1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
/* mpfr_atan -- arc-tangent of a floating-point number
Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation.
This file is part of the MPFR Library, and was contributed by Mathieu Dutour.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Place, Fifth Floor, Boston,
MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/*
#define A
#define A1 1
#define A2 2
#define C
#define C1 3
#define C2 2
#define NO_FACTORIAL
#define GENERIC mpfr_atan_aux
#include "generic.c"
*/
/* This is the code of 'generic.c' slighty optimized for mpfr_atan
Compute y = atan (p/2^r) using 2^m terms for the series expansion */
static void
mpfr_atan_aux (mpfr_ptr y, mpz_ptr p, long r, int m, mpz_t *tab)
{
mpz_t *S, *T, *ptoj;
mp_limb_t *d;
unsigned long n, i, k, j, l;
mp_exp_t diff, expo;
int im;
/* Set Tables */
S = tab; /* S */
ptoj = S + 1*(m+1); /* p^2^j Precomputed table */
T = S + 2*(m+1); /* Product of Odd integer table */
/* From p to p^2 */
mpz_mul (p, p, p);
/* Normalize p */
d = PTR (p);
for (n = 0 ; MPFR_UNLIKELY (*d == 0) ; d++, n+= BITS_PER_MP_LIMB);
MPFR_ASSERTD (*d != 0);
count_trailing_zeros (im, *d);
/* Simplify p/2^r */
if (n+im > 0) {
mpz_tdiv_q_2exp (p, p, n+im);
MPFR_ASSERTD (r > n+im);
r -= n+im;
}
MPFR_ASSERTD (mpz_sgn (p) > 0);
MPFR_ASSERTD (m > 0);
/* Check if P==1 (Special case) */
l = 0;
if (mpz_cmp_ui (p, 1) != 0) {
/* P!= 1: Precomputed ptoj table */
mpz_set (ptoj[0], p);
for (im = 1 ; im < m ; im++)
mpz_mul (ptoj[im], ptoj[im-1], ptoj[im-1]);
/* Main loop */
n = 1UL << m;
for (i = k = 0; i < n; i+=2, k++) {
mpz_set_ui (T[k+1], 1+2*i+2);
mpz_mul_ui (S[k+1], p, 1+2*i);
mpz_mul_2exp (S[k], T[k+1], r);
mpz_sub (S[k], S[k], S[k+1]);
mpz_mul_ui (T[k], T[k+1], 1+2*i);
for (j = (i+2)>>1, l = 1; (j & 1) == 0; l++, j>>=1, k--) {
MPFR_ASSERTD (k > 0);
mpz_mul (S[k], S[k], ptoj[l]);
mpz_mul (S[k], S[k], T[k-1]);
mpz_mul (S[k-1], S[k-1], T[k]);
mpz_mul_2exp (S[k-1], S[k-1], r<<l);
mpz_add (S[k-1], S[k-1], S[k]);
mpz_mul (T[k-1], T[k-1], T[k]);
}
}
} else {
n = 1UL << m;
for (i = k = 0; i < n; i+=2, k++) {
mpz_set_ui (T[k+1], 1+2*i+2);
mpz_mul_2exp (S[k], T[k+1], r);
mpz_sub_ui (S[k], S[k], 1+2*i);
mpz_mul_ui (T[k], T[k+1], 1+2*i);
for (j = (i+2)>>1, l = 1; (j & 1) == 0; l++, j>>=1, k--) {
MPFR_ASSERTD (k > 0);
mpz_mul (S[k], S[k], T[k-1]);
mpz_mul (S[k-1], S[k-1], T[k]);
mpz_mul_2exp (S[k-1], S[k-1], r<<l);
mpz_add (S[k-1], S[k-1], S[k]);
mpz_mul (T[k-1], T[k-1], T[k]);
}
}
}
MPFR_ASSERTD (l == m && i == n);
MPFR_MPZ_SIZEINBASE2 (diff, S[0]);
diff -= 2*MPFR_PREC (y);
expo = diff + ((1<<m) - 1);
if (diff >=0)
mpz_tdiv_q_2exp (S[0], S[0], diff);
else
mpz_mul_2exp (S[0], S[0], -diff);
MPFR_MPZ_SIZEINBASE2 (diff, T[0]);
diff -= MPFR_PREC (y);
expo -= (diff + n -1);
if (diff >= 0)
mpz_tdiv_q_2exp (T[0], T[0],diff);
else
mpz_mul_2exp (T[0], T[0],-diff);
mpz_tdiv_q (S[0], S[0], T[0]);
mpfr_set_z (y, S[0], GMP_RNDD);
MPFR_SET_EXP (y, MPFR_EXP (y) + expo - r*(n-1) );
}
int
mpfr_atan (mpfr_ptr atan, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
mpfr_t xp, arctgt, sk, tmp, tmp2;
mpz_t ukz;
mpz_t *tabz;
mp_exp_t exptol;
mp_prec_t prec, realprec;
unsigned long twopoweri;
int comparaison, inexact, inexact2;
int i, n0, oldn0;
MPFR_GROUP_DECL (group);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("atan[%#R]=%R inexact=%d", atan, atan, inexact));
/* Singular cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (atan);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
if (MPFR_IS_POS (x)) /* arctan(+inf) = Pi/2 */
inexact = mpfr_const_pi (atan, rnd_mode);
else /* arctan(-inf) = -Pi/2 */
{
inexact = -mpfr_const_pi (atan,
MPFR_INVERT_RND (rnd_mode));
MPFR_CHANGE_SIGN (atan);
}
inexact2 = mpfr_div_2ui (atan, atan, 1, rnd_mode);
if (MPFR_UNLIKELY (inexact2))
inexact = inexact2; /* An underflow occurs */
MPFR_RET (inexact);
}
else /* x is necessarily 0 */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_ZERO (atan);
MPFR_SET_SAME_SIGN (atan, x);
MPFR_RET (0);
}
}
/* atan(x) = x - x^3/3 + x^5/5...
so the error is < 2^(3*EXP(x)-1)
so `EXP(x)-(3*EXP(x)-1)` = -2*EXP(x)+1 */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (atan,x, -2*MPFR_GET_EXP (x)+1,0,rnd_mode,{});
/* Set x_p=|x| */
MPFR_TMP_INIT_ABS (xp, x);
/* Other simple case arctang(-+1)=-+pi/4 */
comparaison = mpfr_cmp_ui (xp, 1);
if (MPFR_UNLIKELY (comparaison == 0))
{
int neg = MPFR_IS_NEG (x);
inexact = mpfr_const_pi (atan, MPFR_IS_POS (x) ? rnd_mode
: MPFR_INVERT_RND (rnd_mode));
if (neg)
{
inexact = -inexact;
MPFR_CHANGE_SIGN (atan);
}
inexact2 = mpfr_div_2ui (atan, atan, 2, rnd_mode);
if (MPFR_UNLIKELY (inexact2))
inexact = inexact2; /* an underflow occurs */
return inexact;
}
realprec = MPFR_PREC (atan) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (atan)) + 4;
prec = realprec + BITS_PER_MP_LIMB;
MPFR_SAVE_EXPO_MARK (expo);
/* Initialisation */
mpz_init (ukz);
MPFR_GROUP_INIT_4 (group, prec, sk, tmp, tmp2, arctgt);
oldn0 = 0;
tabz = (mpz_t *) 0;
MPFR_ZIV_INIT (loop, prec);
for (;;)
{
/* First, if |x| < 1, we need to have more prec to be able to round (sup)
n0 = ceil(log(prec_requested + 2 + 1+ln(2.4)/ln(2))/log(2)) */
mp_prec_t sup;
#if 0
sup = 1;
if (MPFR_GET_EXP (xp) < 0
&& (mpfr_uexp_t) (2-MPFR_GET_EXP (xp)) > realprec)
sup = (mpfr_uexp_t) (2-MPFR_GET_EXP (xp)) - realprec;
#else
sup = MPFR_GET_EXP (xp) < 0 ? 2-MPFR_GET_EXP (xp) : 1;
#endif
n0 = MPFR_INT_CEIL_LOG2 ((realprec + sup) + 3);
MPFR_ASSERTD (3*n0 > 2);
prec = (realprec + sup) + 1 + MPFR_INT_CEIL_LOG2 (3*n0-2);
/* Initialisation */
MPFR_GROUP_REPREC_4 (group, prec, sk, tmp, tmp2, arctgt);
if (MPFR_LIKELY (oldn0 == 0))
{
oldn0 = 3*(n0+1);
tabz = (mpz_t *) (*__gmp_allocate_func) (oldn0*sizeof (mpz_t));
for (i = 0; i < oldn0; i++)
mpz_init (tabz[i]);
}
else if (MPFR_UNLIKELY (oldn0 < 3*n0+1))
{
tabz = (mpz_t *) (*__gmp_reallocate_func)
(tabz, oldn0*sizeof (mpz_t), 3*(n0+1)*sizeof (mpz_t));
for (i = oldn0; i < 3*(n0+1); i++)
mpz_init (tabz[i]);
oldn0 = 3*(n0+1);
}
if (comparaison > 0)
mpfr_ui_div (sk, 1, xp, GMP_RNDN);
else
mpfr_set (sk, xp, GMP_RNDN);
/* sk is 1/|x| if |x| > 1, and |x| otherwise, i.e. min(|x|, 1/|x|) */
/* Assignation */
MPFR_SET_ZERO (arctgt);
twopoweri = 1<<0;
MPFR_ASSERTD (n0 >= 4);
for (i = 0 ; i < n0; i++)
{
if (MPFR_UNLIKELY (MPFR_IS_ZERO (sk)))
break;
/* Calculation of trunc(tmp) --> mpz */
mpfr_mul_2ui (tmp, sk, twopoweri, GMP_RNDN);
mpfr_trunc (tmp, tmp);
if (!MPFR_IS_ZERO (tmp))
{
exptol = mpfr_get_z_exp (ukz, tmp);
/* since the s_k are decreasing (see algorithms.tex),
and s_0 = min(|x|, 1/|x|) < 1, we have sk < 1,
thus exptol < 0 */
MPFR_ASSERTD (exptol < 0);
mpz_tdiv_q_2exp (ukz, ukz, (unsigned long int) (-exptol));
/* Calculation of arctan(Ak) */
mpfr_set_z (tmp, ukz, GMP_RNDN);
mpfr_div_2ui (tmp, tmp, twopoweri, GMP_RNDN);
MPFR_ASSERTD (2*twopoweri > twopoweri);
mpfr_atan_aux (tmp2, ukz, 2*twopoweri, n0 - i, tabz);
mpfr_mul (tmp2, tmp2, tmp, GMP_RNDN);
/* Addition */
mpfr_add (arctgt, arctgt, tmp2, GMP_RNDN);
/* Next iteration */
mpfr_sub (tmp2, sk, tmp, GMP_RNDN);
mpfr_mul (sk, sk, tmp, GMP_RNDN);
mpfr_add_ui (sk, sk, 1, GMP_RNDN);
mpfr_div (sk, tmp2, sk, GMP_RNDN);
}
twopoweri <<= 1;
}
/* Add last step (Arctan(sk) ~= sk */
mpfr_add (arctgt, arctgt, sk, GMP_RNDN);
if (comparaison > 0)
{
mpfr_const_pi (tmp, GMP_RNDN);
mpfr_div_2ui (tmp, tmp, 1, GMP_RNDN);
mpfr_sub (arctgt, tmp, arctgt, GMP_RNDN);
}
MPFR_SET_POS (arctgt);
if (MPFR_LIKELY (MPFR_CAN_ROUND (arctgt, realprec, MPFR_PREC (atan),
rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, realprec);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set4 (atan, arctgt, rnd_mode, MPFR_SIGN (x));
for (i = 0 ; i < oldn0 ; i++)
mpz_clear (tabz[i]);
mpz_clear (ukz);
(*__gmp_free_func) (tabz, oldn0*sizeof (mpz_t));
MPFR_GROUP_CLEAR (group);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (arctgt, inexact, rnd_mode);
}
|