1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
/* mpfr_zeta -- compute the Riemann Zeta function
Copyright 2003, 2004, 2005 Free Software Foundation.
Contributed by Jean-Luc Re'my and the Spaces project, INRIA Lorraine.
This file is part of the MPFR Library.
The MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Place, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include <limits.h> /* For CHAR_BIT */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
/*
Parameters:
s - the input floating-point number
n, p - parameters from the algorithm
tc - an array of p floating-point numbers tc[1]..tc[p]
Output:
b is the result, i.e.
sum(tc[i]*product((s+2j)*(s+2j-1)/n^2,j=1..i-1), i=1..p)*s*n^(-s-1)
*/
static void
mpfr_zeta_part_b (mpfr_t b, mpfr_srcptr s, int n, int p, mpfr_t *tc)
{
mpfr_t s1, d, u;
unsigned long n2;
int l, t;
MPFR_GROUP_DECL (group);
if (p == 0)
{
MPFR_SET_ZERO (b);
MPFR_SET_POS (b);
return;
}
n2 = n * n;
MPFR_GROUP_INIT_3 (group, MPFR_PREC (b), s1, d, u);
/* t equals 2p-2, 2p-3, ... ; s1 equals s+t */
t = 2 * p - 2;
mpfr_set (d, tc[p], GMP_RNDN);
for (l = 1; l < p; l++)
{
mpfr_add_ui (s1, s, t, GMP_RNDN); /* s + (2p-2l) */
mpfr_mul (d, d, s1, GMP_RNDN);
t = t - 1;
mpfr_add_ui (s1, s, t, GMP_RNDN); /* s + (2p-2l-1) */
mpfr_mul (d, d, s1, GMP_RNDN);
t = t - 1;
mpfr_div_ui (d, d, n2, GMP_RNDN);
mpfr_add (d, d, tc[p-l], GMP_RNDN);
/* since s is positive and the tc[i] have alternate signs,
the following is unlikely */
if (MPFR_UNLIKELY (mpfr_cmpabs (d, tc[p-l]) > 0))
mpfr_set (d, tc[p-l], GMP_RNDN);
}
mpfr_mul (d, d, s, GMP_RNDN);
mpfr_add (s1, s, __gmpfr_one, GMP_RNDN);
mpfr_neg (s1, s1, GMP_RNDN);
mpfr_ui_pow (u, n, s1, GMP_RNDN);
mpfr_mul (b, d, u, GMP_RNDN);
MPFR_GROUP_CLEAR (group);
}
/* Input: p - an integer
Output: fills tc[1..p], tc[i] = bernoulli(2i)/(2i)!
tc[1]=1/12, tc[2]=-1/720, tc[3]=1/30240, ...
*/
static void
mpfr_zeta_c (int p, mpfr_t *tc)
{
mpfr_t d;
int k, l;
if (p > 0)
{
mpfr_init2 (d, MPFR_PREC (tc[1]));
mpfr_div_ui (tc[1], __gmpfr_one, 12, GMP_RNDN);
for (k = 2; k <= p; k++)
{
mpfr_set_ui (d, k-1, GMP_RNDN);
mpfr_div_ui (d, d, 12*k+6, GMP_RNDN);
for (l=2; l < k; l++)
{
mpfr_div_ui (d, d, 4*(2*k-2*l+3)*(2*k-2*l+2), GMP_RNDN);
mpfr_add (d, d, tc[l], GMP_RNDN);
}
mpfr_div_ui (tc[k], d, 24, GMP_RNDN);
MPFR_CHANGE_SIGN (tc[k]);
}
mpfr_clear (d);
}
}
/* Input: s - a floating-point number
n - an integer
Output: sum - a floating-point number approximating sum(1/i^s, i=1..n-1) */
static void
mpfr_zeta_part_a (mpfr_t sum, mpfr_srcptr s, int n)
{
mpfr_t u, s1;
int i;
MPFR_GROUP_DECL (group);
MPFR_GROUP_INIT_2 (group, MPFR_PREC (sum), u, s1);
mpfr_neg (s1, s, GMP_RNDN);
mpfr_ui_pow (u, n, s1, GMP_RNDN);
mpfr_div_2exp (u, u, 1, GMP_RNDN);
mpfr_set (sum, u, GMP_RNDN);
for (i=n-1; i>1; i--)
{
mpfr_ui_pow (u, i, s1, GMP_RNDN);
mpfr_add (sum, sum, u, GMP_RNDN);
}
mpfr_add (sum, sum, __gmpfr_one, GMP_RNDN);
MPFR_GROUP_CLEAR (group);
}
/* Input: s - a floating-point number >= 1/2.
rnd_mode - a rounding mode.
Assumes s is neither NaN nor Infinite.
Output: z - Zeta(s) rounded to the precision of z with direction rnd_mode
*/
static int
mpfr_zeta_pos (mpfr_t z, mpfr_srcptr s, mp_rnd_t rnd_mode)
{
mpfr_t b, c, z_pre, f, s1;
double beta, sd, dnep;
mpfr_t *tc1;
mp_prec_t precz, precs, d, dint;
int p, n, l, add;
int inex;
MPFR_GROUP_DECL (group);
MPFR_ZIV_DECL (loop);
MPFR_ASSERTD (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0);
precz = MPFR_PREC (z);
precs = MPFR_PREC (s);
/* Zeta(x) = 1+1/2^x+1/3^x+1/4^x+1/5^x+O(1/6^x)
so with 2^(EXP(x)-1) <= x < 2^EXP(x)
So for x > 2^3, k^x > k^8, so 2/k^x < 2/k^8
Zeta(x) = 1 + 1/2^x*(1+(2/3)^x+(2/4)^x+...)
= 1 + 1/2^x*(1+sum((2/k)^x,k=3..infinity))
<= 1 + 1/2^x*(1+sum((2/k)^8,k=3..infinity))
And sum((2/k)^8,k=3..infinity) = -257+128*Pi^8/4725 ~= 0.0438035
So Zeta(x) <= 1 + 1/2^x*2 for x >= 8
The error is < 2^(-x+1) <= 2^(-2^(EXP(x)-1)+1) */
if (MPFR_GET_EXP (s) > 3)
{
mp_exp_t err;
err = MPFR_GET_EXP (s) - 1;
if (err > (mp_exp_t) (sizeof (mp_exp_t)*CHAR_BIT-2))
err = MPFR_EMAX_MAX;
else
err = ((mp_exp_t)1) << err;
err = 1 - (-err+1); /* GET_EXP(one) - (-err+1) = err :) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (z, __gmpfr_one, err, 1, rnd_mode,{});
}
d = precz + MPFR_INT_CEIL_LOG2(precz) + 10;
/* we want that s1 = s-1 is exact, i.e. we should have PREC(s1) >= EXP(s) */
dint = (mpfr_uexp_t) MPFR_GET_EXP (s);
mpfr_init2 (s1, MAX (precs, dint));
inex = mpfr_sub (s1, s, __gmpfr_one, GMP_RNDN);
MPFR_ASSERTD (inex == 0);
/* case s=1 */
if (MPFR_IS_ZERO (s1))
{
MPFR_SET_INF (z);
MPFR_SET_POS (z);
MPFR_ASSERTD (inex == 0);
goto clear_and_return;
}
MPFR_GROUP_INIT_4 (group, MPFR_PREC_MIN, b, c, z_pre, f);
MPFR_ZIV_INIT (loop, d);
for (;;)
{
/* Principal loop: we compute, in z_pre,
an approximation of Zeta(s), that we send to can_round */
if (MPFR_GET_EXP (s1) <= -(mp_exp_t) ((mpfr_prec_t) (d-3)/2))
/* Branch 1: when s-1 is very small, one
uses the approximation Zeta(s)=1/(s-1)+gamma,
where gamma is Euler's constant */
{
dint = MAX (d + 3, precs);
MPFR_TRACE (printf ("branch 1\ninternal precision=%d\n", dint));
MPFR_GROUP_REPREC_4 (group, dint, b, c, z_pre, f);
mpfr_div (z_pre, __gmpfr_one, s1, GMP_RNDN);
mpfr_const_euler (f, GMP_RNDN);
mpfr_add (z_pre, z_pre, f, GMP_RNDN);
}
else /* Branch 2 */
{
size_t size;
MPFR_TRACE (printf ("branch 2\n"));
/* Computation of parameters n, p and working precision */
dnep = (double) d * LOG2;
sd = mpfr_get_d (s, GMP_RNDN);
/* beta = dnep + 0.61 + sd * log (6.2832 / sd);
but a larger value is ok */
#define LOG6dot2832 1.83787940484160805532
beta = dnep + 0.61 + sd * (LOG6dot2832 - LOG2 *
__gmpfr_floor_log2 (sd));
if (beta <= 0.0)
{
p = 0;
/* n = 1 + (int) (exp ((dnep - LOG2) / sd)); */
n = 1 + (int) __gmpfr_ceil_exp2 ((d - 1.0) / sd);
}
else
{
p = 1 + (int) beta / 2;
n = 1 + (int) ((sd + 2.0 * (double) p - 1.0) / 6.2832);
}
MPFR_TRACE (printf ("\nn=%d\np=%d\n",n,p));
/* add = 4 + floor(1.5 * log(d) / log (2)).
We should have add >= 10, which is always fulfilled since
d = precz + 11 >= 12, thus ceil(log2(d)) >= 4 */
add = 4 + (3 * MPFR_INT_CEIL_LOG2 (d)) / 2;
MPFR_ASSERTD(add >= 10);
dint = d + add;
if (dint < precs)
dint = precs;
MPFR_TRACE (printf("internal precision=%d\n",dint));
size = (p + 1) * sizeof(mpfr_t);
tc1 = (mpfr_t*) (*__gmp_allocate_func) (size);
for (l=1; l<=p; l++)
mpfr_init2 (tc1[l], dint);
MPFR_GROUP_REPREC_4 (group, dint, b, c, z_pre, f);
MPFR_TRACE (printf ("precision of z =%d\n", precz));
/* Computation of the coefficients c_k */
mpfr_zeta_c (p, tc1);
/* Computation of the 3 parts of the fonction Zeta. */
mpfr_zeta_part_a (z_pre, s, n);
mpfr_zeta_part_b (b, s, n, p, tc1);
/* s1 = s-1 is already computed above */
mpfr_div (c, __gmpfr_one, s1, GMP_RNDN);
mpfr_ui_pow (f, n, s1, GMP_RNDN);
mpfr_div (c, c, f, GMP_RNDN);
MPFR_TRACE (MPFR_DUMP (c));
mpfr_add (z_pre, z_pre, c, GMP_RNDN);
mpfr_add (z_pre, z_pre, b, GMP_RNDN);
for (l=1; l<=p; l++)
mpfr_clear (tc1[l]);
(*__gmp_free_func) (tc1, size);
/* End branch 2 */
}
MPFR_TRACE (MPFR_DUMP (z_pre));
if (MPFR_LIKELY (MPFR_CAN_ROUND (z_pre, d-3, precz, rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, d);
}
MPFR_ZIV_FREE (loop);
inex = mpfr_set (z, z_pre, rnd_mode);
MPFR_GROUP_CLEAR (group);
clear_and_return:
mpfr_clear (s1);
return inex;
}
int
mpfr_zeta (mpfr_t z, mpfr_srcptr s, mp_rnd_t rnd_mode)
{
mpfr_t z_pre, s1, y, p;
double sd, eps, m1, c;
long add;
mp_prec_t precz, prec1, precs, precs1;
int inex;
MPFR_GROUP_DECL (group);
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC (("s[%#R]=%R rnd=%d", s, s, rnd_mode),
("z[%#R]=%R inexact=%d", z, z, inex));
/* Zero, Nan or Inf ? */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (s)))
{
if (MPFR_IS_NAN (s))
{
MPFR_SET_NAN (z);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (s))
{
if (MPFR_IS_POS (s))
return mpfr_set_ui (z, 1, GMP_RNDN); /* Zeta(+Inf) = 1 */
MPFR_SET_NAN (z); /* Zeta(-Inf) = NaN */
MPFR_RET_NAN;
}
else /* s iz zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (s));
mpfr_set_ui (z, 1, rnd_mode);
mpfr_div_2ui (z, z, 1, rnd_mode);
MPFR_CHANGE_SIGN (z);
MPFR_RET (0);
}
}
/* s is neither Nan, nor Inf, nor Zero */
/* Check for case s= -2n */
if (MPFR_IS_NEG (s))
{
mpfr_t tmp;
tmp[0] = *s;
MPFR_EXP (tmp) = MPFR_EXP (s) - 1;
if (mpfr_integer_p (tmp))
{
MPFR_SET_ZERO (z);
MPFR_SET_POS (z);
MPFR_RET (0);
}
}
MPFR_SAVE_EXPO_MARK (expo);
/* Compute Zeta */
if (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0) /* Case s >= 1/2 */
inex = mpfr_zeta_pos (z, s, rnd_mode);
else /* use reflection formula
zeta(s) = 2^s*Pi^(s-1)*sin(Pi*s/2)*gamma(1-s)*zeta(1-s) */
{
precz = MPFR_PREC (z);
precs = MPFR_PREC (s);
/* Precision precs1 needed to represent 1 - s, and s + 2,
without any truncation */
precs1 = precs + 2 + MAX (0, - MPFR_GET_EXP (s));
sd = mpfr_get_d (s, GMP_RNDN) - 1.0;
if (sd < 0.0)
sd = -sd; /* now sd = abs(s-1.0) */
/* Precision prec1 is the precision on elementary computations;
it ensures a final precision prec1 - add for zeta(s) */
/* eps = pow (2.0, - (double) precz - 14.0); */
eps = __gmpfr_ceil_exp2 (- (double) precz - 14.0);
m1 = 1.0 + MAX(1.0 / eps, 2.0 * sd) * (1.0 + eps);
c = (1.0 + eps) * (1.0 + eps * MAX(8.0, m1));
/* add = 1 + floor(log(c*c*c*(13 + m1))/log(2)); */
add = __gmpfr_ceil_log2 (c * c * c * (13.0 + m1));
prec1 = precz + add;
prec1 = MAX (prec1, precs1) + 10;
MPFR_GROUP_INIT_4 (group, prec1, z_pre, s1, y, p);
MPFR_ZIV_INIT (loop, prec1);
for (;;)
{
mpfr_sub (s1, __gmpfr_one, s, GMP_RNDN);/* s1 = 1-s */
mpfr_zeta_pos (z_pre, s1, GMP_RNDN); /* zeta(1-s) */
mpfr_gamma (y, s1, GMP_RNDN); /* gamma(1-s) */
mpfr_mul (z_pre, z_pre, y, GMP_RNDN); /* gamma(1-s)*zeta(1-s) */
mpfr_const_pi (p, GMP_RNDD);
mpfr_mul (y, s, p, GMP_RNDN);
mpfr_div_2ui (y, y, 1, GMP_RNDN); /* s*Pi/2 */
mpfr_sin (y, y, GMP_RNDN); /* sin(Pi*s/2) */
mpfr_mul (z_pre, z_pre, y, GMP_RNDN);
mpfr_mul_2ui (y, p, 1, GMP_RNDN); /* 2*Pi */
mpfr_neg (s1, s1, GMP_RNDN); /* s-1 */
mpfr_pow (y, y, s1, GMP_RNDN); /* (2*Pi)^(s-1) */
mpfr_mul (z_pre, z_pre, y, GMP_RNDN);
mpfr_mul_2ui (z_pre, z_pre, 1, GMP_RNDN);
if (MPFR_LIKELY (MPFR_CAN_ROUND (z_pre, prec1 - add, precz,
rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, prec1);
MPFR_GROUP_REPREC_4 (group, prec1, z_pre, s1, y, p);
}
MPFR_ZIV_FREE (loop);
inex = mpfr_set (z, z_pre, rnd_mode);
MPFR_GROUP_CLEAR (group);
}
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (z, inex, rnd_mode);
}
|