File: libfft.py

package info (click to toggle)
mpi4py-fft 2.0.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 720 kB
  • sloc: python: 3,053; ansic: 87; makefile: 42; sh: 33
file content (434 lines) | stat: -rw-r--r-- 15,717 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import functools
import numpy as np
from . import fftw

def _Xfftn_plan_pyfftw(shape, axes, dtype, transforms, options):

    import pyfftw
    opts = dict(
        avoid_copy=True,
        overwrite_input=True,
        auto_align_input=True,
        auto_contiguous=True,
        threads=1,
    )
    opts.update(options)

    transforms = {} if transforms is None else transforms
    if tuple(axes) in transforms:
        plan_fwd, plan_bck = transforms[tuple(axes)]
    else:
        if np.issubdtype(dtype, np.floating):
            plan_fwd = pyfftw.builders.rfftn
            plan_bck = pyfftw.builders.irfftn
        else:
            plan_fwd = pyfftw.builders.fftn
            plan_bck = pyfftw.builders.ifftn

    s = tuple(np.take(shape, axes))
    U = pyfftw.empty_aligned(shape, dtype=dtype)
    xfftn_fwd = plan_fwd(U, s=s, axes=axes, **opts)
    U.fill(0)
    if np.issubdtype(dtype, np.floating):
        del opts['overwrite_input']
    V = xfftn_fwd.output_array
    xfftn_bck = plan_bck(V, s=s, axes=axes, **opts)
    V.fill(0)
    xfftn_fwd.update_arrays(U, V)
    xfftn_bck.update_arrays(V, U)

    wrapped_xfftn_bck = functools.partial(xfftn_bck, normalise_idft=False)
    functools.update_wrapper(wrapped_xfftn_bck, xfftn_bck,
                             assigned=['input_array',
                                       'output_array',
                                       '__doc__'])

    return (xfftn_fwd, wrapped_xfftn_bck)

def _Xfftn_plan_fftw(shape, axes, dtype, transforms, options):

    opts = dict(
        overwrite_input='FFTW_DESTROY_INPUT',
        planner_effort='FFTW_MEASURE',
        threads=1,
    )
    opts.update(options)
    flags = (fftw.flag_dict[opts['planner_effort']],
             fftw.flag_dict[opts['overwrite_input']])
    threads = opts['threads']

    transforms = {} if transforms is None else transforms
    if tuple(axes) in transforms:
        plan_fwd, plan_bck = transforms[tuple(axes)]
    else:
        if np.issubdtype(dtype, np.floating):
            plan_fwd = fftw.rfftn
            plan_bck = fftw.irfftn
        else:
            plan_fwd = fftw.fftn
            plan_bck = fftw.ifftn

    s = tuple(np.take(shape, axes))
    U = fftw.aligned(shape, dtype=dtype)
    xfftn_fwd = plan_fwd(U, s=s, axes=axes, threads=threads, flags=flags)
    U.fill(0)
    V = xfftn_fwd.output_array
    if np.issubdtype(dtype, np.floating):
        flags = (fftw.flag_dict[opts['planner_effort']],)
    xfftn_bck = plan_bck(V, s=s, axes=axes, threads=threads, flags=flags, output_array=U)
    return (xfftn_fwd, xfftn_bck)

def _Xfftn_plan_numpy(shape, axes, dtype, transforms, options):

    transforms = {} if transforms is None else transforms
    if tuple(axes) in transforms:
        plan_fwd, plan_bck = transforms[tuple(axes)]
    else:
        if np.issubdtype(dtype, np.floating):
            plan_fwd = np.fft.rfftn
            plan_bck = np.fft.irfftn
        else:
            plan_fwd = np.fft.fftn
            plan_bck = np.fft.ifftn

    s = tuple(np.take(shape, axes))
    U = fftw.aligned(shape, dtype=dtype)
    V = plan_fwd(U, s=s, axes=axes).astype(dtype.char.upper()) # Numpy returns complex double if input single precision
    V = fftw.aligned_like(V)
    M = np.prod(s)

    # Numpy has forward transform unscaled and backward scaled with 1/N
    return (_Yfftn_wrap(plan_fwd, U, V, 1, {'s': s, 'axes': axes}),
            _Yfftn_wrap(plan_bck, V, U, M, {'s': s, 'axes': axes}))

def _Xfftn_plan_mkl(shape, axes, dtype, transforms, options): #pragma: no cover

    transforms = {} if transforms is None else transforms
    if tuple(axes) in transforms:
        plan_fwd, plan_bck = transforms[tuple(axes)]
    else:
        if np.issubdtype(dtype, np.floating):
            from mkl_fft._numpy_fft import rfftn, irfftn
            plan_fwd = rfftn
            plan_bck = irfftn
        else:
            from mkl_fft._numpy_fft import fftn, ifftn
            plan_fwd = fftn
            plan_bck = ifftn

    s = tuple(np.take(shape, axes))
    U = fftw.aligned(shape, dtype=dtype)
    V = plan_fwd(U, s=s, axes=axes)
    V = fftw.aligned_like(V)
    M = np.prod(s)

    return (_Yfftn_wrap(plan_fwd, U, V, 1, {'s': s, 'axes': axes}),
            _Yfftn_wrap(plan_bck, V, U, M, {'s': s, 'axes': axes}))

def _Xfftn_plan_scipy(shape, axes, dtype, transforms, options):

    transforms = {} if transforms is None else transforms
    if tuple(axes) in transforms:
        plan_fwd, plan_bck = transforms[tuple(axes)]
    else:
        from scipy.fftpack import fftn, ifftn # No rfftn/irfftn methods
        plan_fwd = fftn
        plan_bck = ifftn

    s = tuple(np.take(shape, axes))
    U = fftw.aligned(shape, dtype=dtype)
    V = plan_fwd(U, shape=s, axes=axes)
    V = fftw.aligned_like(V)
    M = np.prod(s)
    return (_Yfftn_wrap(plan_fwd, U, V, 1, {'shape': s, 'axes': axes}),
            _Yfftn_wrap(plan_bck, V, U, M, {'shape': s, 'axes': axes}))

class _Yfftn_wrap(object):
    #Wraps numpy/scipy/mkl transforms to FFTW style
    # pylint: disable=too-few-public-methods

    __slots__ = ('_xfftn', '_M', '_opt', '__doc__', '_input_array', '_output_array')

    def __init__(self, xfftn_obj, input_array, output_array, M, opt):
        object.__setattr__(self, '_xfftn', xfftn_obj)
        object.__setattr__(self, '_opt', opt)
        object.__setattr__(self, '_M', M)
        object.__setattr__(self, '_input_array', input_array)
        object.__setattr__(self, '_output_array', output_array)
        object.__setattr__(self, '__doc__', xfftn_obj.__doc__)

    @property
    def input_array(self):
        return object.__getattribute__(self, '_input_array')

    @property
    def output_array(self):
        return object.__getattribute__(self, '_output_array')

    @property
    def xfftn(self):
        return object.__getattribute__(self, '_xfftn')

    @property
    def opt(self):
        return object.__getattribute__(self, '_opt')

    @property
    def M(self):
        return object.__getattribute__(self, '_M')

    def __call__(self, *args, **kwargs):
        self.opt.update(kwargs)
        self.output_array[...] = self.xfftn(self.input_array, **self.opt)
        if abs(self.M-1) > 1e-8:
            self._output_array *= self.M
        return self.output_array

class _Xfftn_wrap(object):
    #Common interface for all serial transforms
    # pylint: disable=too-few-public-methods

    __slots__ = ('_xfftn', '__doc__', '_input_array', '_output_array')

    def __init__(self, xfftn_obj, input_array, output_array):
        object.__setattr__(self, '_xfftn', xfftn_obj)
        object.__setattr__(self, '_input_array', input_array)
        object.__setattr__(self, '_output_array', output_array)
        object.__setattr__(self, '__doc__', xfftn_obj.__doc__)

    @property
    def input_array(self):
        return object.__getattribute__(self, '_input_array')

    @property
    def output_array(self):
        return object.__getattribute__(self, '_output_array')

    @property
    def xfftn(self):
        return object.__getattribute__(self, '_xfftn')

    def __call__(self, input_array=None, output_array=None, **options):
        if input_array is not None:
            self.input_array[...] = input_array
        self.xfftn(**options)
        if output_array is not None:
            output_array[...] = self.output_array
            return output_array
        else:
            return self.output_array

class FFTBase(object):
    """Base class for serial FFT transforms

    Parameters
    ----------
    shape : list or tuple of ints
        shape of input array planned for
    axes : None, int or tuple of ints, optional
        axes to transform over. If None transform over all axes
    dtype : np.dtype, optional
        Type of input array
    padding : bool, number or list of numbers
        If False, then no padding. If number, then apply this number as padding
        factor for all axes. If list of numbers, then each number gives the
        padding for each axis. Must be same length as axes.
    """

    def __init__(self, shape, axes=None, dtype=float, padding=False):
        shape = list(shape) if np.ndim(shape) else [shape]
        assert len(shape) > 0
        assert min(shape) > 0
        if axes is not None:
            axes = list(axes) if np.ndim(axes) else [axes]
            for i, axis in enumerate(axes):
                if axis < 0:
                    axes[i] = axis + len(shape)
        else:
            axes = list(range(len(shape)))
        assert min(axes) >= 0
        assert max(axes) < len(shape)
        assert 0 < len(axes) <= len(shape)
        assert sorted(axes) == sorted(set(axes))

        dtype = np.dtype(dtype)
        assert dtype.char in 'fdgFDG'
        self.shape = shape
        self.axes = axes
        self.dtype = dtype
        self.padding = padding
        self.real_transform = np.issubdtype(dtype, np.floating)
        self.padding_factor = 1

    def _truncation_forward(self, padded_array, trunc_array):
        axis = self.axes[-1]
        if self.padding_factor > 1.0+1e-8:
            trunc_array.fill(0)
            N0 = self.forward.output_array.shape[axis]
            if self.real_transform:
                N = trunc_array.shape[axis]
                s = [slice(None)]*trunc_array.ndim
                s[axis] = slice(0, N)
                trunc_array[:] = padded_array[tuple(s)]
                if N0 % 2 == 0:
                    s[axis] = N-1
                    s = tuple(s)
                    trunc_array[s] = trunc_array[s].real
                    trunc_array[s] *= 2
            else:
                N = trunc_array.shape[axis]
                su = [slice(None)]*trunc_array.ndim
                su[axis] = slice(0, N//2+1)
                trunc_array[tuple(su)] = padded_array[tuple(su)]
                su[axis] = slice(-(N//2), None)
                trunc_array[tuple(su)] += padded_array[tuple(su)]

    def _padding_backward(self, trunc_array, padded_array):
        axis = self.axes[-1]
        if self.padding_factor > 1.0+1e-8:
            padded_array.fill(0)
            N0 = self.forward.output_array.shape[axis]
            if self.real_transform:
                s = [slice(0, n) for n in trunc_array.shape]
                padded_array[tuple(s)] = trunc_array[:]
                N = trunc_array.shape[axis]
                if N0 % 2 == 0: # Symmetric Fourier interpolator
                    s[axis] = N-1
                    s = tuple(s)
                    padded_array[s] = padded_array[s].real
                    padded_array[s] *= 0.5
            else:
                N = trunc_array.shape[axis]
                su = [slice(None)]*trunc_array.ndim
                su[axis] = slice(0, N//2+1)
                padded_array[tuple(su)] = trunc_array[tuple(su)]
                su[axis] = slice(-(N//2), None)
                padded_array[tuple(su)] = trunc_array[tuple(su)]
                if N0 % 2 == 0:  # Use symmetric Fourier interpolator
                    su[axis] = N//2
                    padded_array[tuple(su)] *= 0.5
                    su[axis] = -(N//2)
                    padded_array[tuple(su)] *= 0.5


class FFT(FFTBase):
    """Class for serial FFT transforms

    Parameters
    ----------
    shape : list or tuple of ints
        shape of input array planned for
    axes : None, int or tuple of ints, optional
        axes to transform over. If None transform over all axes
    dtype : np.dtype, optional
        Type of input array
    padding : bool, number or list of numbers
        If False, then no padding. If number, then apply this number as padding
        factor for all axes. If list of numbers, then each number gives the
        padding for each axis. Must be same length as axes.
    backend : str, optional
        Choose backend for serial transforms (``fftw``, ``pyfftw``, ``numpy``,
        ``scipy``, ``mkl_fft``). Default is ``fftw``
    transforms : None or dict, optional
        Dictionary of axes to serial transforms (forward and backward) along
        those axes. For example::

            {(0, 1): (dctn, idctn), (2, 3): (dstn, idstn)}

        If missing the default is to use rfftn/irfftn for real input arrays and
        fftn/ifftn for complex input arrays. Real-to-real transforms can be
        configured using this dictionary and real-to-real transforms from the
        :mod:`.fftw.xfftn` module.
    kw : dict
        Parameters passed to serial transform object

    Methods
    -------
    forward(input_array=None, output_array=None, **options)
        Generic serial forward transform

        Parameters
        ----------
        input_array : array, optional
        output_array : array, optional
        options : dict
            parameters to serial transforms

        Returns
        -------
        output_array : array

    backward(input_array=None, output_array=None, **options)
        Generic serial backward transform

        Parameters
        ----------
        input_array : array, optional
        output_array : array, optional
        options : dict
            parameters to serial transforms

        Returns
        -------
        output_array : array

    """
    def __init__(self, shape, axes=None, dtype=float, padding=False,
                 backend='fftw', transforms=None, **kw):
        FFTBase.__init__(self, shape, axes, dtype, padding)
        plan = {
            'pyfftw': _Xfftn_plan_pyfftw,
            'fftw': _Xfftn_plan_fftw,
            'numpy': _Xfftn_plan_numpy,
            'mkl_fft': _Xfftn_plan_mkl,
            'scipy': _Xfftn_plan_scipy,
        }[backend]
        self.backend = backend
        self.fwd, self.bck = plan(self.shape, self.axes, self.dtype, transforms, kw)
        U, V = self.fwd.input_array, self.fwd.output_array
        self.M = 1
        if backend != 'fftw':
            self.M = 1./np.prod(np.take(self.shape, self.axes))
        else:
            self.M = self.fwd.get_normalization()
        if backend == 'scipy':
            self.real_transform = False # No rfftn/irfftn methods
        self.padding_factor = 1.0
        if padding is not False:
            self.padding_factor = padding[self.axes[-1]] if np.ndim(padding) else padding
        if abs(self.padding_factor-1.0) > 1e-8:
            assert len(self.axes) == 1
            trunc_array = self._get_truncarray(shape, V.dtype)
            self.forward = _Xfftn_wrap(self._forward, U, trunc_array)
            self.backward = _Xfftn_wrap(self._backward, trunc_array, U)
        else:
            self.forward = _Xfftn_wrap(self._forward, U, V)
            self.backward = _Xfftn_wrap(self._backward, V, U)

    def _forward(self, **kw):
        normalize = kw.pop('normalize', True)
        self.fwd(None, None, **kw)
        self._truncation_forward(self.fwd.output_array, self.forward.output_array)
        if normalize:
            self.forward._output_array *= self.M
        return self.forward.output_array

    def _backward(self, **kw):
        normalize = kw.pop('normalize', False)
        self._padding_backward(self.backward.input_array, self.bck.input_array)
        self.bck(None, None, **kw)
        if normalize:
            self.backward._output_array *= self.M
        return self.backward.output_array

    def _get_truncarray(self, shape, dtype):
        axis = self.axes[-1]
        if not self.real_transform:
            shape = list(shape)
            shape[axis] = int(np.round(shape[axis] / self.padding_factor))
            return fftw.aligned(shape, dtype=dtype)

        shape = list(shape)
        shape[axis] = int(np.round(shape[axis] / self.padding_factor))
        shape[axis] = shape[axis]//2 + 1
        return fftw.aligned(shape, dtype=dtype)