1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
/* mpfr_const_euler -- Euler's constant
Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Place, Fifth Floor, Boston,
MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/* Declare the cache */
MPFR_DECL_INIT_CACHE(__gmpfr_cache_const_euler, mpfr_const_euler_internal);
/* Set User Interface */
#undef mpfr_const_euler
int
mpfr_const_euler (mpfr_ptr x, mp_rnd_t rnd_mode) {
return mpfr_cache (x, __gmpfr_cache_const_euler, rnd_mode);
}
static void mpfr_const_euler_S2 (mpfr_ptr, unsigned long);
static void mpfr_const_euler_R (mpfr_ptr, unsigned long);
int
mpfr_const_euler_internal (mpfr_t x, mp_rnd_t rnd)
{
mp_prec_t prec = MPFR_PREC(x), m, log2m;
mpfr_t y, z;
unsigned long n;
int inexact;
MPFR_ZIV_DECL (loop);
log2m = MPFR_INT_CEIL_LOG2 (prec);
m = prec + 2 * log2m + 23;
mpfr_init2 (y, m);
mpfr_init2 (z, m);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mp_exp_t exp_S, err;
/* since prec >= 1, we have m >= 24 here, which ensures n >= 9 below */
n = 1 + (unsigned long) ((double) m * LOG2 / 2.0);
MPFR_ASSERTD (n >= 9);
mpfr_const_euler_S2 (y, n); /* error <= 3 ulps */
exp_S = MPFR_EXP(y);
mpfr_set_ui (z, n, GMP_RNDN);
mpfr_log (z, z, GMP_RNDD); /* error <= 1 ulp */
mpfr_sub (y, y, z, GMP_RNDN); /* S'(n) - log(n) */
/* the error is less than 1/2 + 3*2^(exp_S-EXP(y)) + 2^(EXP(z)-EXP(y))
<= 1/2 + 2^(exp_S+2-EXP(y)) + 2^(EXP(z)-EXP(y))
<= 1/2 + 2^(1+MAX(exp_S+2,EXP(z))-EXP(y)) */
err = 1 + MAX(exp_S + 2, MPFR_EXP(z)) - MPFR_EXP(y);
err = (err >= -1) ? err + 1 : 0; /* error <= 2^err ulp(y) */
exp_S = MPFR_EXP(y);
mpfr_const_euler_R (z, n); /* err <= ulp(1/2) = 2^(-m) */
mpfr_sub (y, y, z, GMP_RNDN);
/* err <= 1/2 ulp(y) + 2^(-m) + 2^(err + exp_S - EXP(y)) ulp(y).
Since the result is between 0.5 and 1, ulp(y) = 2^(-m).
So we get 3/2*ulp(y) + 2^(err + exp_S - EXP(y)) ulp(y).
3/2 + 2^e <= 2^(e+1) for e>=1, and <= 2^2 otherwise */
err = err + exp_S - MPFR_EXP(y);
err = (err >= 1) ? err + 1 : 2;
if (MPFR_LIKELY (MPFR_CAN_ROUND (y, m - err, prec, rnd)))
break;
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (y, m);
mpfr_set_prec (z, m);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (x, y, rnd);
mpfr_clear (y);
mpfr_clear (z);
return inexact; /* always inexact */
}
static void
mpfr_const_euler_S2_aux (mpz_t P, mpz_t Q, mpz_t T, unsigned long n,
unsigned long a, unsigned long b, int need_P)
{
if (a + 1 == b)
{
mpz_set_ui (P, n);
if (a > 1)
mpz_mul_si (P, P, 1 - (long) a);
mpz_set (T, P);
mpz_set_ui (Q, a);
mpz_mul_ui (Q, Q, a);
}
else
{
unsigned long c = (a + b) / 2;
mpz_t P2, Q2, T2;
mpfr_const_euler_S2_aux (P, Q, T, n, a, c, 1);
mpz_init (P2);
mpz_init (Q2);
mpz_init (T2);
mpfr_const_euler_S2_aux (P2, Q2, T2, n, c, b, 1);
mpz_mul (T, T, Q2);
mpz_mul (T2, T2, P);
mpz_add (T, T, T2);
if (need_P)
mpz_mul (P, P, P2);
mpz_mul (Q, Q, Q2);
mpz_clear (P2);
mpz_clear (Q2);
mpz_clear (T2);
/* divide by 2 if possible */
{
unsigned long v2;
v2 = mpz_scan1 (P, 0);
c = mpz_scan1 (Q, 0);
if (c < v2)
v2 = c;
c = mpz_scan1 (T, 0);
if (c < v2)
v2 = c;
if (v2)
{
mpz_tdiv_q_2exp (P, P, v2);
mpz_tdiv_q_2exp (Q, Q, v2);
mpz_tdiv_q_2exp (T, T, v2);
}
}
}
}
/* computes S(n) = sum(n^k*(-1)^(k-1)/k!/k, k=1..ceil(4.319136566 * n))
using binary splitting.
We have S(n) = sum(f(k), k=1..N) with N=ceil(4.319136566 * n)
and f(k) = n^k*(-1)*(k-1)/k!/k,
thus f(k)/f(k-1) = -n*(k-1)/k^2
*/
static void
mpfr_const_euler_S2 (mpfr_t x, unsigned long n)
{
mpz_t P, Q, T;
unsigned long N = (unsigned long) (ALPHA * (double) n + 1.0);
mpz_init (P);
mpz_init (Q);
mpz_init (T);
mpfr_const_euler_S2_aux (P, Q, T, n, 1, N + 1, 0);
mpfr_set_z (x, T, GMP_RNDN);
mpfr_div_z (x, x, Q, GMP_RNDN);
mpz_clear (P);
mpz_clear (Q);
mpz_clear (T);
}
/* computes R(n) = exp(-n)/n * sum(k!/(-n)^k, k=0..n-2)
with error at most 4*ulp(x). Assumes n>=2.
Since x <= exp(-n)/n <= 1/8, then 4*ulp(x) <= ulp(1).
*/
static void
mpfr_const_euler_R (mpfr_t x, unsigned long n)
{
unsigned long k, m;
mpz_t a, s;
mpfr_t y;
MPFR_ASSERTN (n >= 2); /* ensures sum(k!/(-n)^k, k=0..n-2) >= 2/3 */
/* as we multiply the sum by exp(-n), we need only PREC(x) - n/LOG2 bits */
m = MPFR_PREC(x) - (unsigned long) ((double) n / LOG2);
mpz_init_set_ui (a, 1);
mpz_mul_2exp (a, a, m);
mpz_init_set (s, a);
for (k = 1; k <= n; k++)
{
mpz_mul_ui (a, a, k);
mpz_div_ui (a, a, n);
/* the error e(k) on a is e(k) <= 1 + k/n*e(k-1) with e(0)=0,
i.e. e(k) <= k */
if (k % 2)
mpz_sub (s, s, a);
else
mpz_add (s, s, a);
}
/* the error on s is at most 1+2+...+n = n*(n+1)/2 */
mpz_div_ui (s, s, n); /* err <= 1 + (n+1)/2 */
MPFR_ASSERTN (MPFR_PREC(x) >= mpz_sizeinbase(s, 2));
mpfr_set_z (x, s, GMP_RNDD); /* exact */
mpfr_div_2ui (x, x, m, GMP_RNDD);
/* now x = 1/n * sum(k!/(-n)^k, k=0..n-2) <= 1/n */
/* err(x) <= (n+1)/2^m <= (n+1)*exp(n)/2^PREC(x) */
mpfr_init2 (y, m);
mpfr_set_si (y, -(long)n, GMP_RNDD); /* assumed exact */
mpfr_exp (y, y, GMP_RNDD); /* err <= ulp(y) <= exp(-n)*2^(1-m) */
mpfr_mul (x, x, y, GMP_RNDD);
/* err <= ulp(x) + (n + 1 + 2/n) / 2^prec(x)
<= ulp(x) + (n + 1 + 2/n) ulp(x)/x since x*2^(-prec(x)) < ulp(x)
<= ulp(x) + (n + 1 + 2/n) 3/(2n) ulp(x) since x >= 2/3*n for n >= 2
<= 4 * ulp(x) for n >= 2 */
mpfr_clear (y);
mpz_clear (a);
mpz_clear (s);
}
|