+235 2 -0 N Z
# close to infinite loop reported by Emmanuel Thome, 22 Oct 2010,
# and all its variants of signs and directed roundings
- + 375 1 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281177 375 1 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 N N
+ + 375 0x1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281177 375 1 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 U U
- - 375 1 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef5fffffffffffffffffffffffffffffffffffffffffffep-202281177 375 1 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 D D
- - 375 1 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef5fffffffffffffffffffffffffffffffffffffffffffep-202281177 375 1 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 Z Z
- - 375 1 375 -0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281177 375 1 375 -0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 N N
+ + 375 0x1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004 375 -0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef5fffffffffffffffffffffffffffffffffffffffffffep-202281177 375 1 375 -0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 U U
- - 375 1 375 -0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281177 375 1 375 -0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 D D
- + 375 1 375 -0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef5fffffffffffffffffffffffffffffffffffffffffffep-202281177 375 1 375 -0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 Z Z
+ - 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281177 375 1 375 -1 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 N N
+ + 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281177 375 0x1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004 375 -1 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 U U
- - 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef5fffffffffffffffffffffffffffffffffffffffffffep-202281177 375 1 375 -1 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 D D
- - 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef5fffffffffffffffffffffffffffffffffffffffffffep-202281177 375 1 375 -1 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 Z Z
+ + 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281177 375 -1 375 -1 375 -0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 N N
+ + 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281177 375 -1 375 -1 375 -0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 U U
- - 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef5fffffffffffffffffffffffffffffffffffffffffffep-202281177 375 -0x1.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000004 375 -1 375 -0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 D D
- + 375 0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef5fffffffffffffffffffffffffffffffffffffffffffep-202281177 375 -1 375 -1 375 -0xf.8a8aae3080b3dd665e316d262fd54c1ca22a83dc9acb92ef6p-202281176 Z Z
|