File: fft.c

package info (click to toggle)
mpg321 0.3.2-3.1
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye
  • size: 784 kB
  • sloc: ansic: 5,371; sh: 767; makefile: 75
file content (272 lines) | stat: -rw-r--r-- 9,055 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/* fft.c: Iterative implementation of a FFT
 * Copyright (C) 1999 Richard Boulton <richard@tartarus.org>
 * Convolution stuff by Ralph Loader <suckfish@ihug.co.nz>
 * This file is part of AlsaPlayer (C) 1998 - 2002 <andy@alsaplayer.org>
 *
 *  AlsaPlayer is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  AlsaPlayer is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
 *
 *  $Id: fft.c 1251 2007-07-08 14:31:34Z dominique_libre $
 *
 */

/*
 * TODO
 * Remove compiling in of FFT_BUFFER_SIZE?  (Might slow things down, but would
 * be nice to be able to change size at runtime.)
 * Finish making / checking thread-safety.
 * More optimizations.
 */

#include "mpg321.h"

#include <stdlib.h>
#include <math.h>
#ifndef PI
 #ifdef M_PI
  #define PI M_PI
 #else
  #define PI 3.14159265358979323846  /* pi */
 #endif
#endif

/* ############################# */
/* # Local function prototypes # */
/* ############################# */

static void fft_prepare(const sound_sample *input, double * re, double * im);
static void fft_calculate(double * re, double * im);
static void fft_output(const double *re, const double *im, double *output);
static int reverseBits(unsigned int initial);

/* #################### */
/* # Global variables # */
/* #################### */

/* Table to speed up bit reverse copy */
static unsigned int bitReverse[FFT_BUFFER_SIZE];

/* The next two tables could be made to use less space in memory, since they
 * overlap hugely, but hey. */
static double sintable[FFT_BUFFER_SIZE / 2];
static double costable[FFT_BUFFER_SIZE / 2];

/* ############################## */
/* # Externally called routines # */
/* ############################## */

/* --------- */
/* FFT stuff */
/* --------- */

/*
 * Initialisation routine - sets up tables and space to work in.
 * Returns a pointer to internal state, to be used when performing calls.
 * On error, returns NULL.
 * The pointer should be freed when it is finished with, by fft_close().
 */
fft_state *fft_init(void) {
    fft_state *state;
    unsigned int i;

    state = (fft_state *) malloc (sizeof(fft_state));
    if(!state) return NULL;

    for(i = 0; i < FFT_BUFFER_SIZE; i++) {
        bitReverse[i] = reverseBits(i);
    }
    for(i = 0; i < FFT_BUFFER_SIZE / 2; i++) {
        double j = 2 * PI * i / FFT_BUFFER_SIZE;
        float test;
        costable[i] = cos(j);
        test = cos(j);
        sintable[i] = sin(j);
    }

    return state;
}

/*
 * Do all the steps of the FFT, taking as input sound data (as described in
 * sound.h) and returning the intensities of each frequency as doubles in the
 * range 0 to ((FFT_BUFFER_SIZE / 2) * 32768) ^ 2
 *
 * FIXME - the above range assumes no frequencies present have an amplitude
 * larger than that of the sample variation.  But this is false: we could have
 * a wave such that its maximums are always between samples, and it's just
 * inside the representable range at the places samples get taken.
 * Question: what _is_ the maximum value possible.  Twice that value?  Root
 * two times that value?  Hmmm.  Think it depends on the frequency, too.
 *
 * The input array is assumed to have FFT_BUFFER_SIZE * 2 elements,
 * and the output array is assumed to have (FFT_BUFFER_SIZE / 2 + 1) elements.
 * state is a (non-NULL) pointer returned by fft_init.
 */
void fft_perform(const sound_sample *input, double *output, fft_state *state) {
    /* Convert data from sound format to be ready for FFT */
    fft_prepare(input, state->real, state->imag);

    /* Do the actual FFT */
    fft_calculate(state->real, state->imag);

    /* Convert the FFT output into intensities */
    fft_output(state->real, state->imag, output);
}

/*
 * Free the state.
 */
void fft_close(fft_state *state) {
    if(state) free(state);
}

/* ########################### */
/* # Locally called routines # */
/* ########################### */

/*
 * Prepare data to perform an FFT on
 */
static void fft_prepare(const sound_sample *input, double * re, double * im) {
    unsigned int i;
    double *realptr = re;
    double *imagptr = im;

    /* Get input, in reverse bit order */
    for(i = 0; i < FFT_BUFFER_SIZE; i++) {
#ifdef DEBUG
        printf("%i is reversed to %i and maps to %i %i\n", i, bitReverse[i], bitReverse[i] * 2, (bitReverse[i] * 2) + 1);
#endif
        sound_sample* ptr = &(input[bitReverse[i] * 2]);
        *realptr++ = (ptr[0] + ptr[1]) / 2;
        *imagptr++ = 0;
    }
}

/*
 * Take result of an FFT and calculate the intensities of each frequency
 * Note: only produces half as many data points as the input had.
 * This is roughly a consequence of the Nyquist–Shannon sampling theorem.
 *
 * The two divisions by 4 are also a consequence of this: the contributions
 * returned for each frequency are split into two parts, one at i in the
 * table, and the other at FFT_BUFFER_SIZE - i, except for i = 0 and
 * FFT_BUFFER_SIZE which would otherwise get double (and then 4* when squared)
 * the contributions.
 */
static void fft_output(const double * re, const double * im, double *output) {
    double *outputptr = output;
    const double *realptr   = re;
    const double *imagptr   = im;
    double *endptr    = output + FFT_BUFFER_SIZE / 2;

#ifdef DEBUG
    unsigned int i, j;
#endif

    while(outputptr <= endptr) {
        *outputptr = (*realptr * *realptr) + (*imagptr * *imagptr);
        outputptr++; realptr++; imagptr++;
    }
    /* Do divisions to keep the constant and highest frequency terms in scale
     * with the other terms. */
    *output /= 4;
    *endptr /= 4;

#ifdef DEBUG
    printf("Recalculated input:\n");
    for(i = 0; i < FFT_BUFFER_SIZE; i++) {
        double val_real = 0;
        double val_imag = 0;
        for(j = 0; j < FFT_BUFFER_SIZE; j++) {
            double fact_real = cos(- 2 * j * i * PI / FFT_BUFFER_SIZE);
            double fact_imag = sin(- 2 * j * i * PI / FFT_BUFFER_SIZE);
            val_real += fact_real * re[j] - fact_imag * im[j];
            val_imag += fact_real * im[j] + fact_imag * re[j];
        }
        printf("%5d = %8f + i * %8f\n", i,
               val_real / FFT_BUFFER_SIZE,
               val_imag / FFT_BUFFER_SIZE);
    }
    printf("\n");
#endif
}

/*
 * Actually perform the FFT
 */
static void fft_calculate(double * re, double * im) {
    unsigned int i, j, k;
    unsigned int exchanges;
    double fact_real, fact_imag;
    double tmp_real, tmp_imag;
    unsigned int factfact;

    /* Set up some variables to reduce calculation in the loops */
    exchanges = 1;
    factfact = FFT_BUFFER_SIZE / 2;

    /* Loop through the divide and conquer steps */
    for(i = FFT_BUFFER_SIZE_LOG; i != 0; i--) {
        /* In this step, we have 2 ^ (i - 1) exchange groups, each with
         * 2 ^ (FFT_BUFFER_SIZE_LOG - i) exchanges
         */
        /* Loop through the exchanges in a group */
        for(j = 0; j != exchanges; j++) {
            /* Work out factor for this exchange
             * factor ^ (exchanges) = -1
             * So, real = cos(j * PI / exchanges),
             *     imag = sin(j * PI / exchanges)
             */
            fact_real = costable[j * factfact];
            fact_imag = sintable[j * factfact];

            /* Loop through all the exchange groups */
            for(k = j; k < FFT_BUFFER_SIZE; k += exchanges << 1) {
                int k1 = k + exchanges;
                /* newval[k]  := val[k] + factor * val[k1]
                 * newval[k1] := val[k] - factor * val[k1]
                 **/
#ifdef DEBUG
                printf("%d %d %d\n", i,j,k);
                printf("Exchange %d with %d\n", k, k1);
                printf("Factor %9f + i * %8f\n", fact_real, fact_imag);
#endif
                /* FIXME - potential scope for more optimization here? */
                tmp_real = fact_real * re[k1] - fact_imag * im[k1];
                tmp_imag = fact_real * im[k1] + fact_imag * re[k1];
                re[k1] = re[k] - tmp_real;
                im[k1] = im[k] - tmp_imag;
                re[k]  += tmp_real;
                im[k]  += tmp_imag;
#ifdef DEBUG
                for(k1 = 0; k1 < FFT_BUFFER_SIZE; k1++) {
                    printf("%5d = %8f + i * %8f\n", k1, re[k1], im[k1]);
                }
#endif
            }
        }
        exchanges <<= 1;
        factfact >>= 1;
    }
}

static int reverseBits(unsigned int initial) {
    unsigned int reversed = 0, loop;
    for(loop = 0; loop < FFT_BUFFER_SIZE_LOG; loop++) {
        reversed <<= 1;
        reversed += (initial & 1);
        initial >>= 1;
    }
    return reversed;
}