1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/* fft.c: Iterative implementation of a FFT
* Copyright (C) 1999 Richard Boulton <richard@tartarus.org>
* Convolution stuff by Ralph Loader <suckfish@ihug.co.nz>
* This file is part of AlsaPlayer (C) 1998 - 2002 <andy@alsaplayer.org>
*
* AlsaPlayer is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* AlsaPlayer is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* $Id: fft.c 1251 2007-07-08 14:31:34Z dominique_libre $
*
*/
/*
* TODO
* Remove compiling in of FFT_BUFFER_SIZE? (Might slow things down, but would
* be nice to be able to change size at runtime.)
* Finish making / checking thread-safety.
* More optimizations.
*/
#include "mpg321.h"
#include <stdlib.h>
#include <math.h>
#ifndef PI
#ifdef M_PI
#define PI M_PI
#else
#define PI 3.14159265358979323846 /* pi */
#endif
#endif
/* ############################# */
/* # Local function prototypes # */
/* ############################# */
static void fft_prepare(const sound_sample *input, double * re, double * im);
static void fft_calculate(double * re, double * im);
static void fft_output(const double *re, const double *im, double *output);
static int reverseBits(unsigned int initial);
/* #################### */
/* # Global variables # */
/* #################### */
/* Table to speed up bit reverse copy */
static unsigned int bitReverse[FFT_BUFFER_SIZE];
/* The next two tables could be made to use less space in memory, since they
* overlap hugely, but hey. */
static double sintable[FFT_BUFFER_SIZE / 2];
static double costable[FFT_BUFFER_SIZE / 2];
/* ############################## */
/* # Externally called routines # */
/* ############################## */
/* --------- */
/* FFT stuff */
/* --------- */
/*
* Initialisation routine - sets up tables and space to work in.
* Returns a pointer to internal state, to be used when performing calls.
* On error, returns NULL.
* The pointer should be freed when it is finished with, by fft_close().
*/
fft_state *fft_init(void) {
fft_state *state;
unsigned int i;
state = (fft_state *) malloc (sizeof(fft_state));
if(!state) return NULL;
for(i = 0; i < FFT_BUFFER_SIZE; i++) {
bitReverse[i] = reverseBits(i);
}
for(i = 0; i < FFT_BUFFER_SIZE / 2; i++) {
double j = 2 * PI * i / FFT_BUFFER_SIZE;
float test;
costable[i] = cos(j);
test = cos(j);
sintable[i] = sin(j);
}
return state;
}
/*
* Do all the steps of the FFT, taking as input sound data (as described in
* sound.h) and returning the intensities of each frequency as doubles in the
* range 0 to ((FFT_BUFFER_SIZE / 2) * 32768) ^ 2
*
* FIXME - the above range assumes no frequencies present have an amplitude
* larger than that of the sample variation. But this is false: we could have
* a wave such that its maximums are always between samples, and it's just
* inside the representable range at the places samples get taken.
* Question: what _is_ the maximum value possible. Twice that value? Root
* two times that value? Hmmm. Think it depends on the frequency, too.
*
* The input array is assumed to have FFT_BUFFER_SIZE * 2 elements,
* and the output array is assumed to have (FFT_BUFFER_SIZE / 2 + 1) elements.
* state is a (non-NULL) pointer returned by fft_init.
*/
void fft_perform(const sound_sample *input, double *output, fft_state *state) {
/* Convert data from sound format to be ready for FFT */
fft_prepare(input, state->real, state->imag);
/* Do the actual FFT */
fft_calculate(state->real, state->imag);
/* Convert the FFT output into intensities */
fft_output(state->real, state->imag, output);
}
/*
* Free the state.
*/
void fft_close(fft_state *state) {
if(state) free(state);
}
/* ########################### */
/* # Locally called routines # */
/* ########################### */
/*
* Prepare data to perform an FFT on
*/
static void fft_prepare(const sound_sample *input, double * re, double * im) {
unsigned int i;
double *realptr = re;
double *imagptr = im;
/* Get input, in reverse bit order */
for(i = 0; i < FFT_BUFFER_SIZE; i++) {
#ifdef DEBUG
printf("%i is reversed to %i and maps to %i %i\n", i, bitReverse[i], bitReverse[i] * 2, (bitReverse[i] * 2) + 1);
#endif
sound_sample* ptr = &(input[bitReverse[i] * 2]);
*realptr++ = (ptr[0] + ptr[1]) / 2;
*imagptr++ = 0;
}
}
/*
* Take result of an FFT and calculate the intensities of each frequency
* Note: only produces half as many data points as the input had.
* This is roughly a consequence of the Nyquist–Shannon sampling theorem.
*
* The two divisions by 4 are also a consequence of this: the contributions
* returned for each frequency are split into two parts, one at i in the
* table, and the other at FFT_BUFFER_SIZE - i, except for i = 0 and
* FFT_BUFFER_SIZE which would otherwise get double (and then 4* when squared)
* the contributions.
*/
static void fft_output(const double * re, const double * im, double *output) {
double *outputptr = output;
const double *realptr = re;
const double *imagptr = im;
double *endptr = output + FFT_BUFFER_SIZE / 2;
#ifdef DEBUG
unsigned int i, j;
#endif
while(outputptr <= endptr) {
*outputptr = (*realptr * *realptr) + (*imagptr * *imagptr);
outputptr++; realptr++; imagptr++;
}
/* Do divisions to keep the constant and highest frequency terms in scale
* with the other terms. */
*output /= 4;
*endptr /= 4;
#ifdef DEBUG
printf("Recalculated input:\n");
for(i = 0; i < FFT_BUFFER_SIZE; i++) {
double val_real = 0;
double val_imag = 0;
for(j = 0; j < FFT_BUFFER_SIZE; j++) {
double fact_real = cos(- 2 * j * i * PI / FFT_BUFFER_SIZE);
double fact_imag = sin(- 2 * j * i * PI / FFT_BUFFER_SIZE);
val_real += fact_real * re[j] - fact_imag * im[j];
val_imag += fact_real * im[j] + fact_imag * re[j];
}
printf("%5d = %8f + i * %8f\n", i,
val_real / FFT_BUFFER_SIZE,
val_imag / FFT_BUFFER_SIZE);
}
printf("\n");
#endif
}
/*
* Actually perform the FFT
*/
static void fft_calculate(double * re, double * im) {
unsigned int i, j, k;
unsigned int exchanges;
double fact_real, fact_imag;
double tmp_real, tmp_imag;
unsigned int factfact;
/* Set up some variables to reduce calculation in the loops */
exchanges = 1;
factfact = FFT_BUFFER_SIZE / 2;
/* Loop through the divide and conquer steps */
for(i = FFT_BUFFER_SIZE_LOG; i != 0; i--) {
/* In this step, we have 2 ^ (i - 1) exchange groups, each with
* 2 ^ (FFT_BUFFER_SIZE_LOG - i) exchanges
*/
/* Loop through the exchanges in a group */
for(j = 0; j != exchanges; j++) {
/* Work out factor for this exchange
* factor ^ (exchanges) = -1
* So, real = cos(j * PI / exchanges),
* imag = sin(j * PI / exchanges)
*/
fact_real = costable[j * factfact];
fact_imag = sintable[j * factfact];
/* Loop through all the exchange groups */
for(k = j; k < FFT_BUFFER_SIZE; k += exchanges << 1) {
int k1 = k + exchanges;
/* newval[k] := val[k] + factor * val[k1]
* newval[k1] := val[k] - factor * val[k1]
**/
#ifdef DEBUG
printf("%d %d %d\n", i,j,k);
printf("Exchange %d with %d\n", k, k1);
printf("Factor %9f + i * %8f\n", fact_real, fact_imag);
#endif
/* FIXME - potential scope for more optimization here? */
tmp_real = fact_real * re[k1] - fact_imag * im[k1];
tmp_imag = fact_real * im[k1] + fact_imag * re[k1];
re[k1] = re[k] - tmp_real;
im[k1] = im[k] - tmp_imag;
re[k] += tmp_real;
im[k] += tmp_imag;
#ifdef DEBUG
for(k1 = 0; k1 < FFT_BUFFER_SIZE; k1++) {
printf("%5d = %8f + i * %8f\n", k1, re[k1], im[k1]);
}
#endif
}
}
exchanges <<= 1;
factfact >>= 1;
}
}
static int reverseBits(unsigned int initial) {
unsigned int reversed = 0, loop;
for(loop = 0; loop < FFT_BUFFER_SIZE_LOG; loop++) {
reversed <<= 1;
reversed += (initial & 1);
initial >>= 1;
}
return reversed;
}
|