1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
|
#pylint: disable=no-name-in-module,unused-import
import numpy as np
from .factory import get_planned_FFT
from .utilities import FFTW_FORWARD, FFTW_BACKWARD, FFTW_REDFT00, FFTW_REDFT01, \
FFTW_REDFT10, FFTW_REDFT11, FFTW_RODFT00, FFTW_RODFT01, FFTW_RODFT10, \
FFTW_RODFT11, FFTW_MEASURE, FFTW_DESTROY_INPUT, FFTW_UNALIGNED, \
FFTW_CONSERVE_MEMORY, FFTW_EXHAUSTIVE, FFTW_PRESERVE_INPUT, FFTW_PATIENT, \
FFTW_ESTIMATE, FFTW_WISDOM_ONLY, C2C_FORWARD, C2C_BACKWARD, R2C, C2R, \
FFTW_R2HC, FFTW_HC2R, FFTW_DHT, get_alignment, aligned, aligned_like
flag_dict = {key: val for key, val in locals().items()
if key.startswith('FFTW_')}
dct_type = {
1: FFTW_REDFT00,
2: FFTW_REDFT10,
3: FFTW_REDFT01,
4: FFTW_REDFT11}
idct_type = {
1: FFTW_REDFT00,
2: FFTW_REDFT01,
3: FFTW_REDFT10,
4: FFTW_REDFT11}
dst_type = {
1: FFTW_RODFT00,
2: FFTW_RODFT10,
3: FFTW_RODFT01,
4: FFTW_RODFT11}
idst_type = {
1: FFTW_RODFT00,
2: FFTW_RODFT01,
3: FFTW_RODFT10,
4: FFTW_RODFT11}
def fftn(input_array, s=None, axes=(-1,), threads=1,
flags=(FFTW_MEASURE,), output_array=None):
"""Return complex-to-complex forward transform object
Parameters
----------
input_array : complex array
s : sequence of ints, optional
Not used - included for compatibility with Numpy
axes : sequence of ints, optional
Axes over which to compute the FFT.
threads : int, optional
Number of threads used in computing FFT.
flags : sequence of ints, optional
Flags from
- FFTW_MEASURE
- FFTW_EXHAUSTIVE
- FFTW_PATIENT
- FFTW_DESTROY_INPUT
- FFTW_PRESERVE_INPUT
- FFTW_UNALIGNED
- FFTW_CONSERVE_MEMORY
- FFTW_ESTIMATE
output_array : complex array, optional
Array to be used as output array. Must be of correct shape, type,
strides and alignment
Returns
-------
:class:`.fftwf_xfftn.FFT`, :class:`.fftw_xfftn.FFT` or :class:`.fftwl_xfftn.FFT`
An instance of the return type configured for complex-to-complex transforms
Note
----
This routine does not compute the fftn, it merely returns an instance of
a class that can do it.
The contents of the input_array may be overwritten during planning. Make
sure to keep a copy if needed.
Examples
--------
>>> import numpy as np
>>> from mpi4py_fft.fftw import fftn as plan_fftn
>>> from mpi4py_fft.fftw import FFTW_ESTIMATE, aligned
>>> A = aligned(4, dtype='D')
>>> fftn = plan_fftn(A, flags=(FFTW_ESTIMATE,))
>>> A[:] = 1, 2, 3, 4
>>> B = fftn()
>>> print(B)
[10.+0.j -2.+2.j -2.+0.j -2.-2.j]
>>> assert id(A) == id(fftn.input_array)
>>> assert id(B) == id(fftn.output_array)
"""
kind = FFTW_FORWARD
assert input_array.dtype.char in 'FDG'
if output_array is None:
n = get_alignment(input_array)
output_array = aligned(input_array.shape, n,
input_array.dtype.char.upper())
else:
assert input_array.shape == output_array.shape
assert output_array.dtype.char == input_array.dtype.char.upper()
M = np.prod(np.take(input_array.shape, axes))
return get_planned_FFT(input_array, output_array, axes, kind, threads,
flags, 1.0/M)
def ifftn(input_array, s=None, axes=(-1,), threads=1,
flags=(FFTW_MEASURE,), output_array=None):
"""
Return complex-to-complex inverse transform object
Parameters
----------
input_array : array
s : sequence of ints, optional
Not used - included for compatibility with Numpy
axes : sequence of ints, optional
Axes over which to compute the inverse FFT.
threads : int, optional
Number of threads used in computing FFT.
flags : sequence of ints, optional
Flags from
- FFTW_MEASURE
- FFTW_EXHAUSTIVE
- FFTW_PATIENT
- FFTW_DESTROY_INPUT
- FFTW_PRESERVE_INPUT
- FFTW_UNALIGNED
- FFTW_CONSERVE_MEMORY
- FFTW_ESTIMATE
output_array : array, optional
Array to be used as output array. Must be of correct shape, type,
strides and alignment
Returns
-------
:class:`.fftwf_xfftn.FFT`, :class:`.fftw_xfftn.FFT` or :class:`.fftwl_xfftn.FFT`
An instance of the return type configured for complex-to-complex inverse
transforms
Note
----
This routine does not compute the ifftn, it merely returns an instance of
a class that can do it.
The contents of the input_array may be overwritten during planning. Make
sure that you keep a copy if needed.
Examples
--------
>>> import numpy as np
>>> from mpi4py_fft.fftw import ifftn as plan_ifftn
>>> from mpi4py_fft.fftw import FFTW_ESTIMATE, FFTW_PRESERVE_INPUT, aligned
>>> A = aligned(4, dtype='D')
>>> ifftn = plan_ifftn(A, flags=(FFTW_ESTIMATE, FFTW_PRESERVE_INPUT))
>>> A[:] = 1, 2, 3, 4
>>> B = ifftn()
>>> print(B)
[10.+0.j -2.-2.j -2.+0.j -2.+2.j]
>>> assert id(B) == id(ifftn.output_array)
>>> assert id(A) == id(ifftn.input_array)
"""
kind = FFTW_BACKWARD
assert input_array.dtype.char in 'FDG'
if output_array is None:
output_array = aligned_like(input_array)
else:
assert input_array.shape == output_array.shape
M = np.prod(np.take(input_array.shape, axes))
return get_planned_FFT(input_array, output_array, axes, kind, threads,
flags, 1.0/M)
def rfftn(input_array, s=None, axes=(-1,), threads=1,
flags=(FFTW_MEASURE,), output_array=None):
"""Return real-to-complex transform object
Parameters
----------
input_array : real array
s : sequence of ints, optional
Not used - included for compatibility with Numpy
axes : sequence of ints, optional
Axes over which to compute the real to complex FFT.
threads : int, optional
Number of threads used in computing FFT.
flags : sequence of ints, optional
Flags from
- FFTW_MEASURE
- FFTW_EXHAUSTIVE
- FFTW_PATIENT
- FFTW_DESTROY_INPUT
- FFTW_PRESERVE_INPUT
- FFTW_UNALIGNED
- FFTW_CONSERVE_MEMORY
- FFTW_ESTIMATE
output_array : array, optional
Array to be used as output array. Must be of correct shape, type,
strides and alignment
Returns
-------
:class:`.fftwf_xfftn.FFT`, :class:`.fftw_xfftn.FFT` or :class:`.fftwl_xfftn.FFT`
An instance of the return type configured for real-to-complex transforms
Note
----
This routine does not compute the rfftn, it merely returns an instance of
a class that can do it.
The contents of the input_array may be overwritten during planning. Make
sure that you keep a copy if needed.
Examples
--------
>>> import numpy as np
>>> from mpi4py_fft.fftw import rfftn as plan_rfftn
>>> from mpi4py_fft.fftw import FFTW_ESTIMATE, aligned
>>> A = aligned(4, dtype='d')
>>> rfftn = plan_rfftn(A, flags=(FFTW_ESTIMATE,))
>>> A[:] = 1, 2, 3, 4
>>> B = rfftn()
>>> print(B)
[10.+0.j -2.+2.j -2.+0.j]
>>> assert id(A) == id(rfftn.input_array)
>>> assert id(B) == id(rfftn.output_array)
"""
kind = R2C
assert input_array.dtype.char in 'fdg'
if output_array is None:
sz = list(input_array.shape)
sz[axes[-1]] = input_array.shape[axes[-1]]//2+1
dtype = input_array.dtype.char
n = get_alignment(input_array)
output_array = aligned(sz, n=n, dtype=np.dtype(dtype.upper()))
else:
assert input_array.shape[axes[-1]]//2+1 == output_array.shape[axes[-1]]
M = np.prod(np.take(input_array.shape, axes))
return get_planned_FFT(input_array, output_array, axes, kind, threads,
flags, 1.0/M)
def irfftn(input_array, s=None, axes=(-1,), threads=1,
flags=(FFTW_MEASURE,), output_array=None):
"""Return inverse complex-to-real transform object
Parameters
----------
input_array : array
s : sequence of ints, optional
Shape of output array along each of the transformed axes. Must be same
length as axes (len(s) == len(axes)). If not given it is assumed that
the shape of the output along the first transformed axis (i.e.,
axes[-1]) is an even number. It is not possible to determine exactly,
because for a real transform the output of a real array of length N is
N//2+1. However, both N=4 and N=5 gives 4//2+1=3 and 5//2+1=3, so it is
not possible to determine whether 4 or 5 is correct. Hence it must be
given.
axes : sequence of ints, optional
Axes over which to compute the real to complex FFT.
threads : int, optional
Number of threads used in computing FFT.
flags : sequence of ints, optional
Flags from
- FFTW_MEASURE
- FFTW_EXHAUSTIVE
- FFTW_PATIENT
- FFTW_UNALIGNED
- FFTW_CONSERVE_MEMORY
- FFTW_ESTIMATE
output_array : array, optional
Array to be used as output array. Must be of correct shape, type,
strides and alignment
Returns
-------
:class:`.fftwf_xfftn.FFT`, :class:`.fftw_xfftn.FFT` or :class:`.fftwl_xfftn.FFT`
An instance of the return type configured for complex-to-real transforms
Note
----
This routine does not compute the irfftn, it merely returns an instance of
a class that can do it.
The irfftn is not possible to use with the FFTW_PRESERVE_INPUT flag.
Examples
--------
>>> import numpy as np
>>> from mpi4py_fft.fftw import irfftn as plan_irfftn
>>> from mpi4py_fft.fftw import FFTW_ESTIMATE, aligned
>>> A = aligned(4, dtype='D')
>>> irfftn = plan_irfftn(A, flags=(FFTW_ESTIMATE,)) # no shape given for output
>>> A[:] = 1, 2, 3, 4
>>> B = irfftn()
>>> print(B)
[15. -4. 0. -1. 0. -4.]
>>> irfftn = plan_irfftn(A, s=(7,), flags=(FFTW_ESTIMATE,)) # output shape given
>>> B = irfftn()
>>> print(B)
[19. -5.04891734 -0.30797853 -0.64310413 -0.64310413 -0.30797853
-5.04891734]
>>> assert id(B) == id(irfftn.output_array)
>>> assert id(A) == id(irfftn.input_array)
"""
kind = C2R
assert input_array.dtype.char in 'FDG'
assert FFTW_PRESERVE_INPUT not in flags
sz = list(input_array.shape)
if s is not None:
assert len(axes) == len(s)
for q, axis in zip(s, axes):
sz[axis] = q
else:
sz[axes[-1]] = 2*sz[axes[-1]]-2
if output_array is None:
dtype = input_array.dtype.char
n = get_alignment(input_array)
output_array = aligned(sz, n=n, dtype=np.dtype(dtype.lower()))
else:
assert list(output_array.shape) == sz
assert sz[axes[-1]]//2+1 == input_array.shape[axes[-1]]
M = np.prod(np.take(output_array.shape, axes))
return get_planned_FFT(input_array, output_array, axes, kind, threads,
flags, 1.0/M)
def dctn(input_array, s=None, axes=(-1,), type=2, threads=1,
flags=(FFTW_MEASURE,), output_array=None):
"""Return discrete cosine transform object
Parameters
----------
input_array : array
s : sequence of ints, optional
Not used - included for compatibility with Numpy
axes : sequence of ints, optional
Axes over which to compute the real-to-real dct.
type : int, optional
Type of `dct <http://www.fftw.org/fftw3_doc/Real_002dto_002dReal-Transform-Kinds.html>`_
- 1 - FFTW_REDFT00
- 2 - FFTW_REDFT10,
- 3 - FFTW_REDFT01,
- 4 - FFTW_REDFT11
threads : int, optional
Number of threads used in computing dct.
flags : sequence of ints, optional
Flags from
- FFTW_MEASURE
- FFTW_EXHAUSTIVE
- FFTW_PATIENT
- FFTW_DESTROY_INPUT
- FFTW_PRESERVE_INPUT
- FFTW_UNALIGNED
- FFTW_CONSERVE_MEMORY
- FFTW_ESTIMATE
output_array : array, optional
Array to be used as output array. Must be of correct shape, type,
strides and alignment
Returns
-------
:class:`.fftwf_xfftn.FFT`, :class:`.fftw_xfftn.FFT` or :class:`.fftwl_xfftn.FFT`
An instance of the return type configured for real-to-real dct transforms
of given type
Note
----
This routine does not compute the dct, it merely returns an instance of
a class that can do it.
Examples
--------
>>> import numpy as np
>>> from mpi4py_fft.fftw import dctn as plan_dct
>>> from mpi4py_fft.fftw import FFTW_ESTIMATE, aligned
>>> A = aligned(4, dtype='d')
>>> dct = plan_dct(A, flags=(FFTW_ESTIMATE,))
>>> A[:] = 1, 2, 3, 4
>>> B = dct()
>>> print(B)
[20. -6.30864406 0. -0.44834153]
>>> assert id(A) == id(dct.input_array)
>>> assert id(B) == id(dct.output_array)
"""
assert input_array.dtype.char in 'fdg'
if output_array is None:
output_array = aligned_like(input_array)
else:
assert input_array.shape == output_array.shape
kind = dct_type[type]
kind = [kind]*len(axes)
M = get_normalization(kind, input_array.shape, axes)
return get_planned_FFT(input_array, output_array, axes, kind, threads,
flags, M)
def idctn(input_array, s=None, axes=(-1,), type=2, threads=1,
flags=(FFTW_MEASURE,), output_array=None):
"""Return inverse discrete cosine transform object
Parameters
----------
input_array : array
s : sequence of ints, optional
Not used - included for compatibility with Numpy
axes : sequence of ints, optional
Axes over which to compute the real-to-real idct.
type : int, optional
Type of `idct <http://www.fftw.org/fftw3_doc/Real_002dto_002dReal-Transform-Kinds.html>`_
- 1 - FFTW_REDFT00
- 2 - FFTW_REDFT01
- 3 - FFTW_REDFT10
- 4 - FFTW_REDFT11
threads : int, optional
Number of threads used in computing idct.
flags : sequence of ints, optional
Flags from
- FFTW_MEASURE
- FFTW_EXHAUSTIVE
- FFTW_PATIENT
- FFTW_DESTROY_INPUT
- FFTW_PRESERVE_INPUT
- FFTW_UNALIGNED
- FFTW_CONSERVE_MEMORY
- FFTW_ESTIMATE
output_array : array, optional
Array to be used as output array. Must be of correct shape, type,
strides and alignment
Returns
-------
:class:`.fftwf_xfftn.FFT`, :class:`.fftw_xfftn.FFT` or :class:`.fftwl_xfftn.FFT`
An instance of the return type configured for real-to-real idct transforms
of given type
Note
----
This routine does not compute the idct, it merely returns an instance of
a class that can do it.
Examples
--------
>>> import numpy as np
>>> from mpi4py_fft.fftw import idctn as plan_idct
>>> from mpi4py_fft.fftw import FFTW_ESTIMATE, aligned
>>> A = aligned(4, dtype='d')
>>> idct = plan_idct(A, flags=(FFTW_ESTIMATE,))
>>> A[:] = 1, 2, 3, 4
>>> B = idct()
>>> print(B)
[11.99962628 -9.10294322 2.61766184 -1.5143449 ]
>>> assert id(A) == id(idct.input_array)
>>> assert id(B) == id(idct.output_array)
"""
assert input_array.dtype.char in 'fdg'
if output_array is None:
output_array = aligned_like(input_array)
else:
assert input_array.shape == output_array.shape
kind = idct_type[type]
kind = [kind]*len(axes)
M = get_normalization(kind, input_array.shape, axes)
return get_planned_FFT(input_array, output_array, axes, kind, threads,
flags, M)
def dstn(input_array, s=None, axes=(-1,), type=2, threads=1,
flags=(FFTW_MEASURE,), output_array=None):
"""Return discrete sine transform object
Parameters
----------
input_array : array
s : sequence of ints, optional
Not used - included for compatibility with Numpy
axes : sequence of ints, optional
Axes over which to compute the real-to-real dst.
type : int, optional
Type of `dst <http://www.fftw.org/fftw3_doc/Real_002dto_002dReal-Transform-Kinds.html>`_
- 1 - FFTW_RODFT00
- 2 - FFTW_RODFT10
- 3 - FFTW_RODFT01
- 4 - FFTW_RODFT11
threads : int, optional
Number of threads used in computing dst.
flags : sequence of ints, optional
Flags from
- FFTW_MEASURE
- FFTW_EXHAUSTIVE
- FFTW_PATIENT
- FFTW_DESTROY_INPUT
- FFTW_PRESERVE_INPUT
- FFTW_UNALIGNED
- FFTW_CONSERVE_MEMORY
- FFTW_ESTIMATE
output_array : array, optional
Array to be used as output array. Must be of correct shape, type,
strides and alignment
Returns
-------
:class:`.fftwf_xfftn.FFT`, :class:`.fftw_xfftn.FFT` or :class:`.fftwl_xfftn.FFT`
An instance of the return type configured for real-to-real dst transforms
of given type
Note
----
This routine does not compute the dst, it merely returns an instance of
a class that can do it.
Examples
--------
>>> import numpy as np
>>> from mpi4py_fft.fftw import dstn as plan_dst
>>> from mpi4py_fft.fftw import FFTW_ESTIMATE, aligned
>>> A = aligned(4, dtype='d')
>>> dst = plan_dst(A, flags=(FFTW_ESTIMATE,))
>>> A[:] = 1, 2, 3, 4
>>> B = dst()
>>> print(B)
[13.06562965 -5.65685425 5.411961 -4. ]
>>> assert id(A) == id(dst.input_array)
>>> assert id(B) == id(dst.output_array)
"""
assert input_array.dtype.char in 'fdg'
if output_array is None:
output_array = aligned_like(input_array)
else:
assert input_array.shape == output_array.shape
kind = dst_type[type]
kind = [kind]*len(axes)
M = get_normalization(kind, input_array.shape, axes)
return get_planned_FFT(input_array, output_array, axes, kind, threads,
flags, M)
def idstn(input_array, s=None, axes=(-1,), type=2, threads=1,
flags=(FFTW_MEASURE,), output_array=None):
"""Return inverse discrete sine transform object
Parameters
----------
input_array : array
s : sequence of ints, optional
Not used - included for compatibility with Numpy
axes : sequence of ints, optional
Axes over which to compute the real-to-real inverse dst.
type : int, optional
Type of `idst <http://www.fftw.org/fftw3_doc/Real_002dto_002dReal-Transform-Kinds.html>`_
- 1 - FFTW_RODFT00
- 2 - FFTW_RODFT01
- 3 - FFTW_RODFT10
- 4 - FFTW_RODFT11
threads : int, optional
Number of threads used in computing inverse dst.
flags : sequence of ints, optional
Flags from
- FFTW_MEASURE
- FFTW_EXHAUSTIVE
- FFTW_PATIENT
- FFTW_DESTROY_INPUT
- FFTW_PRESERVE_INPUT
- FFTW_UNALIGNED
- FFTW_CONSERVE_MEMORY
- FFTW_ESTIMATE
output_array : array, optional
Array to be used as output array. Must be of correct shape, type,
strides and alignment
Returns
-------
:class:`.fftwf_xfftn.FFT`, :class:`.fftw_xfftn.FFT` or :class:`.fftwl_xfftn.FFT`
An instance of the return type configured for real-to-real idst transforms
of given type
Note
----
This routine does not compute the idst, it merely returns an instance of
a class that can do it.
Examples
--------
>>> import numpy as np
>>> from mpi4py_fft.fftw import idstn as plan_idst
>>> from mpi4py_fft.fftw import FFTW_ESTIMATE, aligned
>>> A = aligned(4, dtype='d')
>>> idst = plan_idst(A, flags=(FFTW_ESTIMATE,))
>>> A[:] = 1, 2, 3, 4
>>> B = idst()
>>> print(B)
[13.13707118 -1.6199144 0.72323135 -0.51978306]
>>> assert id(A) == id(idst.input_array)
>>> assert id(B) == id(idst.output_array)
"""
assert input_array.dtype.char in 'fdg'
if output_array is None:
output_array = aligned_like(input_array)
else:
assert input_array.shape == output_array.shape
kind = idst_type[type]
kind = [kind]*len(axes)
M = get_normalization(kind, input_array.shape, axes)
return get_planned_FFT(input_array, output_array, axes, kind, threads,
flags, M)
def ihfftn(input_array, s=None, axes=(-1,), threads=1,
flags=(FFTW_MEASURE,), output_array=None):
"""Return inverse transform object for an array with Hermitian symmetry
Parameters
----------
input_array : array
s : sequence of ints, optional
Not used - included for compatibility with Numpy
axes : sequence of ints, optional
Axes over which to compute the ihfftn.
threads : int, optional
Number of threads used in computing ihfftn.
flags : sequence of ints, optional
Flags from
- FFTW_MEASURE
- FFTW_EXHAUSTIVE
- FFTW_PATIENT
- FFTW_DESTROY_INPUT
- FFTW_PRESERVE_INPUT
- FFTW_UNALIGNED
- FFTW_CONSERVE_MEMORY
- FFTW_ESTIMATE
output_array : array, optional
Array to be used as output array. Must be of correct shape, type,
strides and alignment
Returns
-------
:class:`.fftwf_xfftn.FFT`, :class:`.fftw_xfftn.FFT` or :class:`.fftwl_xfftn.FFT`
An instance of the return type configured for real-to-complex ihfftn
transforms
Note
----
This routine does not compute the ihfttn, it merely returns an instance of
a class that can do it.
Examples
--------
>>> import numpy as np
>>> from mpi4py_fft.fftw import ihfftn as plan_ihfftn
>>> from mpi4py_fft.fftw import FFTW_ESTIMATE, aligned
>>> A = aligned(4, dtype='d')
>>> ihfftn = plan_ihfftn(A, flags=(FFTW_ESTIMATE,))
>>> A[:] = 1, 2, 3, 4
>>> B = ihfftn()
>>> print(B)
[10.+0.j -2.+2.j -2.+0.j]
>>> assert id(A) == id(ihfftn.input_array)
>>> assert id(B) == id(ihfftn.output_array)
"""
kind = R2C
assert input_array.dtype.char in 'fdg'
if output_array is None:
dtype = input_array.dtype.char
sz = list(input_array.shape)
sz[axes[-1]] = input_array.shape[axes[-1]]//2+1
n = get_alignment(input_array)
output_array = aligned(sz, n=n, dtype=np.dtype(dtype.upper()))
else:
assert input_array.shape[axes[-1]]//2+1 == output_array.shape[axes[-1]]
M = get_normalization(kind, input_array.shape, axes)
return get_planned_FFT(input_array, output_array, axes, kind, threads,
flags, M)
def hfftn(input_array, s=None, axes=(-1,), threads=1,
flags=(FFTW_MEASURE,), output_array=None):
"""Return transform object for an array with Hermitian symmetry
Parameters
----------
input_array : array
s : sequence of ints, optional
Not used - included for compatibility with Numpy
axes : sequence of ints, optional
Axes over which to compute the hfftn.
threads : int, optional
Number of threads used in computing hfftn.
flags : sequence of ints, optional
Flags from
- FFTW_MEASURE
- FFTW_EXHAUSTIVE
- FFTW_PATIENT
- FFTW_DESTROY_INPUT
- FFTW_PRESERVE_INPUT
- FFTW_UNALIGNED
- FFTW_CONSERVE_MEMORY
- FFTW_ESTIMATE
output_array : array, optional
Array to be used as output array. Must be of correct shape, type,
strides and alignment
Returns
-------
:class:`.fftwf_xfftn.FFT`, :class:`.fftw_xfftn.FFT` or :class:`.fftwl_xfftn.FFT`
An instance of the return type configured for complex-to-real hfftn
transforms
Note
----
This routine does not compute the hfttn, it merely returns an instance of
a class that can do it.
Examples
--------
>>> import numpy as np
>>> from mpi4py_fft.fftw import hfftn as plan_hfftn
>>> from mpi4py_fft.fftw import FFTW_ESTIMATE, aligned
>>> A = aligned(4, dtype='D')
>>> hfftn = plan_hfftn(A, flags=(FFTW_ESTIMATE,)) # no shape given for output
>>> A[:] = 1, 2, 3, 4
>>> B = hfftn()
>>> print(B)
[15. -4. 0. -1. 0. -4.]
>>> hfftn = plan_hfftn(A, s=(7,), flags=(FFTW_ESTIMATE,)) # output shape given
>>> B = hfftn()
>>> print(B)
[19. -5.04891734 -0.30797853 -0.64310413 -0.64310413 -0.30797853
-5.04891734]
>>> assert id(B) == id(hfftn.output_array)
>>> assert id(A) == id(hfftn.input_array)
"""
kind = C2R
assert input_array.dtype.char in 'FDG'
sz = list(input_array.shape)
if s is not None:
assert len(axes) == len(s)
for q, axis in zip(s, axes):
sz[axis] = q
else:
sz[axes[-1]] = 2*sz[axes[-1]]-2
if output_array is None:
dtype = input_array.dtype.char
n = get_alignment(input_array)
output_array = aligned(sz, n=n, dtype=np.dtype(dtype.lower()))
else:
assert list(output_array.shape) == sz
assert sz[axes[-1]]//2+1 == input_array.shape[axes[-1]]
M = get_normalization(kind, sz, axes)
return get_planned_FFT(input_array, output_array, axes, kind, threads,
flags, M)
def get_normalization(kind, shape, axes):
"""Return normalization factor for multidimensional transform
The normalization factor is, for Fourier transforms::
1./np.prod(np.take(shape, axes))
where shape is the global shape of the array that is input to the
forward transform, and axes are the axes transformed over.
For real-to-real transforms the normalization factor for each axis is
- REDFT00 - 2(N-1)
- REDFT01 - 2N
- REDFT10 - 2N
- REDFT11 - 2N
- RODFT00 - 2(N+1)
- RODFT01 - 2N
- RODFT10 - 2N
- RODFT11 - 2N
where N is the length of the input array along that axis.
Parameters
----------
kind : sequence of ints
The kind of transform along each axis
shape : sequence of ints
The shape of the global transformed array (input to the forward
transform)
axes : sequence of ints
The axes transformed over
Note
----
The returned normalization factor is the *inverse* of the product of the
normalization factors for the axes it is transformed over.
"""
kind = [kind]*len(axes) if isinstance(kind, int) else kind
assert len(kind) == len(axes)
M = 1
for knd, axis in zip(kind, axes):
N = shape[axis]
if knd == FFTW_RODFT00:
M *= 2*(N+1)
elif knd == FFTW_REDFT00:
M *= 2*(N-1)
elif knd in (FFTW_RODFT01, FFTW_RODFT10, FFTW_RODFT11,
FFTW_REDFT01, FFTW_REDFT10, FFTW_REDFT11):
M *= 2*N
else:
M *= N
return 1./M
inverse = {
FFTW_RODFT11: FFTW_RODFT11,
FFTW_REDFT11: FFTW_REDFT11,
FFTW_RODFT01: FFTW_RODFT10,
FFTW_RODFT10: FFTW_RODFT01,
FFTW_REDFT01: FFTW_REDFT10,
FFTW_REDFT10: FFTW_REDFT01,
FFTW_RODFT00: FFTW_RODFT00,
FFTW_REDFT00: FFTW_REDFT00,
rfftn: irfftn,
irfftn: rfftn,
fftn: ifftn,
ifftn: fftn,
dctn: idctn,
idctn: dctn,
dstn: idstn,
idstn: dstn,
hfftn: ihfftn,
ihfftn: hfftn
}
|