1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/* tballs -- test file for complex ball arithmetic.
Copyright (C) 2018, 2020, 2021, 2022 INRIA
This file is part of GNU MPC.
GNU MPC is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/
#include "mpc-tests.h"
#include "mpc-impl.h"
/* For the alternative AGM implementation, we need all the power of
this include file. */
static int
mpc_mpcb_agm (mpc_ptr rop, mpc_srcptr opa, mpc_srcptr opb, mpc_rnd_t rnd)
/* Alternative implementation of mpc_agm that uses complex balls. */
{
mpfr_prec_t prec;
mpc_t b0, diff;
mpcb_t a, b, an, bn, anp1, bnp1, res;
mpfr_exp_t exp_an, exp_diff;
mpcr_t rab;
int cmp, equal, re_zero, im_zero, ok, inex;
if (!mpc_fin_p (opa) || !mpc_fin_p (opb)
|| mpc_zero_p (opa) || mpc_zero_p (opb)
|| mpc_cmp (opa, opb) == 0
|| ( mpfr_sgn (mpc_realref (opa)) == -mpfr_sgn (mpc_realref (opb))
&& mpfr_sgn (mpc_imagref (opa)) == -mpfr_sgn (mpc_imagref (opb))
&& mpfr_cmpabs (mpc_realref (opa), mpc_realref (opb)) == 0
&& mpfr_cmpabs (mpc_imagref (opa), mpc_imagref (opb)) == 0)
|| ( mpfr_zero_p (mpc_imagref (opa))
&& mpfr_zero_p (mpc_imagref (opb))
&& mpfr_sgn (mpc_realref (opa)) == mpfr_sgn (mpc_realref (opb)))
|| ( mpfr_zero_p (mpc_realref (opa))
&& mpfr_zero_p (mpc_realref (opb))
&& mpfr_sgn (mpc_imagref (opa)) == mpfr_sgn (mpc_imagref (opb))))
/* Special cases that are handled separately by mpc_agm; there is
no need to rewrite them. */
return mpc_agm (rop, opa, opb, rnd);
/* Exclude the case of angle 0, also handled separately by mpc_agm. */
mpc_init2 (b0, 2);
mpc_div (b0, opb, opa, MPC_RNDZZ);
if (mpfr_zero_p (mpc_imagref (b0)) && mpfr_sgn (mpc_realref (b0)) > 0) {
mpc_clear (b0);
return mpc_agm (rop, opa, opb, rnd);
}
mpc_clear (b0);
cmp = mpc_cmp_abs (opa, opb);
mpcb_init (a);
mpcb_init (b);
mpcb_init (an);
mpcb_init (bn);
mpcb_init (anp1);
mpcb_init (bnp1);
mpcb_init (res);
prec = MPC_MAX (MPC_MAX (MPC_MAX_PREC (opa), MPC_MAX_PREC (opb)),
MPC_MAX_PREC (rop) + 20);
/* So copying opa and opb will be exact, and there is a small safety
margin for the result. */
do {
mpcb_set_prec (a, prec);
mpcb_set_prec (b, prec);
mpcb_set_prec (an, prec);
mpcb_set_prec (bn, prec);
mpcb_set_prec (anp1, prec);
mpcb_set_prec (bnp1, prec);
mpcb_set_prec (res, prec);
/* TODO: Think about the mpcb_set variants; mpcb_set_c, for instance,
modifies the precision. It is probably better to add a precision
parameter to mpcb_init and potentially round with mpcb_set_xxx. */
mpc_set (a->c, opa, MPC_RNDNN); /* exact */
mpcr_set_zero (a->r);
mpc_set (b->c, opb, MPC_RNDNN);
mpcr_set_zero (b->r);
mpc_set_ui_ui (an->c, 1, 0, MPC_RNDNN);
mpcr_set_zero (an->r);
if (cmp >= 0)
mpcb_div (bn, b, a);
else
mpcb_div (bn, a, b);
/* Iterate until there is a fixed point or (often one iteration
earlier) the arithmetic and the geometric mean coincide. */
do {
mpcb_add (anp1, an, bn);
mpcb_div_2ui (anp1, anp1, 1);
mpcb_mul (bnp1, an, bn);
mpcb_sqrt (bnp1, bnp1);
/* Be aware of the branch cut! The current function does
what is needed here. */
equal = mpc_cmp (an->c, bn->c) == 0
|| ( mpc_cmp (an->c, anp1->c) == 0
&& mpc_cmp (bn->c, bnp1->c) == 0);
mpcb_set (an, anp1);
mpcb_set (bn, bnp1);
} while (!equal);
/* Check whether we can conclude, see the error analysis in
algorithms.tex. */
if (mpcr_inf_p (anp1->r))
ok = 0;
else {
mpc_init2 (diff, prec);
mpc_sub (diff, an->c, bn->c, MPC_RNDZZ);
/* FIXME: We would need to round away, but this is not yet
implemented. */
re_zero = mpfr_zero_p (mpc_realref (diff));
if (!re_zero)
MPFR_ADD_ONE_ULP (mpc_realref (diff));
im_zero = mpfr_zero_p (mpc_imagref (diff));
if (!im_zero)
MPFR_ADD_ONE_ULP (mpc_imagref (diff));
mpcb_set (res, anp1);
if (re_zero && im_zero)
mpcr_set_zero (rab);
else {
exp_an = MPC_MIN (mpfr_get_exp (mpc_realref (an->c)),
mpfr_get_exp (mpc_imagref (an->c))) - 1;
if (re_zero)
exp_diff = mpfr_get_exp (mpc_imagref (diff)) + 1;
else if (im_zero)
exp_diff = mpfr_get_exp (mpc_realref (diff)) + 1;
else
exp_diff = MPC_MAX (mpfr_get_exp (mpc_realref (diff)),
mpfr_get_exp (mpc_imagref (diff)) + 1);
mpcr_set_one (rab);
(rab->exp) += (exp_diff - exp_an);
/* TODO: Should be done by an mpcr function. */
}
mpcr_add (rab, rab, an->r);
(rab->exp)++;
mpcr_add (res->r, rab, bn->r);
/* r = 2 * (rab + an->r) + bn->r */
if (cmp >= 0)
mpcb_mul (res, res, a);
else
mpcb_mul (res, res, b);
ok = mpcb_can_round (res, MPC_PREC_RE (rop), MPC_PREC_IM (rop),
rnd);
mpc_clear (diff);
}
if (!ok)
prec += prec + mpcr_get_exp (res->r);
} while (!ok);
inex = mpcb_round (rop, res, rnd);
mpcb_clear (a);
mpcb_clear (b);
mpcb_clear (an);
mpcb_clear (bn);
mpcb_clear (anp1);
mpcb_clear (bnp1);
mpcb_clear (res);
return inex;
}
static int
test_agm (void)
{
mpfr_prec_t prec;
mpc_t a, b, agm1, agm2;
mpc_rnd_t rnd = MPC_RNDDU;
int inex, inexb, ok;
prec = 1000;
mpc_init2 (a, prec);
mpc_init2 (b, prec);
mpc_set_si_si (a, 100, 0, MPC_RNDNN);
mpc_set_si_si (b, 0, 100, MPC_RNDNN);
mpc_init2 (agm1, prec);
mpc_init2 (agm2, prec);
inex = mpc_agm (agm1, a, b, rnd);
inexb = mpc_mpcb_agm (agm2, a, b, rnd);
ok = (inex == inexb) && (mpc_cmp (agm1, agm2) == 0);
mpc_clear (a);
mpc_clear (b);
mpc_clear (agm1);
mpc_clear (agm2);
return !ok;
}
int
main (void)
{
return test_agm ();
}
|