1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
# pylint: disable=line-too-long
import copy
import re
from numpy import dtype, array, invert, take
__all__ = ('generate_xdmf',)
xdmffile = """<?xml version="1.0" encoding="utf-8"?>
<Xdmf xmlns:xi="http://www.w3.org/2001/XInclude" Version="2.1">
<Domain>
<Grid Name="Structured Grid" GridType="Collection" CollectionType="Temporal">
<Time TimeType="List"><DataItem Format="XML" Dimensions="{1}"> {0} </DataItem></Time>
{2}
</Grid>
</Domain>
</Xdmf>
"""
def get_grid(geometry, topology, attrs):
return """<Grid GridType="Uniform">
{0}
{1}
{2}
</Grid>
""".format(geometry, topology, attrs)
def get_geometry(kind=0, dim=2):
assert kind in (0, 1)
assert dim in (2, 3)
if dim == 2:
if kind == 0:
return """<Geometry Type="ORIGIN_DXDY">
<DataItem Format="XML" NumberType="Float" Dimensions="2">
{0} {1}
</DataItem>
<DataItem Format="XML" NumberType="Float" Dimensions="2">
{2} {3}
</DataItem>
</Geometry>"""
return """<Geometry Type="VXVYVZ">
<DataItem Format="HDF" NumberType="Float" Precision="{0}" Dimensions="{1}">
{3}:{6}/mesh/{4}
</DataItem>
<DataItem Format="HDF" NumberType="Float" Precision="{0}" Dimensions="{2}">
{3}:{6}/mesh/{5}
</DataItem>
<DataItem Format="XML" NumberType="Float" Precision="8" Dimensions="1">
0
</DataItem>
</Geometry>"""
if dim == 3:
if kind == 0:
return """<Geometry Type="ORIGIN_DXDYDZ">
<DataItem Format="XML" NumberType="Float" Dimensions="3">
{0} {1} {2}
</DataItem>
<DataItem Format="XML" NumberType="Float" Dimensions="3">
{3} {4} {5}
</DataItem>
</Geometry>"""
return """<Geometry Type="VXVYVZ">
<DataItem Format="HDF" NumberType="Float" Precision="{0}" Dimensions="{3}">
{4}:{8}/mesh/{5}
</DataItem>
<DataItem Format="HDF" NumberType="Float" Precision="{0}" Dimensions="{2}">
{4}:{8}/mesh/{6}
</DataItem>
<DataItem Format="HDF" NumberType="Float" Precision="{0}" Dimensions="{1}">
{4}:{8}/mesh/{7}
</DataItem>
</Geometry>"""
def get_topology(dims, kind=0):
assert len(dims) in (2, 3)
co = 'Co' if kind == 0 else ''
if len(dims) == 2:
return """<Topology Dimensions="1 {0} {1}" Type="3D{2}RectMesh"/>""".format(dims[0], dims[1], co)
if len(dims) == 3:
return """<Topology Dimensions="{0} {1} {2}" Type="3D{3}RectMesh"/>""".format(dims[0], dims[1], dims[2], co)
def get_attribute(attr, h5filename, dims, prec):
name = attr.split("/")[0]
assert len(dims) in (2, 3)
if len(dims) == 2:
return """<Attribute Name="{0}" Center="Node">
<DataItem Format="HDF" NumberType="Float" Precision="{5}" Dimensions="1 {1} {2}">
{3}:/{4}
</DataItem>
</Attribute>
""".format(name, dims[0], dims[1], h5filename, attr, prec)
return """<Attribute Name="{0}" Center="Node">
<DataItem Format="HDF" NumberType="Float" Precision="{6}" Dimensions="{1} {2} {3}">
{4}:/{5}
</DataItem>
</Attribute>
""".format(name, dims[0], dims[1], dims[2], h5filename, attr, prec)
def generate_xdmf(h5filename, periodic=True, order='paraview'):
"""Generate XDMF-files
Parameters
----------
h5filename : str
Name of hdf5-file that we want to decorate with xdmf
periodic : bool or dim-sequence of bools, optional
If true along axis i, assume data is periodic.
Only affects the calculation of the domain size and only if the
domain is given as 2-tuple of origin+dx.
order : str
``paraview`` or ``visit``
For some reason Paraview and Visit requires the mesh stored in
opposite order in the XDMF-file for 2D slices. Make choice of
order here.
"""
import h5py
f = h5py.File(h5filename, 'a')
keys = []
f.visit(keys.append)
assert order.lower() in ('paraview', 'visit')
# Find unique scalar groups of 2D and 3D datasets
datasets = {2:{}, 3:{}}
for key in keys:
if f[key.split('/')[0]].attrs['rank'] > 0:
continue
if isinstance(f[key], h5py.Dataset):
if not ('mesh' in key or 'domain' in key or 'Vector' in key):
tstep = int(key.split("/")[-1])
ndim = int(key.split("/")[1][0])
if ndim in (2, 3):
ds = datasets[ndim]
if tstep in ds:
ds[tstep] += [key]
else:
ds[tstep] = [key]
if periodic is True:
periodic = [0]*5
elif periodic is False:
periodic = [1]*5
else:
assert isinstance(periodic, (tuple, list))
periodic = list(array(invert(periodic), int))
coor = ['x0', 'x1', 'x2', 'x3', 'x4']
for ndim, dsets in datasets.items():
timesteps = list(dsets.keys())
per = copy.copy(periodic)
if not timesteps:
continue
timesteps.sort(key=int)
tt = ""
for i in timesteps:
tt += "%s " %i
datatype = f[dsets[timesteps[0]][0]].dtype
assert datatype.char not in 'FDG', "Cannot use generate_xdmf to visualize complex data."
prec = 4 if datatype is dtype('float32') else 8
xff = {}
geometry = {}
topology = {}
attrs = {}
grid = {}
NN = {}
for name in dsets[timesteps[0]]:
group = name.split('/')[0]
if 'slice' in name:
slices = name.split("/")[2]
else:
slices = 'whole'
cc = copy.copy(coor)
if slices not in xff:
xff[slices] = copy.copy(xdmffile)
N = list(f[name].shape)
kk = 0
sl = 0
if 'slice' in slices:
ss = slices.split("_")
ii = []
for i, sx in enumerate(ss):
if 'slice' in sx:
ii.append(i)
else:
if len(f[group].attrs.get('shape')) == 3: # 2D slice in 3D domain
kk = i
sl = int(sx)
N.insert(i, 1)
cc = take(coor, ii)
else:
ii = list(range(ndim))
NN[slices] = N
if 'domain' in f[group].keys():
if ndim == 2 and ('slice' not in slices or len(f[group].attrs.get('shape')) > 3):
geo = get_geometry(kind=0, dim=2)
assert len(ii) == 2
i, j = ii
if order.lower() == 'paraview':
data = [f[group+'/domain/{}'.format(coor[i])][0],
f[group+'/domain/{}'.format(coor[j])][0],
f[group+'/domain/{}'.format(coor[i])][1]/(N[0]-per[i]),
f[group+'/domain/{}'.format(coor[j])][1]/(N[1]-per[j])]
geometry[slices] = geo.format(*data)
else:
data = [f[group+'/domain/{}'.format(coor[j])][0],
f[group+'/domain/{}'.format(coor[i])][0],
f[group+'/domain/{}'.format(coor[j])][1]/(N[0]-per[j]),
f[group+'/domain/{}'.format(coor[i])][1]/(N[1]-per[i])]
geometry[slices] = geo.format(*data)
else:
if ndim == 2:
ii.insert(kk, kk)
per[kk] = 0
i, j, k = ii
geo = get_geometry(kind=0, dim=3)
data = [f[group+'/domain/{}'.format(coor[i])][0],
f[group+'/domain/{}'.format(coor[j])][0],
f[group+'/domain/{}'.format(coor[k])][0],
f[group+'/domain/{}'.format(coor[i])][1]/(N[0]-per[i]),
f[group+'/domain/{}'.format(coor[j])][1]/(N[1]-per[j]),
f[group+'/domain/{}'.format(coor[k])][1]/(N[2]-per[k])]
if ndim == 2:
origin, dx = f[group+'/domain/x{}'.format(kk)]
M = f[group].attrs.get('shape')
pos = origin+dx/(M[kk]-per[kk])*sl
data[kk] = pos
data[kk+3] = pos
geometry[slices] = geo.format(*data)
topology[slices] = get_topology(N, kind=0)
elif 'mesh' in f[group].keys():
if ndim == 2 and ('slice' not in slices or len(f[group].attrs.get('shape')) > 3):
geo = get_geometry(kind=1, dim=2)
else:
geo = get_geometry(kind=1, dim=3)
if ndim == 2 and ('slice' not in slices or len(f[group].attrs.get('shape')) > 3):
if order.lower() == 'paraview':
sig = (prec, N[0], N[1], h5filename, cc[0], cc[1], group)
else:
sig = (prec, N[1], N[0], h5filename, cc[1], cc[0], group)
else:
if ndim == 2: # 2D slice in 3D domain
pos = f[group+"/mesh/x{}".format(kk)][sl]
z = re.findall(r'<DataItem(.*?)</DataItem>', geo, re.DOTALL)
geo = geo.replace(z[2-kk], ' Format="XML" NumberType="Float" Precision="{0}" Dimensions="{%d}">\n {%d}\n '%(1+kk, 7-kk))
cc = list(cc)
cc.insert(kk, pos)
sig = (prec, N[0], N[1], N[2], h5filename, cc[2], cc[1], cc[0], group)
geometry[slices] = geo.format(*sig)
topology[slices] = get_topology(N, kind=1)
grid[slices] = ''
# if slice of data, need to know along which axes
# Since there may be many different slices, we need to create
# one xdmf-file for each composition of slices
attrs = {}
for tstep in timesteps:
d = dsets[tstep]
slx = set()
for i, x in enumerate(d):
slices = x.split("/")[2]
if not 'slice' in slices:
slices = 'whole'
N = NN[slices]
if slices not in attrs:
attrs[slices] = ''
attrs[slices] += get_attribute(x, h5filename, N, prec)
slx.add(slices)
for slices in slx:
grid[slices] += get_grid(geometry[slices], topology[slices],
attrs[slices].rstrip())
attrs[slices] = ''
for slices, ff in xff.items():
if 'slice' in slices:
fname = h5filename[:-3]+"_"+slices+".xdmf"
else:
fname = h5filename[:-3]+".xdmf"
xfl = open(fname, "w")
h = ff.format(tt, len(timesteps), grid[slices].rstrip())
xfl.write(h)
xfl.close()
f.close()
if __name__ == "__main__":
import sys
generate_xdmf(sys.argv[-1])
|