1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
/* mpfr_get_decimal64 -- convert a multiple precision floating-point number
to a IEEE 754r decimal64 float
See http://gcc.gnu.org/ml/gcc/2006-06/msg00691.html,
http://gcc.gnu.org/onlinedocs/gcc/Decimal-Float.html,
and TR 24732 <http://www.open-std.org/jtc1/sc22/wg14/www/projects#24732>.
Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <stdlib.h> /* for strtol */
#include "mpfr-impl.h"
#define ISDIGIT(c) ('0' <= c && c <= '9')
#ifdef MPFR_WANT_DECIMAL_FLOATS
#ifdef DPD_FORMAT
static int T[1000] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 80, 81, 82, 83, 84, 85, 86, 87, 88,
89, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 10, 11, 42, 43, 74, 75, 106, 107, 78, 79, 26, 27,
58, 59, 90, 91, 122, 123, 94, 95, 128, 129, 130, 131, 132, 133, 134, 135,
136, 137, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 160, 161, 162,
163, 164, 165, 166, 167, 168, 169, 176, 177, 178, 179, 180, 181, 182, 183,
184, 185, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 208, 209, 210,
211, 212, 213, 214, 215, 216, 217, 224, 225, 226, 227, 228, 229, 230, 231,
232, 233, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 138, 139, 170,
171, 202, 203, 234, 235, 206, 207, 154, 155, 186, 187, 218, 219, 250, 251,
222, 223, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 272, 273, 274,
275, 276, 277, 278, 279, 280, 281, 288, 289, 290, 291, 292, 293, 294, 295,
296, 297, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 320, 321, 322,
323, 324, 325, 326, 327, 328, 329, 336, 337, 338, 339, 340, 341, 342, 343,
344, 345, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 368, 369, 370,
371, 372, 373, 374, 375, 376, 377, 266, 267, 298, 299, 330, 331, 362, 363,
334, 335, 282, 283, 314, 315, 346, 347, 378, 379, 350, 351, 384, 385, 386,
387, 388, 389, 390, 391, 392, 393, 400, 401, 402, 403, 404, 405, 406, 407,
408, 409, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 432, 433, 434,
435, 436, 437, 438, 439, 440, 441, 448, 449, 450, 451, 452, 453, 454, 455,
456, 457, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 480, 481, 482,
483, 484, 485, 486, 487, 488, 489, 496, 497, 498, 499, 500, 501, 502, 503,
504, 505, 394, 395, 426, 427, 458, 459, 490, 491, 462, 463, 410, 411, 442,
443, 474, 475, 506, 507, 478, 479, 512, 513, 514, 515, 516, 517, 518, 519,
520, 521, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 544, 545, 546,
547, 548, 549, 550, 551, 552, 553, 560, 561, 562, 563, 564, 565, 566, 567,
568, 569, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 592, 593, 594,
595, 596, 597, 598, 599, 600, 601, 608, 609, 610, 611, 612, 613, 614, 615,
616, 617, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 522, 523, 554,
555, 586, 587, 618, 619, 590, 591, 538, 539, 570, 571, 602, 603, 634, 635,
606, 607, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 656, 657, 658,
659, 660, 661, 662, 663, 664, 665, 672, 673, 674, 675, 676, 677, 678, 679,
680, 681, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 704, 705, 706,
707, 708, 709, 710, 711, 712, 713, 720, 721, 722, 723, 724, 725, 726, 727,
728, 729, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 752, 753, 754,
755, 756, 757, 758, 759, 760, 761, 650, 651, 682, 683, 714, 715, 746, 747,
718, 719, 666, 667, 698, 699, 730, 731, 762, 763, 734, 735, 768, 769, 770,
771, 772, 773, 774, 775, 776, 777, 784, 785, 786, 787, 788, 789, 790, 791,
792, 793, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 816, 817, 818,
819, 820, 821, 822, 823, 824, 825, 832, 833, 834, 835, 836, 837, 838, 839,
840, 841, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 864, 865, 866,
867, 868, 869, 870, 871, 872, 873, 880, 881, 882, 883, 884, 885, 886, 887,
888, 889, 778, 779, 810, 811, 842, 843, 874, 875, 846, 847, 794, 795, 826,
827, 858, 859, 890, 891, 862, 863, 896, 897, 898, 899, 900, 901, 902, 903,
904, 905, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 928, 929, 930,
931, 932, 933, 934, 935, 936, 937, 944, 945, 946, 947, 948, 949, 950, 951,
952, 953, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 976, 977, 978,
979, 980, 981, 982, 983, 984, 985, 992, 993, 994, 995, 996, 997, 998, 999,
1000, 1001, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 906,
907, 938, 939, 970, 971, 1002, 1003, 974, 975, 922, 923, 954, 955, 986,
987, 1018, 1019, 990, 991, 12, 13, 268, 269, 524, 525, 780, 781, 46, 47, 28,
29, 284, 285, 540, 541, 796, 797, 62, 63, 44, 45, 300, 301, 556, 557, 812,
813, 302, 303, 60, 61, 316, 317, 572, 573, 828, 829, 318, 319, 76, 77,
332, 333, 588, 589, 844, 845, 558, 559, 92, 93, 348, 349, 604, 605, 860,
861, 574, 575, 108, 109, 364, 365, 620, 621, 876, 877, 814, 815, 124, 125,
380, 381, 636, 637, 892, 893, 830, 831, 14, 15, 270, 271, 526, 527, 782,
783, 110, 111, 30, 31, 286, 287, 542, 543, 798, 799, 126, 127, 140, 141,
396, 397, 652, 653, 908, 909, 174, 175, 156, 157, 412, 413, 668, 669, 924,
925, 190, 191, 172, 173, 428, 429, 684, 685, 940, 941, 430, 431, 188, 189,
444, 445, 700, 701, 956, 957, 446, 447, 204, 205, 460, 461, 716, 717, 972,
973, 686, 687, 220, 221, 476, 477, 732, 733, 988, 989, 702, 703, 236, 237,
492, 493, 748, 749, 1004, 1005, 942, 943, 252, 253, 508, 509, 764, 765,
1020, 1021, 958, 959, 142, 143, 398, 399, 654, 655, 910, 911, 238, 239, 158,
159, 414, 415, 670, 671, 926, 927, 254, 255};
#endif
/* construct a decimal64 NaN */
static _Decimal64
get_decimal64_nan (void)
{
union ieee_double_extract x;
union ieee_double_decimal64 y;
x.s.exp = 1984; /* G[0]..G[4] = 11111: quiet NaN */
y.d = x.d;
return y.d64;
}
/* construct the decimal64 Inf with given sign */
static _Decimal64
get_decimal64_inf (int negative)
{
union ieee_double_extract x;
union ieee_double_decimal64 y;
x.s.sig = (negative) ? 1 : 0;
x.s.exp = 1920; /* G[0]..G[4] = 11110: Inf */
y.d = x.d;
return y.d64;
}
/* construct the decimal64 zero with given sign */
static _Decimal64
get_decimal64_zero (int negative)
{
union ieee_double_decimal64 y;
/* zero has the same representation in binary64 and decimal64 */
y.d = negative ? DBL_NEG_ZERO : 0.0;
return y.d64;
}
/* construct the decimal64 smallest non-zero with given sign */
static _Decimal64
get_decimal64_min (int negative)
{
union ieee_double_extract x;
x.s.sig = (negative) ? 1 : 0;
x.s.exp = 0;
x.s.manh = 0;
x.s.manl = 1;
return x.d;
}
/* construct the decimal64 largest finite number with given sign */
static _Decimal64
get_decimal64_max (int negative)
{
union ieee_double_extract x;
x.s.sig = (negative) ? 1 : 0;
x.s.exp = 1919;
x.s.manh = 1048575; /* 2^20-1 */
x.s.manl = ~0;
return x.d;
}
/* one-to-one conversion:
s is a decimal string representing a number x = m * 10^e which must be
exactly representable in the decimal64 format, i.e.
(a) the mantissa m has at most 16 decimal digits
(b1) -383 <= e <= 384 with m integer multiple of 10^(-15), |m| < 10
(b2) or -398 <= e <= 369 with m integer, |m| < 10^16.
Assumes s is neither NaN nor +Inf nor -Inf.
*/
static _Decimal64
string_to_Decimal64 (char *s)
{
long int exp = 0;
char m[17];
long n = 0; /* mantissa length */
char *endptr[1];
union ieee_double_extract x;
union ieee_double_decimal64 y;
#ifdef DPD_FORMAT
unsigned int G, d1, d2, d3, d4, d5;
#endif
/* read sign */
if (*s == '-')
{
x.s.sig = 1;
s ++;
}
else
x.s.sig = 0;
/* read mantissa */
while (ISDIGIT (*s))
m[n++] = *s++;
exp = n;
if (*s == '.')
{
s ++;
while (ISDIGIT (*s))
m[n++] = *s++;
}
/* we have exp digits before decimal point, and a total of n digits */
exp -= n; /* we will consider an integer mantissa */
MPFR_ASSERTN(n <= 16);
if (*s == 'E' || *s == 'e')
exp += strtol (s + 1, endptr, 10);
else
*endptr = s;
MPFR_ASSERTN(**endptr == '\0');
MPFR_ASSERTN(-398 <= exp && exp <= (long) (385 - n));
while (n < 16)
{
m[n++] = '0';
exp --;
}
/* now n=16 and -398 <= exp <= 369 */
m[n] = '\0';
/* compute biased exponent */
exp += 398;
MPFR_ASSERTN(exp >= -15);
if (exp < 0)
{
int i;
n = -exp;
/* check the last n digits of the mantissa are zero */
for (i = 1; i <= n; i++)
MPFR_ASSERTN(m[16 - n] == '0');
/* shift the first (16-n) digits to the right */
for (i = 16 - n - 1; i >= 0; i--)
m[i + n] = m[i];
/* zero the first n digits */
for (i = 0; i < n; i ++)
m[i] = '0';
exp = 0;
}
/* now convert to DPD or BID */
#ifdef DPD_FORMAT
#define CH(d) (d - '0')
if (m[0] >= '8')
G = (3 << 11) | ((exp & 768) << 1) | ((CH(m[0]) & 1) << 8);
else
G = ((exp & 768) << 3) | (CH(m[0]) << 8);
/* now the most 5 significant bits of G are filled */
G |= exp & 255;
d1 = T[100 * CH(m[1]) + 10 * CH(m[2]) + CH(m[3])]; /* 10-bit encoding */
d2 = T[100 * CH(m[4]) + 10 * CH(m[5]) + CH(m[6])]; /* 10-bit encoding */
d3 = T[100 * CH(m[7]) + 10 * CH(m[8]) + CH(m[9])]; /* 10-bit encoding */
d4 = T[100 * CH(m[10]) + 10 * CH(m[11]) + CH(m[12])]; /* 10-bit encoding */
d5 = T[100 * CH(m[13]) + 10 * CH(m[14]) + CH(m[15])]; /* 10-bit encoding */
x.s.exp = G >> 2;
x.s.manh = ((G & 3) << 18) | (d1 << 8) | (d2 >> 2);
x.s.manl = (d2 & 3) << 30;
x.s.manl |= (d3 << 20) | (d4 << 10) | d5;
#else /* BID format */
{
mp_size_t rn;
mp_limb_t rp[2];
int case_i = strcmp (m, "9007199254740992") < 0;
for (n = 0; n < 16; n++)
m[n] -= '0';
rn = mpn_set_str (rp, (unsigned char *) m, 16, 10);
if (rn == 1)
rp[1] = 0;
#if GMP_NUMB_BITS > 32
rp[1] = rp[1] << (GMP_NUMB_BITS - 32);
rp[1] |= rp[0] >> 32;
rp[0] &= 4294967295UL;
#endif
if (case_i)
{ /* s < 2^53: case i) */
x.s.exp = exp << 1;
x.s.manl = rp[0]; /* 32 bits */
x.s.manh = rp[1] & 1048575; /* 20 low bits */
x.s.exp |= rp[1] >> 20; /* 1 bit */
}
else /* s >= 2^53: case ii) */
{
x.s.exp = 1536 | (exp >> 1);
x.s.manl = rp[0];
x.s.manh = (rp[1] ^ 2097152) | ((exp & 1) << 19);
}
}
#endif /* DPD_FORMAT */
y.d = x.d;
return y.d64;
}
_Decimal64
mpfr_get_decimal64 (mpfr_srcptr src, mpfr_rnd_t rnd_mode)
{
int negative;
mpfr_exp_t e;
/* the encoding of NaN, Inf, zero is the same under DPD or BID */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (src)))
{
if (MPFR_IS_NAN (src))
return get_decimal64_nan ();
negative = MPFR_IS_NEG (src);
if (MPFR_IS_INF (src))
return get_decimal64_inf (negative);
MPFR_ASSERTD (MPFR_IS_ZERO(src));
return get_decimal64_zero (negative);
}
e = MPFR_GET_EXP (src);
negative = MPFR_IS_NEG (src);
if (MPFR_UNLIKELY(rnd_mode == MPFR_RNDA))
rnd_mode = negative ? MPFR_RNDD : MPFR_RNDU;
/* the smallest decimal64 number is 10^(-398),
with 2^(-1323) < 10^(-398) < 2^(-1322) */
if (MPFR_UNLIKELY (e < -1323)) /* src <= 2^(-1324) < 1/2*10^(-398) */
{
if (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDN
|| (rnd_mode == MPFR_RNDD && negative == 0)
|| (rnd_mode == MPFR_RNDU && negative != 0))
return get_decimal64_zero (negative);
else /* return the smallest non-zero number */
return get_decimal64_min (negative);
}
/* the largest decimal64 number is just below 10^(385) < 2^1279 */
else if (MPFR_UNLIKELY (e > 1279)) /* then src >= 2^1279 */
{
if (MPFR_RNDZ || (rnd_mode == MPFR_RNDU && negative != 0)
|| (rnd_mode == MPFR_RNDD && negative == 0))
return get_decimal64_max (negative);
else
return get_decimal64_inf (negative);
}
else
{
/* we need to store the sign (1), the mantissa (16), and the terminating
character, thus we need at least 18 characters in s */
char s[23];
mpfr_get_str (s, &e, 10, 16, src, rnd_mode);
/* the smallest normal number is 1.000...000E-383,
which corresponds to s=[0.]1000...000 and e=-382 */
if (e < -382)
{
/* the smallest subnormal number is 0.000...001E-383 = 1E-398,
which corresponds to s=[0.]1000...000 and e=-397 */
if (e < -397)
{
if (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDN
|| (rnd_mode == MPFR_RNDD && negative == 0)
|| (rnd_mode == MPFR_RNDU && negative != 0))
return get_decimal64_zero (negative);
else /* return the smallest non-zero number */
return get_decimal64_min (negative);
}
else
{
mpfr_exp_t e2;
long digits = 16 - (-382 - e);
/* if e = -397 then 16 - (-382 - e) = 1 */
mpfr_get_str (s, &e2, 10, digits, src, rnd_mode);
/* Warning: we can have e2 = e + 1 here, when rounding to
nearest or away from zero. */
s[negative + digits] = 'E';
sprintf (s + negative + digits + 1, "%ld",
(long int)e2 - digits);
return string_to_Decimal64 (s);
}
}
/* the largest number is 9.999...999E+384,
which corresponds to s=[0.]9999...999 and e=385 */
else if (e > 385)
{
if (MPFR_RNDZ || (rnd_mode == MPFR_RNDU && negative != 0)
|| (rnd_mode == MPFR_RNDD && negative == 0))
return get_decimal64_max (negative);
else
return get_decimal64_inf (negative);
}
else /* -382 <= e <= 385 */
{
s[16 + negative] = 'E';
sprintf (s + 17 + negative, "%ld", (long int)e - 16);
return string_to_Decimal64 (s);
}
}
}
#endif /* MPFR_WANT_DECIMAL_FLOATS */
|