1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
/* tmul -- test file for mpc_mul.
Copyright (C) INRIA, 2002, 2005, 2008, 2009, 2010, 2011
This file is part of the MPC Library.
The MPC Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPC Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPC Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include <stdlib.h>
#ifdef TIMING
#include <sys/times.h>
#endif
#include "mpc-tests.h"
static void
cmpmul (mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd)
/* computes the product of x and y with the naive and Karatsuba methods */
/* using the rounding mode rnd and compares the results and return */
/* values. */
/* In our current test suite, the real and imaginary parts of x and y */
/* all have the same precision, and we use this precision also for the */
/* result. */
{
mpc_t z, t;
int inexact_z, inexact_t;
mpc_init2 (z, MPC_MAX_PREC (x));
mpc_init2 (t, MPC_MAX_PREC (x));
inexact_z = mpc_mul_naive (z, x, y, rnd);
inexact_t = mpc_mul_karatsuba (t, x, y, rnd);
if (mpc_cmp (z, t))
{
fprintf (stderr, "mul and mul2 differ for rnd=(%s,%s) \nx=",
mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
fprintf (stderr, "\nand y=");
mpc_out_str (stderr, 2, 0, y, MPC_RNDNN);
fprintf (stderr, "\nmpc_mul_naive gives ");
mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
fprintf (stderr, "\nmpc_mul_karatsuba gives ");
mpc_out_str (stderr, 2, 0, t, MPC_RNDNN);
fprintf (stderr, "\n");
exit (1);
}
if (inexact_z != inexact_t)
{
fprintf (stderr, "The return values of mul and mul2 differ for rnd=(%s,%s) \nx=",
mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
mpc_out_str (stderr, 2, 0, x, MPC_RNDNN);
fprintf (stderr, "\nand y=");
mpc_out_str (stderr, 2, 0, y, MPC_RNDNN);
fprintf (stderr, "\nand x*y=");
mpc_out_str (stderr, 2, 0, z, MPC_RNDNN);
fprintf (stderr, "\nmpc_mul_naive gives %i", inexact_z);
fprintf (stderr, "\nmpc_mul_karatsuba gives %i", inexact_t);
fprintf (stderr, "\n");
exit (1);
}
mpc_clear (z);
mpc_clear (t);
}
static void
testmul (long a, long b, long c, long d, mpfr_prec_t prec, mpc_rnd_t rnd)
{
mpc_t x, y;
mpc_init2 (x, prec);
mpc_init2 (y, prec);
mpc_set_si_si (x, a, b, rnd);
mpc_set_si_si (y, c, d, rnd);
cmpmul (x, y, rnd);
mpc_clear (x);
mpc_clear (y);
}
static void
check_regular (void)
{
mpc_t x, y;
mpc_rnd_t rnd_re, rnd_im;
mpfr_prec_t prec;
testmul (247, -65, -223, 416, 8, 24);
testmul (5, -896, 5, -32, 3, 2);
testmul (-3, -512, -1, -1, 2, 16);
testmul (266013312, 121990769, 110585572, 116491059, 27, 0);
testmul (170, 9, 450, 251, 8, 0);
testmul (768, 85, 169, 440, 8, 16);
testmul (145, 1816, 848, 169, 8, 24);
testmul (0, 1816, 848, 169, 8, 24);
testmul (145, 0, 848, 169, 8, 24);
testmul (145, 1816, 0, 169, 8, 24);
testmul (145, 1816, 848, 0, 8, 24);
mpc_init2 (x, 1000);
mpc_init2 (y, 1000);
/* Bug 20081114: mpc_mul_karatsuba returned wrong inexact value for
imaginary part */
mpc_set_prec (x, 7);
mpc_set_prec (y, 7);
mpfr_set_str (MPC_RE (x), "0xB4p+733", 16, GMP_RNDN);
mpfr_set_str (MPC_IM (x), "0x90p+244", 16, GMP_RNDN);
mpfr_set_str (MPC_RE (y), "0xECp-146", 16, GMP_RNDN);
mpfr_set_str (MPC_IM (y), "0xACp-471", 16, GMP_RNDN);
cmpmul (x, y, MPC_RNDNN);
mpfr_set_str (MPC_RE (x), "0xB4p+733", 16, GMP_RNDN);
mpfr_set_str (MPC_IM (x), "0x90p+244", 16, GMP_RNDN);
mpfr_set_str (MPC_RE (y), "0xACp-471", 16, GMP_RNDN);
mpfr_set_str (MPC_IM (y), "-0xECp-146", 16, GMP_RNDN);
cmpmul (x, y, MPC_RNDNN);
for (prec = 2; prec < 1000; prec = (mpfr_prec_t) (prec * 1.1 + 1))
{
mpc_set_prec (x, prec);
mpc_set_prec (y, prec);
test_default_random (x, -1024, 1024, 128, 25);
test_default_random (y, -1024, 1024, 128, 25);
for (rnd_re = 0; rnd_re < 4; rnd_re ++)
for (rnd_im = 0; rnd_im < 4; rnd_im ++)
cmpmul (x, y, RNDC(rnd_re, rnd_im));
}
mpc_clear (x);
mpc_clear (y);
}
#ifdef TIMING
static void
timemul (void)
{
/* measures the time needed with different precisions for naive and */
/* Karatsuba multiplication */
mpc_t x, y, z;
unsigned long int i, j;
const unsigned long int tests = 10000;
struct tms time_old, time_new;
double passed1, passed2;
mpc_init (x);
mpc_init (y);
mpc_init_set_ui_ui (z, 1, 0, MPC_RNDNN);
for (i = 1; i < 50; i++)
{
mpc_set_prec (x, i * BITS_PER_MP_LIMB);
mpc_set_prec (y, i * BITS_PER_MP_LIMB);
mpc_set_prec (z, i * BITS_PER_MP_LIMB);
test_default_random (x, -1, 1, 128, 25);
test_default_random (y, -1, 1, 128, 25);
times (&time_old);
for (j = 0; j < tests; j++)
mpc_mul_naive (z, x, y, MPC_RNDNN);
times (&time_new);
passed1 = ((double) (time_new.tms_utime - time_old.tms_utime)) / 100;
times (&time_old);
for (j = 0; j < tests; j++)
mpc_mul_karatsuba (z, x, y, MPC_RNDNN);
times (&time_new);
passed2 = ((double) (time_new.tms_utime - time_old.tms_utime)) / 100;
printf ("Time for %3li limbs naive/Karatsuba: %5.2f %5.2f\n", i,
passed1, passed2);
}
mpc_clear (x);
mpc_clear (y);
mpc_clear (z);
}
#endif
int
main (void)
{
DECL_FUNC (C_CC, f, mpc_mul);
f.properties = FUNC_PROP_SYMETRIC;
test_start ();
#ifdef TIMING
timemul ();
#endif
check_regular ();
data_check (f, "mul.dat");
tgeneric (f, 2, 4096, 41, 100);
test_end ();
return 0;
}
|