1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
|
import os
from numbers import Number, Integral
import numpy as np
from mpi4py import MPI
from .pencil import Pencil, Subcomm
from .io import HDF5File, NCFile, FileBase
comm = MPI.COMM_WORLD
class DistArray(np.ndarray):
"""Distributed Numpy array
This Numpy array is part of a larger global array. Information about the
distribution is contained in the attributes.
Parameters
----------
global_shape : sequence of ints
Shape of non-distributed global array
subcomm : None, :class:`.Subcomm` object or sequence of ints, optional
Describes how to distribute the array
val : Number or None, optional
Initialize array with this number if buffer is not given
dtype : np.dtype, optional
Type of array
buffer : Numpy array, optional
Array of correct shape. The buffer owns the memory that is used for
this array.
alignment : None or int, optional
Make sure array is aligned in this direction. Note that alignment does
not take rank into consideration.
rank : int, optional
Rank of tensor (number of free indices, a scalar is zero, vector one,
matrix two)
For more information, see `numpy.ndarray <https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html>`_
Note
----
Tensors of rank higher than 0 are not distributed in the first ``rank``
indices. For example,
>>> from mpi4py_fft import DistArray
>>> a = DistArray((3, 8, 8, 8), rank=1)
>>> print(a.pencil.shape)
(8, 8, 8)
The array ``a`` cannot be distributed in the first axis of length 3 since
rank is 1 and this first index represent the vector component. The ``pencil``
attribute of ``a`` thus only considers the last three axes.
Also note that the ``alignment`` keyword does not take rank into
consideration. Setting alignment=2 for the array above means that the last
axis will be aligned, also when rank>0.
"""
def __new__(cls, global_shape, subcomm=None, val=None, dtype=float,
buffer=None, strides=None, alignment=None, rank=0):
if len(global_shape[rank:]) < 2: # 1D case
obj = np.ndarray.__new__(cls, global_shape, dtype=dtype, buffer=buffer, strides=strides)
if buffer is None and isinstance(val, Number):
obj.fill(val)
obj._rank = rank
obj._p0 = None
return obj
if isinstance(subcomm, Subcomm):
pass
else:
if isinstance(subcomm, (tuple, list)):
assert len(subcomm) == len(global_shape[rank:])
# Do nothing if already containing communicators. A tuple of subcommunicators is not necessarily a Subcomm
if not np.all([isinstance(s, MPI.Comm) for s in subcomm]):
subcomm = Subcomm(comm, subcomm)
else:
assert subcomm is None
subcomm = [0] * len(global_shape[rank:])
if alignment is not None:
subcomm[alignment] = 1
else:
subcomm[-1] = 1
alignment = len(subcomm)-1
subcomm = Subcomm(comm, subcomm)
sizes = [s.Get_size() for s in subcomm]
if alignment is not None:
assert isinstance(alignment, (int, np.integer))
assert sizes[alignment] == 1
else:
# Decide that alignment is the last axis with size 1
alignment = np.flatnonzero(np.array(sizes) == 1)[-1]
p0 = Pencil(subcomm, global_shape[rank:], axis=alignment)
subshape = p0.subshape
if rank > 0:
subshape = global_shape[:rank] + subshape
obj = np.ndarray.__new__(cls, subshape, dtype=dtype, buffer=buffer)
if buffer is None and isinstance(val, Number):
obj.fill(val)
obj._p0 = p0
obj._rank = rank
return obj
def __array_finalize__(self, obj):
if obj is None:
return
self._p0 = getattr(obj, '_p0', None)
self._rank = getattr(obj, '_rank', None)
@property
def alignment(self):
"""Return alignment of local ``self`` array
Note
----
For tensors of rank > 0 the array is actually aligned along
``alignment+rank``
"""
return self._p0.axis
@property
def global_shape(self):
"""Return global shape of ``self``"""
return self.shape[:self.rank] + self._p0.shape
@property
def substart(self):
"""Return starting indices of local ``self`` array"""
return (0,)*self.rank + self._p0.substart
@property
def subcomm(self):
"""Return tuple of subcommunicators for all axes of ``self``"""
return (MPI.COMM_SELF,)*self.rank + self._p0.subcomm
@property
def commsizes(self):
"""Return number of processors along each axis of ``self``"""
return [s.Get_size() for s in self.subcomm]
@property
def pencil(self):
"""Return pencil describing distribution of ``self``"""
return self._p0
@property
def rank(self):
"""Return tensor rank of ``self``"""
return self._rank
@property
def dimensions(self):
"""Return dimensions of array not including rank"""
return len(self._p0.shape)
def __getitem__(self, i):
# Return DistArray if the result is a component of a tensor
# Otherwise return ndarray view
if self.ndim == 1:
return np.ndarray.__getitem__(self, i)
if isinstance(i, (Integral, slice)) and self.rank > 0:
v0 = np.ndarray.__getitem__(self, i)
v0._rank = self.rank - (self.ndim - v0.ndim)
return v0
if isinstance(i, (Integral, slice)) and self.rank == 0:
return np.ndarray.__getitem__(self.v, i)
assert isinstance(i, tuple)
if len(i) <= self.rank:
v0 = np.ndarray.__getitem__(self, i)
v0._rank = self.rank - (self.ndim - v0.ndim)
return v0
return np.ndarray.__getitem__(self.v, i)
@property
def v(self):
""" Return local ``self`` array as an ``ndarray`` object"""
return self.__array__()
def get(self, gslice):
"""Return global slice of ``self``
Parameters
----------
gslice : sequence of slice(None) and ints
The slice of the global array.
Returns
-------
Numpy array
The slice of the global array is returned on rank 0, whereas the
remaining ranks return None
Example
-------
>>> import subprocess
>>> fx = open('gs_script.py', 'w')
>>> h = fx.write('''
... from mpi4py import MPI
... from mpi4py_fft.distarray import DistArray
... comm = MPI.COMM_WORLD
... N = (6, 6, 6)
... z = DistArray(N, dtype=float, alignment=0)
... z[:] = comm.Get_rank()
... g = z.get((0, slice(None), 0))
... if comm.Get_rank() == 0:
... print(g)''')
>>> fx.close()
>>> print(subprocess.getoutput('mpirun -np 4 python gs_script.py'))
[0. 0. 0. 2. 2. 2.]
"""
# Note that this implementation uses h5py to take care of the local to
# global MPI. We create a global file with MPI, but then open it without
# MPI and only on rank 0.
import h5py
f = h5py.File('tmp.h5', 'w', driver="mpio", comm=comm)
s = self.local_slice()
sp = np.nonzero([isinstance(x, slice) for x in gslice])[0]
sf = tuple(np.take(s, sp))
f.require_dataset('data', shape=tuple(np.take(self.global_shape, sp)), dtype=self.dtype)
gslice = list(gslice)
# We are required to check if the indices in si are on this processor
si = np.nonzero([isinstance(x, int) and not z == slice(None) for x, z in zip(gslice, s)])[0]
on_this_proc = True
for i in si:
if gslice[i] >= s[i].start and gslice[i] < s[i].stop:
gslice[i] -= s[i].start
else:
on_this_proc = False
if on_this_proc:
f["data"][sf] = self[tuple(gslice)]
f.close()
c = None
if comm.Get_rank() == 0:
h = h5py.File('tmp.h5', 'r')
c = h['data'].__array__()
h.close()
os.remove('tmp.h5')
return c
def local_slice(self):
"""Return local view into global ``self`` array
Returns
-------
List of slices
Each item of the returned list is the slice along that axis,
describing the view of the ``self`` array into the global array.
Example
-------
Print local_slice of a global array of shape (16, 14, 12) using 4
processors.
>>> import subprocess
>>> fx = open('ls_script.py', 'w')
>>> h = fx.write('''
... from mpi4py import MPI
... from mpi4py_fft.distarray import DistArray
... comm = MPI.COMM_WORLD
... N = (16, 14, 12)
... z = DistArray(N, dtype=float, alignment=0)
... ls = comm.gather(z.local_slice())
... if comm.Get_rank() == 0:
... for l in ls:
... print(l)''')
>>> fx.close()
>>> print(subprocess.getoutput('mpirun -np 4 python ls_script.py'))
(slice(0, 16, None), slice(0, 7, None), slice(0, 6, None))
(slice(0, 16, None), slice(0, 7, None), slice(6, 12, None))
(slice(0, 16, None), slice(7, 14, None), slice(0, 6, None))
(slice(0, 16, None), slice(7, 14, None), slice(6, 12, None))
"""
v = [slice(start, start+shape) for start, shape in zip(self._p0.substart,
self._p0.subshape)]
return tuple([slice(0, s) for s in self.shape[:self.rank]] + v)
def get_pencil_and_transfer(self, axis):
"""Return pencil and transfer objects for alignment along ``axis``
Parameters
----------
axis : int
The new axis to align data with
Returns
-------
2-tuple
2-tuple where first item is a :class:`.Pencil` aligned in ``axis``.
Second item is a :class:`.Transfer` object for executing the
redistribution of data
"""
p1 = self._p0.pencil(axis)
return p1, self._p0.transfer(p1, self.dtype)
def redistribute(self, axis=None, out=None):
"""Global redistribution of local ``self`` array
Parameters
----------
axis : int, optional
Align local ``self`` array along this axis
out : :class:`.DistArray`, optional
Copy data to this array of possibly different alignment
Returns
-------
DistArray : out
The ``self`` array globally redistributed. If keyword ``out`` is
None then a new DistArray (aligned along ``axis``) is created
and returned. Otherwise the provided out array is returned.
"""
# Take care of some trivial cases first
if axis == self.alignment:
return self
if axis is not None and isinstance(out, DistArray):
assert axis == out.alignment
# Check if self is already aligned along axis. In that case just switch
# axis of pencil (both axes are undivided) and return
if axis is not None:
if self.commsizes[self.rank+axis] == 1:
self.pencil.axis = axis
return self
if out is not None:
assert isinstance(out, DistArray)
assert self.global_shape == out.global_shape
axis = out.alignment
if self.commsizes == out.commsizes:
# Just a copy required. Should probably not be here
out[:] = self
return out
# Check that arrays are compatible
for i in range(len(self._p0.shape)):
if i not in (self.alignment, out.alignment):
assert self.pencil.subcomm[i] == out.pencil.subcomm[i]
assert self.pencil.subshape[i] == out.pencil.subshape[i]
p1, transfer = self.get_pencil_and_transfer(axis)
if out is None:
out = DistArray(self.global_shape,
subcomm=p1.subcomm,
dtype=self.dtype,
alignment=axis,
rank=self.rank)
if self.rank == 0:
transfer.forward(self, out)
elif self.rank == 1:
for i in range(self.shape[0]):
transfer.forward(self[i], out[i])
elif self.rank == 2:
for i in range(self.shape[0]):
for j in range(self.shape[1]):
transfer.forward(self[i, j], out[i, j])
transfer.destroy()
return out
def write(self, filename, name='darray', step=0, global_slice=None,
domain=None, as_scalar=False):
"""Write snapshot ``step`` of ``self`` to file ``filename``
Parameters
----------
filename : str or instance of :class:`.FileBase`
The name of the file (or the file itself) that is used to store the
requested data in ``self``
name : str, optional
Name used for storing snapshot in file.
step : int, optional
Index used for snapshot in file.
global_slice : sequence of slices or integers, optional
Store only this global slice of ``self``
domain : sequence, optional
An optional spatial mesh or domain to go with the data.
Sequence of either
- 2-tuples, where each 2-tuple contains the (origin, length)
of each dimension, e.g., (0, 2*pi).
- Arrays of coordinates, e.g., np.linspace(0, 2*pi, N). One
array per dimension
as_scalar : boolean, optional
Whether to store rank > 0 arrays as scalars. Default is False.
Example
-------
>>> from mpi4py_fft import DistArray
>>> u = DistArray((8, 8), val=1)
>>> u.write('h5file.h5', 'u', 0)
>>> u.write('h5file.h5', 'u', (slice(None), 4))
"""
if isinstance(filename, str):
writer = HDF5File if filename.endswith('.h5') else NCFile
f = writer(filename, domain=domain, mode='a')
elif isinstance(filename, FileBase):
f = filename
field = [self] if global_slice is None else [(self, global_slice)]
f.write(step, {name: field}, as_scalar=as_scalar)
def read(self, filename, name='darray', step=0):
"""Read data ``name`` at index ``step``from file ``filename`` into
``self``
Note
----
Only whole arrays can be read from file, not slices.
Parameters
----------
filename : str or instance of :class:`.FileBase`
The name of the file (or the file itself) holding the data that is
loaded into ``self``.
name : str, optional
Internal name in file of snapshot to be read.
step : int, optional
Index of field to be read. Default is 0.
Example
-------
>>> from mpi4py_fft import DistArray
>>> u = DistArray((8, 8), val=1)
>>> u.write('h5file.h5', 'u', 0)
>>> v = DistArray((8, 8))
>>> v.read('h5file.h5', 'u', 0)
>>> assert np.allclose(u, v)
"""
if isinstance(filename, str):
writer = HDF5File if filename.endswith('.h5') else NCFile
f = writer(filename, mode='r')
elif isinstance(filename, FileBase):
f = filename
f.read(self, name, step=step)
def newDistArray(pfft, forward_output=True, val=0, rank=0, view=False):
"""Return a new :class:`.DistArray` object for provided :class:`.PFFT` object
Parameters
----------
pfft : :class:`.PFFT` object
forward_output: boolean, optional
If False then create DistArray of shape/type for input to
forward transform, otherwise create DistArray of shape/type for
output from forward transform.
val : int or float, optional
Value used to initialize array.
rank: int, optional
Scalar has rank 0, vector 1 and matrix 2.
view : bool, optional
If True return view of the underlying Numpy array, i.e., return
cls.view(np.ndarray). Note that the DistArray still will
be accessible through the base attribute of the view.
Returns
-------
DistArray
A new :class:`.DistArray` object. Return the ``ndarray`` view if
keyword ``view`` is True.
Examples
--------
>>> from mpi4py import MPI
>>> from mpi4py_fft import PFFT, newDistArray
>>> FFT = PFFT(MPI.COMM_WORLD, [64, 64, 64])
>>> u = newDistArray(FFT, False, rank=1)
>>> u_hat = newDistArray(FFT, True, rank=1)
"""
global_shape = pfft.global_shape(forward_output)
p0 = pfft.pencil[forward_output]
if forward_output is True:
dtype = pfft.forward.output_array.dtype
else:
dtype = pfft.forward.input_array.dtype
global_shape = (len(global_shape),)*rank + global_shape
z = DistArray(global_shape, subcomm=p0.subcomm, val=val, dtype=dtype,
alignment=p0.axis, rank=rank)
return z.v if view else z
def Function(*args, **kwargs): #pragma: no cover
import warnings
warnings.warn("Function() is deprecated; use newDistArray().", FutureWarning)
if 'tensor' in kwargs:
kwargs['rank'] = 1
del kwargs['tensor']
return newDistArray(*args, **kwargs)
|