1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
/* mpfr_rint -- Round to an integer.
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Place, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "mpfr-impl.h"
/* Merge the following mpfr_rint code with mpfr_round_raw_generic? */
int
mpfr_rint (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
int sign;
int rnd_away;
mp_exp_t exp;
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ))
{
if (MPFR_IS_NAN(u))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
MPFR_SET_SAME_SIGN(r, u);
if (MPFR_IS_INF(u))
{
MPFR_SET_INF(r);
MPFR_RET(0); /* infinity is exact */
}
else /* now u is zero */
{
MPFR_ASSERTD(MPFR_IS_ZERO(u));
MPFR_SET_ZERO(r);
MPFR_RET(0); /* zero is exact */
}
}
MPFR_SET_SAME_SIGN (r, u); /* Does nothing if r==u */
sign = MPFR_INT_SIGN (u);
exp = MPFR_GET_EXP (u);
rnd_away =
rnd_mode == GMP_RNDD ? sign < 0 :
rnd_mode == GMP_RNDU ? sign > 0 :
rnd_mode == GMP_RNDZ ? 0 : -1;
/* rnd_away:
1 if round away from zero,
0 if round to zero,
-1 if not decided yet.
*/
if (MPFR_UNLIKELY (exp <= 0)) /* 0 < |u| < 1 ==> round |u| to 0 or 1 */
{
/* Note: in the GMP_RNDN mode, 0.5 must be rounded to 0. */
if (rnd_away != 0 &&
(rnd_away > 0 ||
(exp == 0 && (rnd_mode == GMP_RNDNA ||
!mpfr_powerof2_raw (u)))))
{
mp_limb_t *rp;
mp_size_t rm;
rp = MPFR_MANT(r);
rm = (MPFR_PREC(r) - 1) / BITS_PER_MP_LIMB;
rp[rm] = MPFR_LIMB_HIGHBIT;
MPN_ZERO(rp, rm);
MPFR_SET_EXP (r, 1); /* |r| = 1 */
MPFR_RET(sign > 0 ? 2 : -2);
}
else
{
MPFR_SET_ZERO(r); /* r = 0 */
MPFR_RET(sign > 0 ? -2 : 2);
}
}
else /* exp > 0, |u| >= 1 */
{
mp_limb_t *up, *rp;
mp_size_t un, rn, ui;
int sh, idiff;
int uflags;
/*
* uflags will contain:
* _ 0 if u is an integer representable in r,
* _ 1 if u is an integer not representable in r,
* _ 2 if u is not an integer.
*/
up = MPFR_MANT(u);
rp = MPFR_MANT(r);
un = MPFR_LIMB_SIZE(u);
rn = MPFR_LIMB_SIZE(r);
MPFR_UNSIGNED_MINUS_MODULO (sh, MPFR_PREC (r));
MPFR_SET_EXP (r, exp); /* Does nothing if r==u */
if ((exp - 1) / BITS_PER_MP_LIMB >= un)
{
ui = un;
idiff = 0;
uflags = 0; /* u is an integer, representable or not in r */
}
else
{
mp_size_t uj;
ui = (exp - 1) / BITS_PER_MP_LIMB + 1; /* #limbs of the int part */
MPFR_ASSERTD (un >= ui);
uj = un - ui; /* lowest limb of the integer part */
idiff = exp % BITS_PER_MP_LIMB; /* #int-part bits in up[uj] or 0 */
uflags = idiff == 0 || (up[uj] << idiff) == 0 ? 0 : 2;
if (uflags == 0)
while (uj > 0)
if (up[--uj] != 0)
{
uflags = 2;
break;
}
}
if (ui > rn)
{
/* More limbs in the integer part of u than in r.
Just round u with the precision of r. */
MPFR_ASSERTD (rp != up && un > rn);
MPN_COPY (rp, up + (un - rn), rn); /* r != u */
if (rnd_away < 0)
{
/* This is a rounding to nearest mode (GMP_RNDN or GMP_RNDNA).
Decide the rounding direction here. */
if (rnd_mode == GMP_RNDN &&
(rp[0] & (MPFR_LIMB_ONE << sh)) == 0)
{ /* halfway cases rounded towards zero */
mp_limb_t a, b;
/* a: rounding bit and some of the following bits */
/* b: boundary for a (weight of the rounding bit in a) */
if (sh != 0)
{
a = rp[0] & ((MPFR_LIMB_ONE << sh) - 1);
b = MPFR_LIMB_ONE << (sh - 1);
}
else
{
a = up[un - rn - 1];
b = MPFR_LIMB_HIGHBIT;
}
rnd_away = a > b;
if (a == b)
{
mp_size_t i;
for (i = un - rn - 1 - (sh == 0); i >= 0; i--)
if (up[i] != 0)
{
rnd_away = 1;
break;
}
}
}
else /* halfway cases rounded away from zero */
rnd_away = /* rounding bit */
((sh != 0 && (rp[0] & (MPFR_LIMB_ONE << (sh - 1))) != 0) ||
(sh == 0 && (up[un - rn - 1] & MPFR_LIMB_HIGHBIT) != 0));
}
if (uflags == 0)
{ /* u is an integer; determine if it is representable in r */
if (sh != 0 && rp[0] << (BITS_PER_MP_LIMB - sh) != 0)
uflags = 1; /* u is not representable in r */
else
{
mp_size_t i;
for (i = un - rn - 1; i >= 0; i--)
if (up[i] != 0)
{
uflags = 1; /* u is not representable in r */
break;
}
}
}
}
else /* ui <= rn */
{
mp_size_t uj, rj;
int ush;
uj = un - ui; /* lowest limb of the integer part in u */
rj = rn - ui; /* lowest limb of the integer part in r */
if (MPFR_LIKELY (rp != up))
MPN_COPY(rp + rj, up + uj, ui);
/* Ignore the lowest rj limbs, all equal to zero. */
rp += rj;
rn = ui;
/* number of fractional bits in whole rp[0] */
ush = idiff == 0 ? 0 : BITS_PER_MP_LIMB - idiff;
if (rj == 0 && ush < sh)
{
/* If u is an integer (uflags == 0), we need to determine
if it is representable in r, i.e. if its sh - ush bits
in the non-significant part of r are all 0. */
if (uflags == 0 && (rp[0] & ((MPFR_LIMB_ONE << sh) -
(MPFR_LIMB_ONE << ush))) != 0)
uflags = 1; /* u is an integer not representable in r */
}
else /* The integer part of u fits in r, we'll round to it. */
sh = ush;
if (rnd_away < 0)
{
/* This is a rounding to nearest mode.
Decide the rounding direction here. */
if (uj == 0 && sh == 0)
rnd_away = 0; /* rounding bit = 0 (not represented in u) */
else if (rnd_mode == GMP_RNDN &&
(rp[0] & (MPFR_LIMB_ONE << sh)) == 0)
{ /* halfway cases rounded towards zero */
mp_limb_t a, b;
/* a: rounding bit and some of the following bits */
/* b: boundary for a (weight of the rounding bit in a) */
if (sh != 0)
{
a = rp[0] & ((MPFR_LIMB_ONE << sh) - 1);
b = MPFR_LIMB_ONE << (sh - 1);
}
else
{
MPFR_ASSERTD (uj >= 1); /* see above */
a = up[uj - 1];
b = MPFR_LIMB_HIGHBIT;
}
rnd_away = a > b;
if (a == b)
{
mp_size_t i;
for (i = uj - 1 - (sh == 0); i >= 0; i--)
if (up[i] != 0)
{
rnd_away = 1;
break;
}
}
}
else /* halfway cases rounded away from zero */
rnd_away = /* rounding bit */
((sh != 0 && (rp[0] & (MPFR_LIMB_ONE << (sh - 1))) != 0) ||
(sh == 0 && (MPFR_ASSERTD (uj >= 1),
up[uj - 1] & MPFR_LIMB_HIGHBIT) != 0));
}
/* Now we can make the low rj limbs to 0 */
MPN_ZERO (rp-rj, rj);
}
if (sh != 0)
rp[0] &= MP_LIMB_T_MAX << sh;
/* If u is a representable integer, there is no rounding. */
if (uflags == 0)
MPFR_RET(0);
MPFR_ASSERTD (rnd_away >= 0); /* rounding direction is defined */
if (rnd_away && mpn_add_1(rp, rp, rn, MPFR_LIMB_ONE << sh))
{
if (exp == __gmpfr_emax)
return mpfr_overflow(r, rnd_mode, MPFR_SIGN(r)) >= 0 ?
uflags : -uflags;
else
{
MPFR_SET_EXP(r, exp + 1);
rp[rn-1] = MPFR_LIMB_HIGHBIT;
}
}
MPFR_RET (rnd_away ^ (sign < 0) ? uflags : -uflags);
} /* exp > 0, |u| >= 1 */
}
#undef mpfr_round
int
mpfr_round (mpfr_ptr r, mpfr_srcptr u)
{
return mpfr_rint(r, u, GMP_RNDNA);
}
#undef mpfr_trunc
int
mpfr_trunc (mpfr_ptr r, mpfr_srcptr u)
{
return mpfr_rint(r, u, GMP_RNDZ);
}
#undef mpfr_ceil
int
mpfr_ceil (mpfr_ptr r, mpfr_srcptr u)
{
return mpfr_rint(r, u, GMP_RNDU);
}
#undef mpfr_floor
int
mpfr_floor (mpfr_ptr r, mpfr_srcptr u)
{
return mpfr_rint(r, u, GMP_RNDD);
}
#undef mpfr_rint_round
int
mpfr_rint_round (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u))
return mpfr_set (r, u, rnd_mode);
else
{
mpfr_t tmp;
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (tmp, MPFR_PREC (u));
/* round(u) is representable in tmp unless an overflow occurs */
mpfr_clear_overflow ();
mpfr_round (tmp, u);
inex = (mpfr_overflow_p ()
? mpfr_overflow (r, rnd_mode, MPFR_SIGN (u))
: mpfr_set (r, tmp, rnd_mode));
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (r, inex, rnd_mode);
}
}
#undef mpfr_rint_trunc
int
mpfr_rint_trunc (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u))
return mpfr_set (r, u, rnd_mode);
else
{
mpfr_t tmp;
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (tmp, MPFR_PREC (u));
/* trunc(u) is always representable in tmp */
mpfr_trunc (tmp, u);
inex = mpfr_set (r, tmp, rnd_mode);
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (r, inex, rnd_mode);
}
}
#undef mpfr_rint_ceil
int
mpfr_rint_ceil (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u))
return mpfr_set (r, u, rnd_mode);
else
{
mpfr_t tmp;
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (tmp, MPFR_PREC (u));
/* ceil(u) is representable in tmp unless an overflow occurs */
mpfr_clear_overflow ();
mpfr_ceil (tmp, u);
inex = (mpfr_overflow_p ()
? mpfr_overflow (r, rnd_mode, MPFR_SIGN_POS)
: mpfr_set (r, tmp, rnd_mode));
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (r, inex, rnd_mode);
}
}
#undef mpfr_rint_floor
int
mpfr_rint_floor (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ) || mpfr_integer_p (u))
return mpfr_set (r, u, rnd_mode);
else
{
mpfr_t tmp;
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_SAVE_EXPO_MARK (expo);
mpfr_init2 (tmp, MPFR_PREC (u));
/* floor(u) is representable in tmp unless an overflow occurs */
mpfr_clear_overflow ();
mpfr_floor (tmp, u);
inex = (mpfr_overflow_p ()
? mpfr_overflow (r, rnd_mode, MPFR_SIGN_NEG)
: mpfr_set (r, tmp, rnd_mode));
mpfr_clear (tmp);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (r, inex, rnd_mode);
}
}
|