File: fftw_xfftn.pyx

package info (click to toggle)
mpi4py-fft 2.0.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 720 kB
  • sloc: python: 3,053; ansic: 87; makefile: 42; sh: 33
file content (296 lines) | stat: -rw-r--r-- 11,162 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# cython: language_level=3str
from . cimport fftw_xfftn
cimport numpy as np
from .utilities import *
import numpy as np
from libc.stdint cimport intptr_t
from libc.stdlib cimport malloc, free

cpdef int alignment_of(input_array):
    cdef np.ndarray _input_array = input_array
    return fftw_alignment_of(<fftw_real *>np.PyArray_DATA(_input_array))

cpdef int export_wisdom(const char *filename):
    return fftw_export_wisdom_to_filename(filename)

cpdef int import_wisdom(const char *filename):
    return fftw_import_wisdom_from_filename(filename)

cpdef void forget_wisdom():
    fftw_forget_wisdom()

cpdef void set_timelimit(fftw_real limit):
    fftw_set_timelimit(limit)

cpdef void cleanup():
    fftw_cleanup()
    fftw_cleanup_threads()

cdef void _fftw_execute_dft(void *plan, void *_in, void *_out) noexcept nogil:
    fftw_execute_dft(<fftw_plan>plan, <fftw_complex *>_in, <fftw_complex *>_out)

cdef void _fftw_execute_dft_r2c(void *plan, void *_in, void *_out) noexcept nogil:
    fftw_execute_dft_r2c(<fftw_plan>plan, <fftw_real *>_in, <fftw_complex *>_out)

cdef void _fftw_execute_dft_c2r(void *plan, void *_in, void *_out) noexcept nogil:
    fftw_execute_dft_c2r(<fftw_plan>plan, <fftw_complex *>_in, <fftw_real *>_out)

cdef void _fftw_execute_r2r(void *plan, void *_in, void *_out) noexcept nogil:
    fftw_execute_r2r(<fftw_plan>plan, <fftw_real *>_in, <fftw_real *>_out)

cdef generic_function _get_execute_function(kind):
    if kind in (C2C_FORWARD, C2C_BACKWARD):
        return _fftw_execute_dft
    elif kind == R2C:
        return _fftw_execute_dft_r2c
    elif kind == C2R:
        return _fftw_execute_dft_c2r
    return _fftw_execute_r2r

cdef class FFT:
    """
    Unified class for FFTs of multidimensional arrays

    This class is used for any type of transform defined in the user manual
    of `FFTW <http://www.fftw.org/fftw3_doc>`_.

    Parameters
    ----------
    input_array : array
        real or complex input array
    output_array : array
        real or complex output array
    axes : sequence of ints, optional
        The axes to transform over, starting from the last
    kind : int or sequence of ints, optional
        Any one of

            - FFTW_FORWARD (-1)
            - FFTW_R2HC (0)
            - FFTW_BACKWARD (1)
            - FFTW_HC2R (1)
            - FFTW_DHT (2)
            - FFTW_REDFT00 (3)
            - FFTW_REDFT01 (4)
            - FFTW_REDFT10 (5)
            - FFTW_REDFT11 (6)
            - FFTW_RODFT00 (7)
            - FFTW_RODFT01 (8)
            - FFTW_RODFT10 (9)
            - FFTW_RODFT11 (10)
    threads : int, optional
        Number of threads to use in transforms
    flags : int or sequence of ints, optional
        Any one of, but not necessarily for all transforms or all combinations

            - FFTW_MEASURE (0)
            - FFTW_DESTROY_INPUT (1)
            - FFTW_UNALIGNED (2)
            - FFTW_CONSERVE_MEMORY (4)
            - FFTW_EXHAUSTIVE (8)
            - FFTW_PRESERVE_INPUT (16)
            - FFTW_PATIENT (32)
            - FFTW_ESTIMATE (64)
            - FFTW_WISDOM_ONLY (2097152)
    normalization : float, optional
        Normalization factor

    """
    cdef void *_plan
    cdef np.ndarray _input_array
    cdef np.ndarray _output_array
    cdef fftw_real _M
    cdef int kind
    cdef tuple input_shape
    cdef tuple output_shape
    cdef tuple input_strides
    cdef tuple output_strides

    def __cinit__(self, input_array, output_array, axes=(-1,),
                  kind=FFTW_FORWARD, int threads=1,
                  flags=FFTW_MEASURE, fftw_real normalization=1.0):
        cdef int ndims = len(input_array.shape)
        cdef int naxes = len(axes)
        cdef int flag, i
        cdef unsigned allflags
        cdef int *sz_in = <int *> malloc(ndims * sizeof(int))
        cdef int *sz_out = <int *> malloc(ndims * sizeof(int))
        cdef int *axs = <int *> malloc(naxes * sizeof(int))
        cdef int *knd = <int *> malloc(naxes * sizeof(int))
        cdef void *_in = <void *>np.PyArray_DATA(input_array)
        cdef void *_out = <void *>np.PyArray_DATA(output_array)
        self.input_shape = input_array.shape
        self.output_shape = output_array.shape
        self.input_strides = input_array.strides
        self.output_strides = output_array.strides

        fftw_plan_with_nthreads(threads)
        flags = [flags] if isinstance(flags, int) else flags
        kind = [kind] if isinstance(kind, int) else kind
        self.kind = kind[0]
        axes = list(axes)
        for i in range(naxes):
            if axes[i] < 0:
                axes[i] = axes[i] + ndims

        allflags = flags[0]
        for flag in flags[1:]:
            allflags |= flag

        self._input_array = input_array
        self._output_array = output_array
        self._M = normalization
        for i in range(ndims):
            sz_in[i] = input_array.shape[i]
            sz_out[i] = output_array.shape[i]
        for i in range(naxes):
            axs[i] = axes[i]
        for i in range(len(kind)):
            knd[i] = kind[i]
        self._plan = fftw_planxfftn(ndims, sz_in, _in, sz_out, _out, naxes,
                                    axs, knd, allflags)
        if self._plan == NULL:
            raise RuntimeError("Failure creating FFTW plan")
        free(sz_in)
        free(sz_out)
        free(axs)
        free(knd)

    def __dealloc__(self):
        self.destroy()

    def destroy(self):
        fftw_destroy_plan(<fftw_plan>self._plan)

    @property
    def input_array(self):
        return self._input_array

    @property
    def output_array(self):
        return self._output_array

    def print_plan(self):
        assert self._plan != NULL
        fftw_print_plan(<fftw_plan>self._plan)

    def update_arrays(self, input_array, output_array):
        assert self.input_shape == input_array.shape
        assert self.input_strides == input_array.strides
        assert self._input_array.dtype == input_array.dtype
        assert (<intptr_t>np.PyArray_DATA(input_array) %
                get_alignment(self._input_array) == 0)
        assert self.output_shape == output_array.shape
        assert self.output_strides == output_array.strides
        assert self._output_array.dtype == output_array.dtype
        assert (<intptr_t>np.PyArray_DATA(output_array) %
                get_alignment(self._output_array) == 0)
        self._input_array = input_array
        self._output_array = output_array

    def get_normalization(self):
        """Return the internally set normalization factor"""
        return self._M

    def __call__(self, input_array=None, output_array=None, implicit=True,
                 normalize=False, **kw):
        """
        Signature::

            __call__(input_array=None, output_array=None, implicit=True, normalize=False, **kw)

        Compute transform and return output array

        Parameters
        ----------
        input_array : array, optional
            If not provided, then use internally stored array
        output_array : array, optional
            If not provided, then use internally stored array
        implicit : bool, optional
            If True, then use an implicit method that acts by applying the plan
            directly on the given input array.
            If False, then use an explicit method that first copies the given
            input_array into the internal _input_array.
            The explicit method is generally safer, because it always preserves
            the provided input_array. The implicit method can be faster because
            it may be done without any copying. However, the contents of the
            input_array may be destroyed during computation. So use with care!
        normalize : bool, optional
            If True, normalize transform with internally stored normalization
            factor. The internally set normalization factor is possible to
            obtain through :func:`FFT.get_normalization`
        kw : dict, optional

        Note
        ----
        If the transform has been planned with FFTW_PRESERVE_INPUT, then both
        the two methods (implicit=True/False) will preserve the provided
        input_array. If not planned with this flag, then the implicit=True
        method may cause the input_array to be overwritten during computation.

        """
        if implicit:
            return self._apply_implicit(input_array, output_array, normalize, **kw)
        return self._apply_explicit(input_array, output_array, normalize, **kw)

    def _apply_explicit(self, input_array, output_array, normalize, **kw):
        """Apply plan with explicit (and safe) update of work arrays"""
        if input_array is not None:
            self._input_array[...] = input_array
        assert self._plan != NULL
        with nogil:
            fftw_execute(<fftw_plan>self._plan)
        if normalize:
            self._output_array *= self._M
        if output_array is not None:
            output_array[...] = self._output_array
            return output_array
        return self._output_array

    def _apply_implicit(self, input_array, output_array, normalize, **kw):
        """Apply plan with direct use of work arrays if possible

        This version of apply will use the provided input and output arrays
        instead of the original (self._input_array, self._output_array) that
        were used to plan the transform. Since planning takes the alignment of
        arrays into consideration, we need to make sure that the alignment of
        the new arrays match the originals. Other than that we also make sure
        that the new arrays have the correct shape, strides and type.
        """
        cdef void *_in
        cdef void *_out
        cdef generic_function apply_plan = _get_execute_function(self.kind)

        if input_array is not None:
            try:
                assert self.input_shape == input_array.shape
                assert self.input_strides == input_array.strides
                assert self._input_array.dtype == input_array.dtype
                assert (<intptr_t>np.PyArray_DATA(input_array) %
                        get_alignment(self._input_array) == 0)
            except AssertionError:
                self._input_array[...] = input_array
                input_array = self._input_array
        else:
            input_array = self._input_array

        if output_array is not None:
            assert self.output_shape == output_array.shape
            assert self.output_strides == output_array.strides
            assert self._output_array.dtype == output_array.dtype
            assert (<intptr_t>np.PyArray_DATA(output_array) %
                    get_alignment(self._output_array) == 0), \
                "output_array has wrong alignment"
        else:
            output_array = self._output_array

        _in = <void *>np.PyArray_DATA(input_array)
        _out = <void *>np.PyArray_DATA(output_array)
        assert self._plan != NULL
        with nogil:
            apply_plan(<fftw_plan>self._plan, _in, _out)
        if normalize:
            output_array *= self._M

        return output_array