1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
|
/* mpfr_rec_sqrt -- inverse square root
Copyright 2008, 2009, 2010 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <stdio.h>
#include <stdlib.h>
#define MPFR_NEED_LONGLONG_H /* for umul_ppmm */
#include "mpfr-impl.h"
#define LIMB_SIZE(x) ((((x)-1)>>MPFR_LOG2_GMP_NUMB_BITS) + 1)
#define MPFR_COM_N(x,y,n) \
{ \
mp_size_t i; \
for (i = 0; i < n; i++) \
*((x)+i) = ~*((y)+i); \
}
/* Put in X a p-bit approximation of 1/sqrt(A),
where X = {x, n}/B^n, n = ceil(p/GMP_NUMB_BITS),
A = 2^(1+as)*{a, an}/B^an, as is 0 or 1, an = ceil(ap/GMP_NUMB_BITS),
where B = 2^GMP_NUMB_BITS.
We have 1 <= A < 4 and 1/2 <= X < 1.
The error in the approximate result with respect to the true
value 1/sqrt(A) is bounded by 1 ulp(X), i.e., 2^{-p} since 1/2 <= X < 1.
Note: x and a are left-aligned, i.e., the most significant bit of
a[an-1] is set, and so is the most significant bit of the output x[n-1].
If p is not a multiple of GMP_NUMB_BITS, the extra low bits of the input
A are taken into account to compute the approximation of 1/sqrt(A), but
whether or not they are zero, the error between X and 1/sqrt(A) is bounded
by 1 ulp(X) [in precision p].
The extra low bits of the output X (if p is not a multiple of GMP_NUMB_BITS)
are set to 0.
Assumptions:
(1) A should be normalized, i.e., the most significant bit of a[an-1]
should be 1. If as=0, we have 1 <= A < 2; if as=1, we have 2 <= A < 4.
(2) p >= 12
(3) {a, an} and {x, n} should not overlap
(4) GMP_NUMB_BITS >= 12 and is even
Note: this routine is much more efficient when ap is small compared to p,
including the case where ap <= GMP_NUMB_BITS, thus it can be used to
implement an efficient mpfr_rec_sqrt_ui function.
Reference: Modern Computer Algebra, Richard Brent and Paul Zimmermann,
http://www.loria.fr/~zimmerma/mca/pub226.html
*/
static void
mpfr_mpn_rec_sqrt (mp_ptr x, mpfr_prec_t p,
mp_srcptr a, mpfr_prec_t ap, int as)
{
/* the following T1 and T2 are bipartite tables giving initial
approximation for the inverse square root, with 13-bit input split in
5+4+4, and 11-bit output. More precisely, if 2048 <= i < 8192,
with i = a*2^8 + b*2^4 + c, we use for approximation of
2048/sqrt(i/2048) the value x = T1[16*(a-8)+b] + T2[16*(a-8)+c].
The largest error is obtained for i = 2054, where x = 2044,
and 2048/sqrt(i/2048) = 2045.006576...
*/
static short int T1[384] = {
2040, 2033, 2025, 2017, 2009, 2002, 1994, 1987, 1980, 1972, 1965, 1958, 1951,
1944, 1938, 1931, /* a=8 */
1925, 1918, 1912, 1905, 1899, 1892, 1886, 1880, 1874, 1867, 1861, 1855, 1849,
1844, 1838, 1832, /* a=9 */
1827, 1821, 1815, 1810, 1804, 1799, 1793, 1788, 1783, 1777, 1772, 1767, 1762,
1757, 1752, 1747, /* a=10 */
1742, 1737, 1733, 1728, 1723, 1718, 1713, 1709, 1704, 1699, 1695, 1690, 1686,
1681, 1677, 1673, /* a=11 */
1669, 1664, 1660, 1656, 1652, 1647, 1643, 1639, 1635, 1631, 1627, 1623, 1619,
1615, 1611, 1607, /* a=12 */
1603, 1600, 1596, 1592, 1588, 1585, 1581, 1577, 1574, 1570, 1566, 1563, 1559,
1556, 1552, 1549, /* a=13 */
1545, 1542, 1538, 1535, 1532, 1528, 1525, 1522, 1518, 1515, 1512, 1509, 1505,
1502, 1499, 1496, /* a=14 */
1493, 1490, 1487, 1484, 1481, 1478, 1475, 1472, 1469, 1466, 1463, 1460, 1457,
1454, 1451, 1449, /* a=15 */
1446, 1443, 1440, 1438, 1435, 1432, 1429, 1427, 1424, 1421, 1419, 1416, 1413,
1411, 1408, 1405, /* a=16 */
1403, 1400, 1398, 1395, 1393, 1390, 1388, 1385, 1383, 1380, 1378, 1375, 1373,
1371, 1368, 1366, /* a=17 */
1363, 1360, 1358, 1356, 1353, 1351, 1349, 1346, 1344, 1342, 1340, 1337, 1335,
1333, 1331, 1329, /* a=18 */
1327, 1325, 1323, 1321, 1319, 1316, 1314, 1312, 1310, 1308, 1306, 1304, 1302,
1300, 1298, 1296, /* a=19 */
1294, 1292, 1290, 1288, 1286, 1284, 1282, 1280, 1278, 1276, 1274, 1272, 1270,
1268, 1266, 1265, /* a=20 */
1263, 1261, 1259, 1257, 1255, 1253, 1251, 1250, 1248, 1246, 1244, 1242, 1241,
1239, 1237, 1235, /* a=21 */
1234, 1232, 1230, 1229, 1227, 1225, 1223, 1222, 1220, 1218, 1217, 1215, 1213,
1212, 1210, 1208, /* a=22 */
1206, 1204, 1203, 1201, 1199, 1198, 1196, 1195, 1193, 1191, 1190, 1188, 1187,
1185, 1184, 1182, /* a=23 */
1181, 1180, 1178, 1177, 1175, 1174, 1172, 1171, 1169, 1168, 1166, 1165, 1163,
1162, 1160, 1159, /* a=24 */
1157, 1156, 1154, 1153, 1151, 1150, 1149, 1147, 1146, 1144, 1143, 1142, 1140,
1139, 1137, 1136, /* a=25 */
1135, 1133, 1132, 1131, 1129, 1128, 1127, 1125, 1124, 1123, 1121, 1120, 1119,
1117, 1116, 1115, /* a=26 */
1114, 1113, 1111, 1110, 1109, 1108, 1106, 1105, 1104, 1103, 1101, 1100, 1099,
1098, 1096, 1095, /* a=27 */
1093, 1092, 1091, 1090, 1089, 1087, 1086, 1085, 1084, 1083, 1081, 1080, 1079,
1078, 1077, 1076, /* a=28 */
1075, 1073, 1072, 1071, 1070, 1069, 1068, 1067, 1065, 1064, 1063, 1062, 1061,
1060, 1059, 1058, /* a=29 */
1057, 1056, 1055, 1054, 1052, 1051, 1050, 1049, 1048, 1047, 1046, 1045, 1044,
1043, 1042, 1041, /* a=30 */
1040, 1039, 1038, 1037, 1036, 1035, 1034, 1033, 1032, 1031, 1030, 1029, 1028,
1027, 1026, 1025 /* a=31 */
};
static unsigned char T2[384] = {
7, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, /* a=8 */
6, 5, 5, 5, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 0, 0, /* a=9 */
5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, /* a=10 */
4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, /* a=11 */
3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, /* a=12 */
3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* a=13 */
3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, /* a=14 */
2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* a=15 */
2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* a=16 */
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* a=17 */
3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, /* a=18 */
2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* a=19 */
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, /* a=20 */
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* a=21 */
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* a=22 */
2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, /* a=23 */
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* a=24 */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* a=25 */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* a=26 */
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* a=27 */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* a=28 */
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* a=29 */
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* a=30 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 /* a=31 */
};
mp_size_t n = LIMB_SIZE(p); /* number of limbs of X */
mp_size_t an = LIMB_SIZE(ap); /* number of limbs of A */
/* A should be normalized */
MPFR_ASSERTD((a[an - 1] & MPFR_LIMB_HIGHBIT) != 0);
/* We should have enough bits in one limb and GMP_NUMB_BITS should be even.
Since that does not depend on MPFR, we always check this. */
MPFR_ASSERTN((GMP_NUMB_BITS >= 12) && ((GMP_NUMB_BITS & 1) == 0));
/* {a, an} and {x, n} should not overlap */
MPFR_ASSERTD((a + an <= x) || (x + n <= a));
MPFR_ASSERTD(p >= 11);
if (MPFR_UNLIKELY(an > n)) /* we can cut the input to n limbs */
{
a += an - n;
an = n;
}
if (p == 11) /* should happen only from recursive calls */
{
unsigned long i, ab, ac;
mp_limb_t t;
/* take the 12+as most significant bits of A */
i = a[an - 1] >> (GMP_NUMB_BITS - (12 + as));
/* if one wants faithful rounding for p=11, replace #if 0 by #if 1 */
ab = i >> 4;
ac = (ab & 0x3F0) | (i & 0x0F);
t = (mp_limb_t) T1[ab - 0x80] + (mp_limb_t) T2[ac - 0x80];
x[0] = t << (GMP_NUMB_BITS - p);
}
else /* p >= 12 */
{
mpfr_prec_t h, pl;
mp_ptr r, s, t, u;
mp_size_t xn, rn, th, ln, tn, sn, ahn, un;
mp_limb_t neg, cy, cu;
MPFR_TMP_DECL(marker);
/* h = max(11, ceil((p+3)/2)) is the bitsize of the recursive call */
h = (p < 18) ? 11 : (p >> 1) + 2;
xn = LIMB_SIZE(h); /* limb size of the recursive Xh */
rn = LIMB_SIZE(2 * h); /* a priori limb size of Xh^2 */
ln = n - xn; /* remaining limbs to be computed */
/* Since |Xh - A^{-1/2}| <= 2^{-h}, then by multiplying by Xh + A^{-1/2}
we get |Xh^2 - 1/A| <= 2^{-h+1}, thus |A*Xh^2 - 1| <= 2^{-h+3},
thus the h-3 most significant bits of t should be zero,
which is in fact h+1+as-3 because of the normalization of A.
This corresponds to th=floor((h+1+as-3)/GMP_NUMB_BITS) limbs. */
th = (h + 1 + as - 3) >> MPFR_LOG2_GMP_NUMB_BITS;
tn = LIMB_SIZE(2 * h + 1 + as);
/* we need h+1+as bits of a */
ahn = LIMB_SIZE(h + 1 + as); /* number of high limbs of A
needed for the recursive call*/
if (MPFR_UNLIKELY(ahn > an))
ahn = an;
mpfr_mpn_rec_sqrt (x + ln, h, a + an - ahn, ahn * GMP_NUMB_BITS, as);
/* the most h significant bits of X are set, X has ceil(h/GMP_NUMB_BITS)
limbs, the low (-h) % GMP_NUMB_BITS bits are zero */
MPFR_TMP_MARK (marker);
/* first step: square X in r, result is exact */
un = xn + (tn - th);
/* We use the same temporary buffer to store r and u: r needs 2*xn
limbs where u needs xn+(tn-th) limbs. Since tn can store at least
2h bits, and th at most h bits, then tn-th can store at least h bits,
thus tn - th >= xn, and reserving the space for u is enough. */
MPFR_ASSERTD(2 * xn <= un);
u = r = (mp_ptr) MPFR_TMP_ALLOC (un * sizeof (mp_limb_t));
if (2 * h <= GMP_NUMB_BITS) /* xn=rn=1, and since p <= 2h-3, n=1,
thus ln = 0 */
{
MPFR_ASSERTD(ln == 0);
cy = x[0] >> (GMP_NUMB_BITS >> 1);
r ++;
r[0] = cy * cy;
}
else if (xn == 1) /* xn=1, rn=2 */
umul_ppmm(r[1], r[0], x[ln], x[ln]);
else
{
mpn_mul_n (r, x + ln, x + ln, xn);
if (rn < 2 * xn)
r ++;
}
/* now the 2h most significant bits of {r, rn} contains X^2, r has rn
limbs, and the low (-2h) % GMP_NUMB_BITS bits are zero */
/* Second step: s <- A * (r^2), and truncate the low ap bits,
i.e., at weight 2^{-2h} (s is aligned to the low significant bits)
*/
sn = an + rn;
s = (mp_ptr) MPFR_TMP_ALLOC (sn * sizeof (mp_limb_t));
if (rn == 1) /* rn=1 implies n=1, since rn*GMP_NUMB_BITS >= 2h,
and 2h >= p+3 */
{
/* necessarily p <= GMP_NUMB_BITS-3: we can ignore the two low
bits from A */
/* since n=1, and we ensured an <= n, we also have an=1 */
MPFR_ASSERTD(an == 1);
umul_ppmm (s[1], s[0], r[0], a[0]);
}
else
{
/* we have p <= n * GMP_NUMB_BITS
2h <= rn * GMP_NUMB_BITS with p+3 <= 2h <= p+4
thus n <= rn <= n + 1 */
MPFR_ASSERTD(rn <= n + 1);
/* since we ensured an <= n, we have an <= rn */
MPFR_ASSERTD(an <= rn);
mpn_mul (s, r, rn, a, an);
/* s should be near B^sn/2^(1+as), thus s[sn-1] is either
100000... or 011111... if as=0, or
010000... or 001111... if as=1.
We ignore the bits of s after the first 2h+1+as ones.
*/
}
/* We ignore the bits of s after the first 2h+1+as ones: s has rn + an
limbs, where rn = LIMBS(2h), an=LIMBS(a), and tn = LIMBS(2h+1+as). */
t = s + sn - tn; /* pointer to low limb of the high part of t */
/* the upper h-3 bits of 1-t should be zero,
where 1 corresponds to the most significant bit of t[tn-1] if as=0,
and to the 2nd most significant bit of t[tn-1] if as=1 */
/* compute t <- 1 - t, which is B^tn - {t, tn+1},
with rounding toward -Inf, i.e., rounding the input t toward +Inf.
We could only modify the low tn - th limbs from t, but it gives only
a small speedup, and would make the code more complex.
*/
neg = t[tn - 1] & (MPFR_LIMB_HIGHBIT >> as);
if (neg == 0) /* Ax^2 < 1: we have t = th + eps, where 0 <= eps < ulp(th)
is the part truncated above, thus 1 - t rounded to -Inf
is 1 - th - ulp(th) */
{
/* since the 1+as most significant bits of t are zero, set them
to 1 before the one-complement */
t[tn - 1] |= MPFR_LIMB_HIGHBIT | (MPFR_LIMB_HIGHBIT >> as);
MPFR_COM_N (t, t, tn);
/* we should add 1 here to get 1-th complement, and subtract 1 for
-ulp(th), thus we do nothing */
}
else /* negative case: we want 1 - t rounded toward -Inf, i.e.,
th + eps rounded toward +Inf, which is th + ulp(th):
we discard the bit corresponding to 1,
and we add 1 to the least significant bit of t */
{
t[tn - 1] ^= neg;
mpn_add_1 (t, t, tn, 1);
}
tn -= th; /* we know at least th = floor((h+1+as-3)/GMP_NUMB_LIMBS) of
the high limbs of {t, tn} are zero */
/* tn = rn - th, where rn * GMP_NUMB_BITS >= 2*h and
th * GMP_NUMB_BITS <= h+1+as-3, thus tn > 0 */
MPFR_ASSERTD(tn > 0);
/* u <- x * t, where {t, tn} contains at least h+3 bits,
and {x, xn} contains h bits, thus tn >= xn */
MPFR_ASSERTD(tn >= xn);
if (tn == 1) /* necessarily xn=1 */
umul_ppmm (u[1], u[0], t[0], x[ln]);
else
mpn_mul (u, t, tn, x + ln, xn);
/* we have already discarded the upper th high limbs of t, thus we only
have to consider the upper n - th limbs of u */
un = n - th; /* un cannot be zero, since p <= n*GMP_NUMB_BITS,
h = ceil((p+3)/2) <= (p+4)/2,
th*GMP_NUMB_BITS <= h-1 <= p/2+1,
thus (n-th)*GMP_NUMB_BITS >= p/2-1.
*/
MPFR_ASSERTD(un > 0);
u += (tn + xn) - un; /* xn + tn - un = xn + (original_tn - th) - (n - th)
= xn + original_tn - n
= LIMBS(h) + LIMBS(2h+1+as) - LIMBS(p) > 0
since 2h >= p+3 */
MPFR_ASSERTD(tn + xn > un); /* will allow to access u[-1] below */
/* In case as=0, u contains |x*(1-Ax^2)/2|, which is exactly what we
need to add or subtract.
In case as=1, u contains |x*(1-Ax^2)/4|, thus we need to multiply
u by 2. */
if (as == 1)
/* shift on un+1 limbs to get most significant bit of u[-1] into
least significant bit of u[0] */
mpn_lshift (u - 1, u - 1, un + 1, 1);
pl = n * GMP_NUMB_BITS - p; /* low bits from x */
/* We want that the low pl bits are zero after rounding to nearest,
thus we round u to nearest at bit pl-1 of u[0] */
if (pl > 0)
{
cu = mpn_add_1 (u, u, un, u[0] & (MPFR_LIMB_ONE << (pl - 1)));
/* mask bits 0..pl-1 of u[0] */
u[0] &= ~MPFR_LIMB_MASK(pl);
}
else /* round bit is in u[-1] */
cu = mpn_add_1 (u, u, un, u[-1] >> (GMP_NUMB_BITS - 1));
/* We already have filled {x + ln, xn = n - ln}, and we want to add or
subtract cu*B^un + {u, un} at position x.
un = n - th, where th contains <= h+1+as-3<=h-1 bits
ln = n - xn, where xn contains >= h bits
thus un > ln.
Warning: ln might be zero.
*/
MPFR_ASSERTD(un > ln);
/* we can have un = ln + 2, for example with GMP_NUMB_BITS=32 and
p=62, as=0, then h=33, n=2, th=0, xn=2, thus un=2 and ln=0. */
MPFR_ASSERTD(un == ln + 1 || un == ln + 2);
/* the high un-ln limbs of u will overlap the low part of {x+ln,xn},
we need to add or subtract the overlapping part {u + ln, un - ln} */
if (neg == 0)
{
if (ln > 0)
MPN_COPY (x, u, ln);
cy = mpn_add (x + ln, x + ln, xn, u + ln, un - ln);
/* add cu at x+un */
cy += mpn_add_1 (x + un, x + un, th, cu);
}
else /* negative case */
{
/* subtract {u+ln, un-ln} from {x+ln,un} */
cy = mpn_sub (x + ln, x + ln, xn, u + ln, un - ln);
/* carry cy is at x+un, like cu */
cy = mpn_sub_1 (x + un, x + un, th, cy + cu); /* n - un = th */
/* cy cannot be zero, since the most significant bit of Xh is 1,
and the correction is bounded by 2^{-h+3} */
MPFR_ASSERTD(cy == 0);
if (ln > 0)
{
MPFR_COM_N (x, u, ln);
/* we must add one for the 2-complement ... */
cy = mpn_add_1 (x, x, n, MPFR_LIMB_ONE);
/* ... and subtract 1 at x[ln], where n = ln + xn */
cy -= mpn_sub_1 (x + ln, x + ln, xn, MPFR_LIMB_ONE);
}
}
/* cy can be 1 when A=1, i.e., {a, n} = B^n. In that case we should
have X = B^n, and setting X to 1-2^{-p} satisties the error bound
of 1 ulp. */
if (MPFR_UNLIKELY(cy != 0))
{
cy -= mpn_sub_1 (x, x, n, MPFR_LIMB_ONE << pl);
MPFR_ASSERTD(cy == 0);
}
MPFR_TMP_FREE (marker);
}
}
int
mpfr_rec_sqrt (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
mpfr_prec_t rp, up, wp;
mp_size_t rn, wn;
int s, cy, inex;
mp_ptr x;
int out_of_place;
MPFR_TMP_DECL(marker);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", u, u, rnd_mode),
("y[%#R]=%R inexact=%d", r, r, inex));
/* special values */
if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(u)))
{
if (MPFR_IS_NAN(u))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
else if (MPFR_IS_ZERO(u)) /* 1/sqrt(+0) = 1/sqrt(-0) = +Inf */
{
/* 0+ or 0- */
MPFR_SET_INF(r);
MPFR_SET_POS(r);
MPFR_RET(0); /* Inf is exact */
}
else
{
MPFR_ASSERTD(MPFR_IS_INF(u));
/* 1/sqrt(-Inf) = NAN */
if (MPFR_IS_NEG(u))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
/* 1/sqrt(+Inf) = +0 */
MPFR_SET_POS(r);
MPFR_SET_ZERO(r);
MPFR_RET(0);
}
}
/* if u < 0, 1/sqrt(u) is NaN */
if (MPFR_UNLIKELY(MPFR_IS_NEG(u)))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
MPFR_SET_POS(r);
rp = MPFR_PREC(r); /* output precision */
up = MPFR_PREC(u); /* input precision */
wp = rp + 11; /* initial working precision */
/* Let u = U*2^e, where e = EXP(u), and 1/2 <= U < 1.
If e is even, we compute an approximation of X of (4U)^{-1/2},
and the result is X*2^(-(e-2)/2) [case s=1].
If e is odd, we compute an approximation of X of (2U)^{-1/2},
and the result is X*2^(-(e-1)/2) [case s=0]. */
/* parity of the exponent of u */
s = 1 - ((mpfr_uexp_t) MPFR_GET_EXP (u) & 1);
rn = LIMB_SIZE(rp);
/* for the first iteration, if rp + 11 fits into rn limbs, we round up
up to a full limb to maximize the chance of rounding, while avoiding
to allocate extra space */
wp = rp + 11;
if (wp < rn * GMP_NUMB_BITS)
wp = rn * GMP_NUMB_BITS;
for (;;)
{
MPFR_TMP_MARK (marker);
wn = LIMB_SIZE(wp);
out_of_place = (r == u) || (wn > rn);
if (out_of_place)
x = (mp_ptr) MPFR_TMP_ALLOC (wn * sizeof (mp_limb_t));
else
x = MPFR_MANT(r);
mpfr_mpn_rec_sqrt (x, wp, MPFR_MANT(u), up, s);
/* If the input was not truncated, the error is at most one ulp;
if the input was truncated, the error is at most two ulps
(see algorithms.tex). */
if (MPFR_LIKELY (mpfr_round_p (x, wn, wp - (wp < up),
rp + (rnd_mode == MPFR_RNDN))))
break;
/* We detect only now the exact case where u=2^(2e), to avoid
slowing down the average case. This can happen only when the
mantissa is exactly 1/2 and the exponent is odd. */
if (s == 0 && mpfr_cmp_ui_2exp (u, 1, MPFR_EXP(u) - 1) == 0)
{
mpfr_prec_t pl = wn * GMP_NUMB_BITS - wp;
/* we should have x=111...111 */
mpn_add_1 (x, x, wn, MPFR_LIMB_ONE << pl);
x[wn - 1] = MPFR_LIMB_HIGHBIT;
s += 2;
break; /* go through */
}
MPFR_TMP_FREE(marker);
wp += GMP_NUMB_BITS;
}
cy = mpfr_round_raw (MPFR_MANT(r), x, wp, 0, rp, rnd_mode, &inex);
MPFR_EXP(r) = - (MPFR_EXP(u) - 1 - s) / 2;
if (MPFR_UNLIKELY(cy != 0))
{
MPFR_EXP(r) ++;
MPFR_MANT(r)[rn - 1] = MPFR_LIMB_HIGHBIT;
}
MPFR_TMP_FREE(marker);
return mpfr_check_range (r, inex, rnd_mode);
}
|