1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
/* mpfr_exp_2 -- exponential of a floating-point number
using algorithms in O(n^(1/2)*M(n)) and O(n^(1/3)*M(n))
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
/* #define DEBUG */
#define MPFR_NEED_LONGLONG_H /* for count_leading_zeros */
#include "mpfr-impl.h"
static unsigned long
mpfr_exp2_aux (mpz_t, mpfr_srcptr, mpfr_prec_t, mpfr_exp_t *);
static unsigned long
mpfr_exp2_aux2 (mpz_t, mpfr_srcptr, mpfr_prec_t, mpfr_exp_t *);
static mpfr_exp_t
mpz_normalize (mpz_t, mpz_t, mpfr_exp_t);
static mpfr_exp_t
mpz_normalize2 (mpz_t, mpz_t, mpfr_exp_t, mpfr_exp_t);
/* if k = the number of bits of z > q, divides z by 2^(k-q) and returns k-q.
Otherwise do nothing and return 0.
*/
static mpfr_exp_t
mpz_normalize (mpz_t rop, mpz_t z, mpfr_exp_t q)
{
size_t k;
MPFR_MPZ_SIZEINBASE2 (k, z);
MPFR_ASSERTD (k == (mpfr_uexp_t) k);
if (q < 0 || (mpfr_uexp_t) k > (mpfr_uexp_t) q)
{
mpz_fdiv_q_2exp (rop, z, (unsigned long) ((mpfr_uexp_t) k - q));
return (mpfr_exp_t) k - q;
}
if (MPFR_UNLIKELY(rop != z))
mpz_set (rop, z);
return 0;
}
/* if expz > target, shift z by (expz-target) bits to the left.
if expz < target, shift z by (target-expz) bits to the right.
Returns target.
*/
static mpfr_exp_t
mpz_normalize2 (mpz_t rop, mpz_t z, mpfr_exp_t expz, mpfr_exp_t target)
{
if (target > expz)
mpz_fdiv_q_2exp (rop, z, target - expz);
else
mpz_mul_2exp (rop, z, expz - target);
return target;
}
/* use Brent's formula exp(x) = (1+r+r^2/2!+r^3/3!+...)^(2^K)*2^n
where x = n*log(2)+(2^K)*r
together with the Paterson-Stockmeyer O(t^(1/2)) algorithm for the
evaluation of power series. The resulting complexity is O(n^(1/3)*M(n)).
This function returns with the exact flags due to exp.
*/
int
mpfr_exp_2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
long n;
unsigned long K, k, l, err; /* FIXME: Which type ? */
int error_r;
mpfr_exp_t exps;
mpfr_prec_t q, precy;
int inexact;
mpfr_t r, s;
mpz_t ss;
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
precy = MPFR_PREC(y);
/* Warning: we cannot use the 'double' type here, since on 64-bit machines
x may be as large as 2^62*log(2) without overflow, and then x/log(2)
is about 2^62: not every integer of that size can be represented as a
'double', thus the argument reduction would fail. */
if (MPFR_GET_EXP (x) <= -2)
/* |x| <= 0.25, thus n = round(x/log(2)) = 0 */
n = 0;
else
{
mpfr_init2 (r, sizeof (long) * CHAR_BIT);
mpfr_const_log2 (r, MPFR_RNDZ);
mpfr_div (r, x, r, MPFR_RNDN);
n = mpfr_get_si (r, MPFR_RNDN);
mpfr_clear (r);
}
MPFR_LOG_MSG (("d(x)=%1.30e n=%ld\n", mpfr_get_d1(x), n));
/* error bounds the cancelled bits in x - n*log(2) */
if (MPFR_UNLIKELY (n == 0))
error_r = 0;
else
count_leading_zeros (error_r, (mp_limb_t) SAFE_ABS (unsigned long, n));
error_r = GMP_NUMB_BITS - error_r + 2;
/* for the O(n^(1/2)*M(n)) method, the Taylor series computation of
n/K terms costs about n/(2K) multiplications when computed in fixed
point */
K = (precy < MPFR_EXP_2_THRESHOLD) ? __gmpfr_isqrt ((precy + 1) / 2)
: __gmpfr_cuberoot (4*precy);
l = (precy - 1) / K + 1;
err = K + MPFR_INT_CEIL_LOG2 (2 * l + 18);
/* add K extra bits, i.e. failure probability <= 1/2^K = O(1/precy) */
q = precy + err + K + 5;
/* Note: due to the mpfr_prec_round below, it is not possible to use
the MPFR_GROUP_* macros here. */
mpfr_init2 (r, q + error_r);
mpfr_init2 (s, q + error_r);
/* the algorithm consists in computing an upper bound of exp(x) using
a precision of q bits, and see if we can round to MPFR_PREC(y) taking
into account the maximal error. Otherwise we increase q. */
MPFR_ZIV_INIT (loop, q);
for (;;)
{
MPFR_LOG_MSG (("n=%ld K=%lu l=%lu q=%lu error_r=%d\n",
n, K, l, (unsigned long) q, error_r));
/* First reduce the argument to r = x - n * log(2),
so that r is small in absolute value. We want an upper
bound on r to get an upper bound on exp(x). */
/* if n<0, we have to get an upper bound of log(2)
in order to get an upper bound of r = x-n*log(2) */
mpfr_const_log2 (s, (n >= 0) ? MPFR_RNDZ : MPFR_RNDU);
/* s is within 1 ulp of log(2) */
mpfr_mul_ui (r, s, (n < 0) ? -n : n, (n >= 0) ? MPFR_RNDZ : MPFR_RNDU);
/* r is within 3 ulps of |n|*log(2) */
if (n < 0)
MPFR_CHANGE_SIGN (r);
/* r <= n*log(2), within 3 ulps */
MPFR_LOG_VAR (x);
MPFR_LOG_VAR (r);
mpfr_sub (r, x, r, MPFR_RNDU);
/* possible cancellation here: if r is zero, increase the working
precision (Ziv's loop); otherwise, the error on r is at most
3*2^(EXP(old_r)-EXP(new_r)) ulps */
if (MPFR_IS_PURE_FP (r))
{
mpfr_exp_t cancel;
/* number of cancelled bits */
cancel = MPFR_GET_EXP (x) - MPFR_GET_EXP (r);
if (cancel < 0) /* this might happen in the second loop if x is
tiny negative: the initial n is 0, then in the
first loop n becomes -1 and r = x + log(2) */
cancel = 0;
while (MPFR_IS_NEG (r))
{ /* initial approximation n was too large */
n--;
mpfr_add (r, r, s, MPFR_RNDU);
}
mpfr_prec_round (r, q, MPFR_RNDU);
MPFR_LOG_VAR (r);
MPFR_ASSERTD (MPFR_IS_POS (r));
mpfr_div_2ui (r, r, K, MPFR_RNDU); /* r = (x-n*log(2))/2^K, exact */
mpz_init (ss);
exps = mpfr_get_z_2exp (ss, s);
/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! */
MPFR_ASSERTD (MPFR_IS_PURE_FP (r) && MPFR_EXP (r) < 0);
l = (precy < MPFR_EXP_2_THRESHOLD)
? mpfr_exp2_aux (ss, r, q, &exps) /* naive method */
: mpfr_exp2_aux2 (ss, r, q, &exps); /* Paterson/Stockmeyer meth */
MPFR_LOG_MSG (("l=%lu q=%lu (K+l)*q^2=%1.3e\n",
l, (unsigned long) q, (K + l) * (double) q * q));
for (k = 0; k < K; k++)
{
mpz_mul (ss, ss, ss);
exps <<= 1;
exps += mpz_normalize (ss, ss, q);
}
mpfr_set_z (s, ss, MPFR_RNDN);
MPFR_SET_EXP(s, MPFR_GET_EXP (s) + exps);
mpz_clear (ss);
/* error is at most 2^K*l, plus cancel+2 to take into account of
the error of 3*2^(EXP(old_r)-EXP(new_r)) on r */
K += MPFR_INT_CEIL_LOG2 (l) + cancel + 2;
MPFR_LOG_MSG (("before mult. by 2^n:\n", 0));
MPFR_LOG_VAR (s);
MPFR_LOG_MSG (("err=%lu bits\n", K));
if (MPFR_LIKELY (MPFR_CAN_ROUND (s, q - K, precy, rnd_mode)))
{
mpfr_clear_flags ();
inexact = mpfr_mul_2si (y, s, n, rnd_mode);
break;
}
}
MPFR_ZIV_NEXT (loop, q);
mpfr_set_prec (r, q);
mpfr_set_prec (s, q);
}
MPFR_ZIV_FREE (loop);
mpfr_clear (r);
mpfr_clear (s);
return inexact;
}
/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q
using naive method with O(l) multiplications.
Return the number of iterations l.
The absolute error on s is less than 3*l*(l+1)*2^(-q).
Version using fixed-point arithmetic with mpz instead
of mpfr for internal computations.
s must have at least qn+1 limbs (qn should be enough, but currently fails
since mpz_mul_2exp(s, s, q-1) reallocates qn+1 limbs)
*/
static unsigned long
mpfr_exp2_aux (mpz_t s, mpfr_srcptr r, mpfr_prec_t q, mpfr_exp_t *exps)
{
unsigned long l;
mpfr_exp_t dif, expt, expr;
mp_size_t qn;
mpz_t t, rr;
mp_size_t sbit, tbit;
MPFR_ASSERTN (MPFR_IS_PURE_FP (r));
qn = 1 + (q-1)/GMP_NUMB_BITS;
expt = 0;
*exps = 1 - (mpfr_exp_t) q; /* s = 2^(q-1) */
mpz_init (t);
mpz_init (rr);
mpz_set_ui(t, 1);
mpz_set_ui(s, 1);
mpz_mul_2exp(s, s, q-1);
expr = mpfr_get_z_2exp(rr, r); /* no error here */
l = 0;
for (;;) {
l++;
mpz_mul(t, t, rr);
expt += expr;
MPFR_MPZ_SIZEINBASE2 (sbit, s);
MPFR_MPZ_SIZEINBASE2 (tbit, t);
dif = *exps + sbit - expt - tbit;
/* truncates the bits of t which are < ulp(s) = 2^(1-q) */
expt += mpz_normalize(t, t, (mpfr_exp_t) q-dif); /* error at most 2^(1-q) */
mpz_fdiv_q_ui (t, t, l); /* error at most 2^(1-q) */
/* the error wrt t^l/l! is here at most 3*l*ulp(s) */
MPFR_ASSERTD (expt == *exps);
if (mpz_sgn (t) == 0)
break;
mpz_add(s, s, t); /* no error here: exact */
/* ensures rr has the same size as t: after several shifts, the error
on rr is still at most ulp(t)=ulp(s) */
MPFR_MPZ_SIZEINBASE2 (tbit, t);
expr += mpz_normalize(rr, rr, tbit);
}
mpz_clear (t);
mpz_clear (rr);
return 3 * l * (l + 1);
}
/* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q
using Paterson-Stockmeyer algorithm with O(sqrt(l)) multiplications.
Return l.
Uses m multiplications of full size and 2l/m of decreasing size,
i.e. a total equivalent to about m+l/m full multiplications,
i.e. 2*sqrt(l) for m=sqrt(l).
Version using mpz. ss must have at least (sizer+1) limbs.
The error is bounded by (l^2+4*l) ulps where l is the return value.
*/
static unsigned long
mpfr_exp2_aux2 (mpz_t s, mpfr_srcptr r, mpfr_prec_t q, mpfr_exp_t *exps)
{
mpfr_exp_t expr, *expR, expt;
mp_size_t sizer;
mpfr_prec_t ql;
unsigned long l, m, i;
mpz_t t, *R, rr, tmp;
mp_size_t sbit, rrbit;
MPFR_TMP_DECL(marker);
/* estimate value of l */
MPFR_ASSERTD (MPFR_GET_EXP (r) < 0);
l = q / (- MPFR_GET_EXP (r));
m = __gmpfr_isqrt (l);
/* we access R[2], thus we need m >= 2 */
if (m < 2)
m = 2;
MPFR_TMP_MARK(marker);
R = (mpz_t*) MPFR_TMP_ALLOC ((m + 1) * sizeof (mpz_t)); /* R[i] is r^i */
expR = (mpfr_exp_t*) MPFR_TMP_ALLOC((m + 1) * sizeof (mpfr_exp_t));
/* expR[i] is the exponent for R[i] */
sizer = MPFR_LIMB_SIZE(r);
mpz_init (tmp);
mpz_init (rr);
mpz_init (t);
mpz_set_ui (s, 0);
*exps = 1 - q; /* 1 ulp = 2^(1-q) */
for (i = 0 ; i <= m ; i++)
mpz_init (R[i]);
expR[1] = mpfr_get_z_2exp (R[1], r); /* exact operation: no error */
expR[1] = mpz_normalize2 (R[1], R[1], expR[1], 1 - q); /* error <= 1 ulp */
mpz_mul (t, R[1], R[1]); /* err(t) <= 2 ulps */
mpz_fdiv_q_2exp (R[2], t, q - 1); /* err(R[2]) <= 3 ulps */
expR[2] = 1 - q;
for (i = 3 ; i <= m ; i++)
{
if ((i & 1) == 1)
mpz_mul (t, R[i-1], R[1]); /* err(t) <= 2*i-2 */
else
mpz_mul (t, R[i/2], R[i/2]);
mpz_fdiv_q_2exp (R[i], t, q - 1); /* err(R[i]) <= 2*i-1 ulps */
expR[i] = 1 - q;
}
mpz_set_ui (R[0], 1);
mpz_mul_2exp (R[0], R[0], q-1);
expR[0] = 1-q; /* R[0]=1 */
mpz_set_ui (rr, 1);
expr = 0; /* rr contains r^l/l! */
/* by induction: err(rr) <= 2*l ulps */
l = 0;
ql = q; /* precision used for current giant step */
do
{
/* all R[i] must have exponent 1-ql */
if (l != 0)
for (i = 0 ; i < m ; i++)
expR[i] = mpz_normalize2 (R[i], R[i], expR[i], 1 - ql);
/* the absolute error on R[i]*rr is still 2*i-1 ulps */
expt = mpz_normalize2 (t, R[m-1], expR[m-1], 1 - ql);
/* err(t) <= 2*m-1 ulps */
/* computes t = 1 + r/(l+1) + ... + r^(m-1)*l!/(l+m-1)!
using Horner's scheme */
for (i = m-1 ; i-- != 0 ; )
{
mpz_fdiv_q_ui (t, t, l+i+1); /* err(t) += 1 ulp */
mpz_add (t, t, R[i]);
}
/* now err(t) <= (3m-2) ulps */
/* now multiplies t by r^l/l! and adds to s */
mpz_mul (t, t, rr);
expt += expr;
expt = mpz_normalize2 (t, t, expt, *exps);
/* err(t) <= (3m-1) + err_rr(l) <= (3m-2) + 2*l */
MPFR_ASSERTD (expt == *exps);
mpz_add (s, s, t); /* no error here */
/* updates rr, the multiplication of the factors l+i could be done
using binary splitting too, but it is not sure it would save much */
mpz_mul (t, rr, R[m]); /* err(t) <= err(rr) + 2m-1 */
expr += expR[m];
mpz_set_ui (tmp, 1);
for (i = 1 ; i <= m ; i++)
mpz_mul_ui (tmp, tmp, l + i);
mpz_fdiv_q (t, t, tmp); /* err(t) <= err(rr) + 2m */
l += m;
if (MPFR_UNLIKELY (mpz_sgn (t) == 0))
break;
expr += mpz_normalize (rr, t, ql); /* err_rr(l+1) <= err_rr(l) + 2m+1 */
if (MPFR_UNLIKELY (mpz_sgn (rr) == 0))
rrbit = 1;
else
MPFR_MPZ_SIZEINBASE2 (rrbit, rr);
MPFR_MPZ_SIZEINBASE2 (sbit, s);
ql = q - *exps - sbit + expr + rrbit;
/* TODO: Wrong cast. I don't want what is right, but this is
certainly wrong */
}
while ((size_t) expr + rrbit > (size_t) -q);
for (i = 0 ; i <= m ; i++)
mpz_clear (R[i]);
MPFR_TMP_FREE(marker);
mpz_clear (rr);
mpz_clear (t);
mpz_clear (tmp);
return l * (l + 4);
}
|