1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
import functools
import os
from mpi4py import MPI
import numpy as np
from mpi4py_fft import PFFT, HDF5File, NCFile, newDistArray, generate_xdmf
N = (12, 13, 14, 15)
comm = MPI.COMM_WORLD
ex = {True: 'c', False: 'r'}
writer = {'hdf5': functools.partial(HDF5File, mode='w'),
'netcdf4': functools.partial(NCFile, mode='w')}
reader = {'hdf5': functools.partial(HDF5File, mode='r'),
'netcdf4': functools.partial(NCFile, mode='r')}
ending = {'hdf5': '.h5', 'netcdf4': '.nc'}
def remove_if_exists(filename):
try:
os.remove(filename)
except OSError:
pass
def cleanup():
import glob
files = glob.glob('*.h5')+glob.glob('*.xdmf')+glob.glob('*.nc')
for f in files:
remove_if_exists(f)
def test_2D(backend, forward_output):
if backend == 'netcdf4':
assert forward_output is False
T = PFFT(comm, (N[0], N[1]))
for i, domain in enumerate([None, ((0, np.pi), (0, 2*np.pi)),
(np.arange(N[0], dtype=float)*1*np.pi/N[0],
np.arange(N[1], dtype=float)*2*np.pi/N[1])]):
for rank in range(3):
filename = "".join(('test2D_{}{}{}'.format(ex[i == 0], ex[forward_output], rank),
ending[backend]))
if backend == 'netcdf4':
remove_if_exists(filename)
u = newDistArray(T, forward_output=forward_output, val=1, rank=rank)
hfile = writer[backend](filename, domain=domain)
assert hfile.backend() == backend
hfile.write(0, {'u': [u]})
hfile.write(1, {'u': [u]})
u.write(hfile, 'u', 2)
if rank > 0:
hfile.write(0, {'u': [u]}, as_scalar=True)
hfile.write(1, {'u': [u]}, as_scalar=True)
u.write(hfile, 'u', 2, as_scalar=True)
u.write('t'+filename, 'u', 0)
u.write('t'+filename, 'u', 0, [slice(None), 3])
if not forward_output and backend == 'hdf5' and comm.Get_rank() == 0:
generate_xdmf(filename)
generate_xdmf(filename, order='visit')
u0 = newDistArray(T, forward_output=forward_output, rank=rank)
read = reader[backend](filename)
read.read(u0, 'u', step=0)
u0.read(filename, 'u', 2)
u0.read(read, 'u', 2)
assert np.allclose(u0, u)
if backend == 'netcdf4': # Test opening file in mode 'a' when not existing
remove_if_exists('nctesta.nc')
_ = NCFile('nctesta.nc', domain=domain, mode='a')
T.destroy()
def test_3D(backend, forward_output):
if backend == 'netcdf4':
assert forward_output is False
T = PFFT(comm, (N[0], N[1], N[2]))
d0 = ((0, np.pi), (0, 2*np.pi), (0, 3*np.pi))
d1 = (np.arange(N[0], dtype=float)*1*np.pi/N[0],
np.arange(N[1], dtype=float)*2*np.pi/N[1],
np.arange(N[2], dtype=float)*3*np.pi/N[2])
for i, domain in enumerate([None, d0, d1]):
for rank in range(3):
filename = ''.join(('test_{}{}{}'.format(ex[i == 0], ex[forward_output], rank),
ending[backend]))
if backend == 'netcdf4':
remove_if_exists('uv'+filename)
remove_if_exists('v'+filename)
u = newDistArray(T, forward_output=forward_output, rank=rank)
v = newDistArray(T, forward_output=forward_output, rank=rank)
h0file = writer[backend]('uv'+filename, domain=domain)
h1file = writer[backend]('v'+filename, domain=domain)
u[:] = np.random.random(u.shape)
v[:] = 2
for k in range(3):
h0file.write(k, {'u': [u,
(u, [slice(None), slice(None), 4]),
(u, [5, 5, slice(None)])],
'v': [v,
(v, [slice(None), 6, slice(None)])]})
h1file.write(k, {'v': [v,
(v, [slice(None), 6, slice(None)]),
(v, [6, 6, slice(None)])]})
# One more time with same k
h0file.write(k, {'u': [u,
(u, [slice(None), slice(None), 4]),
(u, [5, 5, slice(None)])],
'v': [v,
(v, [slice(None), 6, slice(None)])]})
h1file.write(k, {'v': [v,
(v, [slice(None), 6, slice(None)]),
(v, [6, 6, slice(None)])]})
if rank > 0:
for k in range(3):
u.write('uv'+filename, 'u', k, as_scalar=True)
u.write('uv'+filename, 'u', k, [slice(None), slice(None), 4], as_scalar=True)
u.write('uv'+filename, 'u', k, [5, 5, slice(None)], as_scalar=True)
v.write('uv'+filename, 'v', k, as_scalar=True)
v.write('uv'+filename, 'v', k, [slice(None), 6, slice(None)], as_scalar=True)
if not forward_output and backend == 'hdf5' and comm.Get_rank() == 0:
generate_xdmf('uv'+filename)
generate_xdmf('v'+filename, periodic=False)
generate_xdmf('v'+filename, periodic=(True, True, True))
generate_xdmf('v'+filename, order='visit')
u0 = newDistArray(T, forward_output=forward_output, rank=rank)
read = reader[backend]('uv'+filename)
read.read(u0, 'u', step=0)
assert np.allclose(u0, u)
read.read(u0, 'v', step=0)
assert np.allclose(u0, v)
T.destroy()
def test_4D(backend, forward_output):
if backend == 'netcdf4':
assert forward_output is False
T = PFFT(comm, (N[0], N[1], N[2], N[3]))
d0 = ((0, np.pi), (0, 2*np.pi), (0, 3*np.pi), (0, 4*np.pi))
d1 = (np.arange(N[0], dtype=float)*1*np.pi/N[0],
np.arange(N[1], dtype=float)*2*np.pi/N[1],
np.arange(N[2], dtype=float)*3*np.pi/N[2],
np.arange(N[3], dtype=float)*4*np.pi/N[3]
)
for i, domain in enumerate([None, d0, d1]):
for rank in range(3):
filename = "".join(('h5test4_{}{}{}'.format(ex[i == 0], ex[forward_output], rank),
ending[backend]))
if backend == 'netcdf4':
remove_if_exists('uv'+filename)
u = newDistArray(T, forward_output=forward_output, rank=rank)
v = newDistArray(T, forward_output=forward_output, rank=rank)
h0file = writer[backend]('uv'+filename, domain=domain)
u[:] = np.random.random(u.shape)
v[:] = 2
for k in range(3):
h0file.write(k, {'u': [u, (u, [slice(None), 4, slice(None), slice(None)])],
'v': [v, (v, [slice(None), slice(None), 5, 6])]})
if not forward_output and backend == 'hdf5' and comm.Get_rank() == 0:
generate_xdmf('uv'+filename)
u0 = newDistArray(T, forward_output=forward_output, rank=rank)
read = reader[backend]('uv'+filename)
read.read(u0, 'u', step=0)
assert np.allclose(u0, u)
read.read(u0, 'v', step=0)
assert np.allclose(u0, v)
T.destroy()
if __name__ == '__main__':
#pylint: disable=unused-import
cleanup()
skip = {'hdf5': False, 'netcdf4': True}
try:
import h5py
except ImportError:
skip['hdf5'] = True
try:
import netCDF4
except ImportError:
skip['netcdf4'] = True
for bnd in ('hdf5', 'netcdf4'):
if not skip[bnd]:
forw_output = [False]
if bnd == 'hdf5':
forw_output.append(True)
for kind in forw_output:
test_3D(bnd, kind)
test_2D(bnd, kind)
if bnd == 'hdf5':
test_4D(bnd, kind)
cleanup()
|