1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/* Test file for mpfr_tanu.
Copyright 2020-2025 Free Software Foundation, Inc.
Contributed by the Pascaline and Caramba projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER.
If not, see <https://www.gnu.org/licenses/>. */
#include "mpfr-test.h"
static void
test_singular (void)
{
mpfr_t x, y;
int inexact;
mpfr_init (x);
mpfr_init (y);
/* check u = 0 */
mpfr_set_ui (x, 17, MPFR_RNDN);
inexact = mpfr_tanu (y, x, 0, MPFR_RNDN);
MPFR_ASSERTN(mpfr_nan_p (y));
/* check x = NaN */
mpfr_set_nan (x);
inexact = mpfr_tanu (y, x, 1, MPFR_RNDN);
MPFR_ASSERTN(mpfr_nan_p (y));
/* check x = +Inf */
mpfr_set_inf (x, 1);
inexact = mpfr_tanu (y, x, 1, MPFR_RNDN);
MPFR_ASSERTN(mpfr_nan_p (y));
/* check x = -Inf */
mpfr_set_inf (x, -1);
inexact = mpfr_tanu (y, x, 1, MPFR_RNDN);
MPFR_ASSERTN(mpfr_nan_p (y));
/* check x = +0 */
mpfr_set_zero (x, 1);
inexact = mpfr_tanu (y, x, 1, MPFR_RNDN);
MPFR_ASSERTN(mpfr_zero_p (y) && mpfr_signbit (y) == 0);
MPFR_ASSERTN(inexact == 0);
/* check x = -0 */
mpfr_set_zero (x, -1);
inexact = mpfr_tanu (y, x, 1, MPFR_RNDN);
MPFR_ASSERTN(mpfr_zero_p (y) && mpfr_signbit (y) != 0);
MPFR_ASSERTN(inexact == 0);
mpfr_clear (x);
mpfr_clear (y);
}
static void
test_exact (void)
{
mpfr_t x, y;
int inexact, n;
mpfr_init2 (x, 6);
mpfr_init2 (y, 6);
/* check n + 0.5 for n integer */
for (n = 0; n < 10; n++)
{
/* check 2n+0.5 for n>=0: +Inf and divide by 0 exception */
mpfr_set_ui (x, 4 * n + 1, MPFR_RNDN);
mpfr_clear_divby0 ();
inexact = mpfr_tanu (y, x, 4, MPFR_RNDN);
MPFR_ASSERTN(mpfr_inf_p (y) && mpfr_sgn (y) > 0);
MPFR_ASSERTN(inexact == 0);
MPFR_ASSERTN(mpfr_divby0_p ());
/* check 2n+1 for n>=0: -0 */
mpfr_set_ui (x, 4 * n + 2, MPFR_RNDN);
mpfr_clear_divby0 ();
inexact = mpfr_tanu (y, x, 4, MPFR_RNDN);
MPFR_ASSERTN(mpfr_zero_p (y) && mpfr_signbit (y) != 0);
MPFR_ASSERTN(inexact == 0);
MPFR_ASSERTN(!mpfr_divby0_p ());
/* check 2n+1.5 for n>=0: -Inf and divide by 0 exception */
mpfr_set_ui (x, 4 * n + 3, MPFR_RNDN);
mpfr_clear_divby0 ();
inexact = mpfr_tanu (y, x, 4, MPFR_RNDN);
MPFR_ASSERTN(mpfr_inf_p (y) && mpfr_sgn (y) < 0);
MPFR_ASSERTN(inexact == 0);
MPFR_ASSERTN(mpfr_divby0_p ());
/* check 2n+2 for n>=0: +0 */
mpfr_set_ui (x, 4 * n + 4, MPFR_RNDN);
mpfr_clear_divby0 ();
inexact = mpfr_tanu (y, x, 4, MPFR_RNDN);
MPFR_ASSERTN(mpfr_zero_p (y) && mpfr_signbit (y) == 0);
MPFR_ASSERTN(inexact == 0);
MPFR_ASSERTN(!mpfr_divby0_p ());
/* check -2n-0.5 for n>=0: -Inf and divide by 0 exception */
mpfr_set_si (x, -4 * n - 1, MPFR_RNDN);
mpfr_clear_divby0 ();
inexact = mpfr_tanu (y, x, 4, MPFR_RNDN);
MPFR_ASSERTN(mpfr_inf_p (y) && mpfr_sgn (y) < 0);
MPFR_ASSERTN(inexact == 0);
MPFR_ASSERTN(mpfr_divby0_p ());
/* check -2n-1 for n>=0: +0 */
mpfr_set_si (x, -4 * n - 2, MPFR_RNDN);
mpfr_clear_divby0 ();
inexact = mpfr_tanu (y, x, 4, MPFR_RNDN);
MPFR_ASSERTN(mpfr_zero_p (y) && mpfr_signbit (y) == 0);
MPFR_ASSERTN(inexact == 0);
MPFR_ASSERTN(!mpfr_divby0_p ());
/* check -2n-1.5 for n>=0: +Inf and divide by 0 exception */
mpfr_set_si (x, -4 * n - 3, MPFR_RNDN);
mpfr_clear_divby0 ();
inexact = mpfr_tanu (y, x, 4, MPFR_RNDN);
MPFR_ASSERTN(mpfr_inf_p (y) && mpfr_sgn (y) > 0);
MPFR_ASSERTN(inexact == 0);
MPFR_ASSERTN(mpfr_divby0_p ());
/* check -2n-2 for n>=0: -0 */
mpfr_set_si (x, -4 * n - 4, MPFR_RNDN);
mpfr_clear_divby0 ();
inexact = mpfr_tanu (y, x, 4, MPFR_RNDN);
MPFR_ASSERTN(mpfr_zero_p (y) && mpfr_signbit (y) != 0);
MPFR_ASSERTN(inexact == 0);
MPFR_ASSERTN(!mpfr_divby0_p ());
}
/* check 2*pi*x/u = pi/4 thus x/u = 1/8, for example x=1 and u=8 */
mpfr_set_ui (x, 1, MPFR_RNDN);
inexact = mpfr_tanu (y, x, 8, MPFR_RNDN);
MPFR_ASSERTN(mpfr_cmp_ui (y, 1) == 0 && inexact == 0);
/* check 2*pi*x/u = 3*pi/4 thus x/u = 3/8, for example x=3 and u=8 */
mpfr_set_ui (x, 3, MPFR_RNDN);
inexact = mpfr_tanu (y, x, 8, MPFR_RNDN);
MPFR_ASSERTN(mpfr_cmp_si (y, -1) == 0 && inexact == 0);
/* check 2*pi*x/u = 5*pi/4 thus x/u = 5/8, for example x=5 and u=8 */
mpfr_set_ui (x, 5, MPFR_RNDN);
inexact = mpfr_tanu (y, x, 8, MPFR_RNDN);
MPFR_ASSERTN(mpfr_cmp_ui (y, 1) == 0 && inexact == 0);
/* check 2*pi*x/u = 7*pi/4 thus x/u = 7/8, for example x=7 and u=8 */
mpfr_set_ui (x, 7, MPFR_RNDN);
inexact = mpfr_tanu (y, x, 8, MPFR_RNDN);
MPFR_ASSERTN(mpfr_cmp_si (y, -1) == 0 && inexact == 0);
mpfr_clear (x);
mpfr_clear (y);
}
static void
test_regular (void)
{
mpfr_t x, y, z;
int inexact;
mpfr_init2 (x, 53);
mpfr_init2 (y, 53);
mpfr_init2 (z, 53);
mpfr_set_ui (x, 17, MPFR_RNDN);
inexact = mpfr_tanu (y, x, 42, MPFR_RNDN);
/* y should be tan(2*17*pi/42) rounded to nearest */
mpfr_set_str (z, "-0xa.e89b03074638p-4", 16, MPFR_RNDN);
MPFR_ASSERTN(mpfr_equal_p (y, z));
MPFR_ASSERTN(inexact > 0);
mpfr_clear (x);
mpfr_clear (y);
mpfr_clear (z);
}
/* Check argument reduction with large hard-coded inputs. The following
values were generated with gen_random(tan,10,53,100,20), where the
Sage code for gen_random is given in the tcosu.c file. */
static void
test_large (void)
{
static struct {
const char *x;
unsigned long u;
const char *y;
} t[] = {
{ "-0x1.8f7cb49edc03p+16", 28, "0x4.c869fd8050554p-4" },
{ "-0xe.8ede30716292p+16", 17, "-0x2.c83df69d8fdecp+4" },
{ "-0x8.f14a73a7b4a3p+16", 4, "-0xd.be24a6d0fde98p-4" },
{ "0xe.f82c4537b473p+16", 93, "-0x5.d0d95fdc8ffbcp+0" },
{ "0x8.4148f00c8418p+16", 50, "0x1.e4e4aa652b2a4p-4" },
{ "-0x6.e8b69db10e63p+16", 27, "-0x2.4f32f1977b7b2p-4" },
{ "-0xe.a3ebf225ea2fp+16", 18, "0x6.5f7637f74517p+0" },
{ "-0x5.580eb29168d8p+16", 92, "0x8.96418eed84e8p+0" },
{ "0x8.13c5a1b43231p+16", 19, "0xb.2718b861b29fp-8" },
{ "0x4.eb4e546e042dp+16", 64, "0x6.0b3ba821e4ep+0" }
};
int i;
mpfr_t x, y, z;
mpfr_inits2 (53, x, y, z, (mpfr_ptr) 0);
for (i = 0; i < numberof (t); i++)
{
mpfr_set_str (x, t[i].x, 0, MPFR_RNDN);
mpfr_set_str (y, t[i].y, 0, MPFR_RNDN);
mpfr_tanu (z, x, t[i].u, MPFR_RNDN);
MPFR_ASSERTN (mpfr_equal_p (y, z));
}
mpfr_clears (x, y, z, (mpfr_ptr) 0);
}
#define TEST_FUNCTION mpfr_tanu
#define ULONG_ARG2
#include "tgeneric.c"
static int
mpfr_tan2pi (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t r)
{
return mpfr_tanu (y, x, 1, r);
}
int
main (void)
{
tests_start_mpfr ();
test_singular ();
test_exact ();
test_regular ();
test_large ();
test_generic (MPFR_PREC_MIN, 100, 1000);
data_check ("data/tan2pi", mpfr_tan2pi, "mpfr_tan2pi");
tests_end_mpfr ();
return 0;
}
|