1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
/* mpfr_mul -- multiply two floating-point numbers
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
Free Software Foundation, Inc.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Place, Fifth Floor, Boston,
MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/********* BEGINNING CHECK *************/
/* Check if we have to check the result of mpfr_mul.
TODO: Find a better (and faster?) check than using old implementation */
#ifdef WANT_ASSERT
# if WANT_ASSERT >= 3
int mpfr_mul2 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode);
static int
mpfr_mul3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode)
{
/* Old implementation */
int sign_product, cc, inexact;
mp_exp_t ax;
mp_limb_t *tmp;
mp_limb_t b1;
mp_prec_t bq, cq;
mp_size_t bn, cn, tn, k;
MPFR_TMP_DECL(marker);
/* deal with special cases */
if (MPFR_ARE_SINGULAR(b,c))
{
if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c))
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
if (MPFR_IS_INF(b))
{
if (MPFR_IS_INF(c) || MPFR_NOTZERO(c))
{
MPFR_SET_SIGN(a,sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF(c))
{
if (MPFR_NOTZERO(b))
{
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else
{
MPFR_ASSERTD(MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_ZERO(a);
MPFR_RET(0); /* 0 * 0 is exact */
}
}
MPFR_CLEAR_FLAGS(a);
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
bq = MPFR_PREC(b);
cq = MPFR_PREC(c);
MPFR_ASSERTD(bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */
bn = (bq+BITS_PER_MP_LIMB-1)/BITS_PER_MP_LIMB; /* number of limbs of b */
cn = (cq+BITS_PER_MP_LIMB-1)/BITS_PER_MP_LIMB; /* number of limbs of c */
k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
tn = (bq + cq + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB;
/* <= k, thus no int overflow */
MPFR_ASSERTD(tn <= k);
/* Check for no size_t overflow*/
MPFR_ASSERTD((size_t) k <= ((size_t) -1) / BYTES_PER_MP_LIMB);
MPFR_TMP_MARK(marker);
tmp = (mp_limb_t *) MPFR_TMP_ALLOC((size_t) k * BYTES_PER_MP_LIMB);
/* multiplies two mantissa in temporary allocated space */
b1 = (MPFR_LIKELY(bn >= cn)) ?
mpn_mul (tmp, MPFR_MANT(b), bn, MPFR_MANT(c), cn)
: mpn_mul (tmp, MPFR_MANT(c), cn, MPFR_MANT(b), bn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(BITS_PER_MP_LIMB-2) */
b1 >>= BITS_PER_MP_LIMB - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY(b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
cc = mpfr_round_raw (MPFR_MANT (a), tmp, bq + cq,
MPFR_IS_NEG_SIGN(sign_product),
MPFR_PREC (a), rnd_mode, &inexact);
/* cc = 1 ==> result is a power of two */
if (MPFR_UNLIKELY(cc))
MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;
MPFR_TMP_FREE(marker);
{
mp_exp_t ax2 = ax + (mp_exp_t) (b1 - 1 + cc);
if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, sign_product);
if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
{
/* In the rounding to the nearest mode, if the exponent of the exact
result (i.e. before rounding, i.e. without taking cc into account)
is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
both arguments are powers of 2), then round to zero. */
if (rnd_mode == GMP_RNDN &&
(ax + (mp_exp_t) b1 < __gmpfr_emin ||
(mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
rnd_mode = GMP_RNDZ;
return mpfr_underflow (a, rnd_mode, sign_product);
}
MPFR_SET_EXP (a, ax2);
MPFR_SET_SIGN(a, sign_product);
}
return inexact;
}
int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode)
{
mpfr_t ta, tb, tc;
int inexact1, inexact2;
mpfr_init2 (ta, MPFR_PREC (a));
mpfr_init2 (tb, MPFR_PREC (b));
mpfr_init2 (tc, MPFR_PREC (c));
MPFR_ASSERTN (mpfr_set (tb, b, GMP_RNDN) == 0);
MPFR_ASSERTN (mpfr_set (tc, c, GMP_RNDN) == 0);
inexact2 = mpfr_mul3 (ta, tb, tc, rnd_mode);
inexact1 = mpfr_mul2 (a, b, c, rnd_mode);
if (mpfr_cmp (ta, a) || inexact1*inexact2 < 0
|| (inexact1*inexact2 == 0 && (inexact1|inexact2) != 0))
{
fprintf (stderr, "mpfr_mul return different values for %s\n"
"Prec_a = %lu, Prec_b = %lu, Prec_c = %lu\nB = ",
mpfr_print_rnd_mode (rnd_mode),
MPFR_PREC (a), MPFR_PREC (b), MPFR_PREC (c));
mpfr_out_str (stderr, 16, 0, tb, GMP_RNDN);
fprintf (stderr, "\nC = ");
mpfr_out_str (stderr, 16, 0, tc, GMP_RNDN);
fprintf (stderr, "\nOldMul: ");
mpfr_out_str (stderr, 16, 0, ta, GMP_RNDN);
fprintf (stderr, "\nNewMul: ");
mpfr_out_str (stderr, 16, 0, a, GMP_RNDN);
fprintf (stderr, "\nNewInexact = %d | OldInexact = %d\n",
inexact1, inexact2);
MPFR_ASSERTN(0);
}
mpfr_clears (ta, tb, tc, NULL);
return inexact1;
}
# define mpfr_mul mpfr_mul2
# endif
#endif
/****** END OF CHECK *******/
/* Multiply 2 mpfr_t */
int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode)
{
int sign, inexact;
mp_exp_t ax, ax2;
mp_limb_t *tmp;
mp_limb_t b1;
mp_prec_t bq, cq;
mp_size_t bn, cn, tn, k;
MPFR_TMP_DECL (marker);
MPFR_LOG_FUNC (("b[%#R]=%R c[%#R]=%R rnd=%d", b, b, c, c, rnd_mode),
("a[%#R]=%R inexact=%d", a, a, inexact));
/* deal with special cases */
if (MPFR_ARE_SINGULAR (b, c))
{
if (MPFR_IS_NAN (b) || MPFR_IS_NAN (c))
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
if (MPFR_IS_INF (b))
{
if (!MPFR_IS_ZERO (c))
{
MPFR_SET_SIGN (a, sign);
MPFR_SET_INF (a);
MPFR_RET (0);
}
else
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF (c))
{
if (!MPFR_IS_ZERO (b))
{
MPFR_SET_SIGN (a, sign);
MPFR_SET_INF (a);
MPFR_RET(0);
}
else
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
MPFR_SET_SIGN (a, sign);
MPFR_SET_ZERO (a);
MPFR_RET (0);
}
}
MPFR_CLEAR_FLAGS (a);
sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
/* Note: the exponent of the exact result will be e = bx + cx + ec with
ec in {-1,0,1} and the following assumes that e is representable. */
/* FIXME: Useful since we do an exponent check after ?
* It is useful iff the precision is big, there is an overflow
* and we are doing further mults...*/
#ifdef HUGE
if (MPFR_UNLIKELY (ax > __gmpfr_emax + 1))
return mpfr_overflow (a, rnd_mode, sign);
if (MPFR_UNLIKELY (ax < __gmpfr_emin - 2))
return mpfr_underflow (a, rnd_mode == GMP_RNDN ? GMP_RNDZ : rnd_mode,
sign);
#endif
bq = MPFR_PREC (b);
cq = MPFR_PREC (c);
MPFR_ASSERTD (bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */
bn = (bq+BITS_PER_MP_LIMB-1)/BITS_PER_MP_LIMB; /* number of limbs of b */
cn = (cq+BITS_PER_MP_LIMB-1)/BITS_PER_MP_LIMB; /* number of limbs of c */
k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
tn = (bq + cq + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB;
MPFR_ASSERTD (tn <= k); /* tn <= k, thus no int overflow */
/* Check for no size_t overflow*/
MPFR_ASSERTD ((size_t) k <= ((size_t) -1) / BYTES_PER_MP_LIMB);
MPFR_TMP_MARK (marker);
tmp = (mp_limb_t *) MPFR_TMP_ALLOC ((size_t) k * BYTES_PER_MP_LIMB);
/* multiplies two mantissa in temporary allocated space */
if (MPFR_UNLIKELY (bn < cn))
{
mpfr_srcptr tmp = b;
mp_size_t tn = bn;
b = c;
bn = cn;
c = tmp;
cn = tn;
}
MPFR_ASSERTD (bn >= cn);
/* longlong's umul_ppmm seems to be buggy on HP-UX, s390 and hppa */
#if ! defined (__hpux) && ! defined (__s390__) && ! defined (__hppa__)
if (MPFR_LIKELY (bn <= 2))
{
if (bn == 1)
{
/* 1 limb * 1 limb */
umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
b1 = tmp[1];
}
else if (MPFR_UNLIKELY (cn == 1))
{
/* 2 limbs * 1 limb */
mp_limb_t t;
umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
umul_ppmm (tmp[2], t, MPFR_MANT (b)[1], MPFR_MANT (c)[0]);
add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t);
b1 = tmp[2];
}
else
{
/* 2 limbs * 2 limbs */
mp_limb_t t1, t2, t3;
/* First 2 limbs * 1 limb */
umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
umul_ppmm (tmp[2], t1, MPFR_MANT (b)[1], MPFR_MANT (c)[0]);
add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t1);
/* Second, the other 2 limbs * 1 limb product */
umul_ppmm (t1, t2, MPFR_MANT (b)[0], MPFR_MANT (c)[1]);
umul_ppmm (tmp[3], t3, MPFR_MANT (b)[1], MPFR_MANT (c)[1]);
add_ssaaaa (tmp[3], t1, tmp[3], t1, 0, t3);
/* Sum those two partial products */
add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], t1, t2);
tmp[3] += (tmp[2] < t1);
b1 = tmp[3];
}
b1 >>= (BITS_PER_MP_LIMB - 1);
tmp += k - tn;
if (MPFR_UNLIKELY (b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
}
else
#endif
if (MPFR_UNLIKELY (bn > MPFR_MUL_THRESHOLD))
{
mp_limb_t *bp, *cp;
mp_size_t n;
mp_prec_t p;
/* Fist check if we can reduce the precision of b or c:
exact values are a nightmare for the short product trick */
bp = MPFR_MANT (b);
cp = MPFR_MANT (c);
MPFR_ASSERTN (MPFR_MUL_THRESHOLD >= 1);
if (MPFR_UNLIKELY ((bp[0] == 0 && bp[1] == 0) ||
(cp[0] == 0 && cp[1] == 0)))
{
mpfr_t b_tmp, c_tmp;
MPFR_TMP_FREE (marker);
/* Check for b */
while (*bp == 0)
{
bp++;
bn--;
MPFR_ASSERTD (bn > 0);
} /* This must end since the MSL is != 0 */
/* Check for c too */
while (*cp == 0)
{
cp++;
cn--;
MPFR_ASSERTD (cn > 0);
} /* This must end since the MSL is != 0 */
/* It is not the faster way, but it is safer */
MPFR_SET_SAME_SIGN (b_tmp, b);
MPFR_SET_EXP (b_tmp, MPFR_GET_EXP (b));
MPFR_PREC (b_tmp) = bn * BITS_PER_MP_LIMB;
MPFR_MANT (b_tmp) = bp;
MPFR_SET_SAME_SIGN (c_tmp, c);
MPFR_SET_EXP (c_tmp, MPFR_GET_EXP (c));
MPFR_PREC (c_tmp) = cn * BITS_PER_MP_LIMB;
MPFR_MANT (c_tmp) = cp;
/* Call again mpfr_mul with the fixed arguments */
return mpfr_mul (a, b_tmp, c_tmp, rnd_mode);
}
/* Compute estimated precision of mulhigh.
We could use `+ (n < cn) + (n < bn)' instead of `+ 2',
but does it worth it? */
n = MPFR_LIMB_SIZE (a) + 1;
n = MIN (n, cn);
MPFR_ASSERTD (n >= 1 && 2*n <= k && n <= cn && n <= bn);
p = n * BITS_PER_MP_LIMB - MPFR_INT_CEIL_LOG2 (n + 2);
bp += bn - n;
cp += cn - n;
/* Check if MulHigh can produce a roundable result.
We may lost 1 bit due to RNDN, 1 due to final shift. */
if (MPFR_UNLIKELY (MPFR_PREC (a) > p - 5))
{
if (MPFR_UNLIKELY (MPFR_PREC (a) > p - 5 + BITS_PER_MP_LIMB
|| bn <= MPFR_MUL_THRESHOLD+1))
{
/* MulHigh can't produce a roundable result. */
MPFR_LOG_MSG (("mpfr_mulhigh can't be used (%lu VS %lu)\n",
MPFR_PREC (a), p));
goto full_multiply;
}
/* Add one extra limb to mantissa of b and c. */
if (bn > n)
bp --;
else
{
bp = MPFR_TMP_ALLOC ((n+1) * sizeof (mp_limb_t));
bp[0] = 0;
MPN_COPY (bp + 1, MPFR_MANT (b) + bn - n, n);
}
if (cn > n)
cp --; /* FIXME: Could this happen? */
else
{
cp = MPFR_TMP_ALLOC ((n+1) * sizeof (mp_limb_t));
cp[0] = 0;
MPN_COPY (cp + 1, MPFR_MANT (c) + cn - n, n);
}
/* We will compute with one extra limb */
n++;
p = n * BITS_PER_MP_LIMB - MPFR_INT_CEIL_LOG2 (n + 2);
/* Due to some nasty reasons we can have only 4 bits */
MPFR_ASSERTD (MPFR_PREC (a) <= p - 4);
if (MPFR_LIKELY (k < 2*n))
{
tmp = MPFR_TMP_ALLOC (2 * n * sizeof (mp_limb_t));
tmp += 2*n-k; /* `tmp' still points to an area of `k' limbs */
}
}
MPFR_LOG_MSG (("Use mpfr_mulhigh (%lu VS %lu)\n", MPFR_PREC (a), p));
/* Compute an approximation of the product of b and c */
mpfr_mulhigh_n (tmp+k-2*n, bp, cp, n);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(BITS_PER_MP_LIMB-2) */
b1 = tmp[k-1] >> (BITS_PER_MP_LIMB - 1); /* msb from the product */
/* If the mantissas of b and c are uniformly distributed in (1/2, 1],
then their product is in (1/4, 1/2] with probability 2*ln(2)-1
~ 0.386 and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY (b1 == 0))
mpn_lshift (tmp, tmp, tn, 1);
MPFR_ASSERTD (MPFR_LIMB_MSB (tmp[tn-1]) != 0);
if (MPFR_UNLIKELY (!mpfr_round_p (tmp, tn, p+b1-1, MPFR_PREC(a)
+ (rnd_mode == GMP_RNDN))))
{
tmp -= k - tn; /* tmp may have changed, FIX IT!!!!! */
goto full_multiply;
}
}
else
{
full_multiply:
MPFR_LOG_MSG (("Use mpn_mul\n", 0));
b1 = mpn_mul (tmp, MPFR_MANT (b), bn, MPFR_MANT (c), cn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(BITS_PER_MP_LIMB-2) */
b1 >>= BITS_PER_MP_LIMB - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in (1/2, 1],
then their product is in (1/4, 1/2] with probability 2*ln(2)-1
~ 0.386 and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY (b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
}
ax2 = ax + (mp_exp_t) (b1 - 1);
MPFR_RNDRAW (inexact, a, tmp, bq+cq, rnd_mode, sign, ax2++);
MPFR_TMP_FREE (marker);
MPFR_EXP (a) = ax2; /* Can't use MPFR_SET_EXP: Expo may be out of range */
MPFR_SET_SIGN (a, sign);
if (MPFR_UNLIKELY (ax2 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, sign);
if (MPFR_UNLIKELY (ax2 < __gmpfr_emin))
{
/* In the rounding to the nearest mode, if the exponent of the exact
result (i.e. before rounding, i.e. without taking cc into account)
is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
both arguments are powers of 2), then round to zero. */
if (rnd_mode == GMP_RNDN
&& (ax + (mp_exp_t) b1 < __gmpfr_emin
|| (mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
rnd_mode = GMP_RNDZ;
return mpfr_underflow (a, rnd_mode, sign);
}
return inexact;
}
|