File: test_io.py

package info (click to toggle)
mpi4py-fft 2.0.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 720 kB
  • sloc: python: 3,053; ansic: 87; makefile: 42; sh: 33
file content (191 lines) | stat: -rw-r--r-- 8,091 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import functools
import os
from mpi4py import MPI
import numpy as np
from mpi4py_fft import PFFT, HDF5File, NCFile, newDistArray, generate_xdmf

N = (12, 13, 14, 15)
comm = MPI.COMM_WORLD

ex = {True: 'c', False: 'r'}

writer = {'hdf5': functools.partial(HDF5File, mode='w'),
          'netcdf4': functools.partial(NCFile, mode='w')}
reader = {'hdf5': functools.partial(HDF5File, mode='r'),
          'netcdf4': functools.partial(NCFile, mode='r')}
ending = {'hdf5': '.h5', 'netcdf4': '.nc'}

def remove_if_exists(filename):
    try:
        os.remove(filename)
    except OSError:
        pass

def cleanup():
    import glob
    files = glob.glob('*.h5')+glob.glob('*.xdmf')+glob.glob('*.nc')
    for f in files:
        remove_if_exists(f)

def test_2D(backend, forward_output):
    if backend == 'netcdf4':
        assert forward_output is False
    T = PFFT(comm, (N[0], N[1]))
    for i, domain in enumerate([None, ((0, np.pi), (0, 2*np.pi)),
                                (np.arange(N[0], dtype=float)*1*np.pi/N[0],
                                 np.arange(N[1], dtype=float)*2*np.pi/N[1])]):
        for rank in range(3):
            filename = "".join(('test2D_{}{}{}'.format(ex[i == 0], ex[forward_output], rank),
                                ending[backend]))
            if backend == 'netcdf4':
                remove_if_exists(filename)
            u = newDistArray(T, forward_output=forward_output, val=1, rank=rank)
            hfile = writer[backend](filename, domain=domain)
            assert hfile.backend() == backend
            hfile.write(0, {'u': [u]})
            hfile.write(1, {'u': [u]})
            u.write(hfile, 'u', 2)
            if rank > 0:
                hfile.write(0, {'u': [u]}, as_scalar=True)
                hfile.write(1, {'u': [u]}, as_scalar=True)
                u.write(hfile, 'u', 2, as_scalar=True)
            u.write('t'+filename, 'u', 0)
            u.write('t'+filename, 'u', 0, [slice(None), 3])

            if not forward_output and backend == 'hdf5' and comm.Get_rank() == 0:
                generate_xdmf(filename)
                generate_xdmf(filename, order='visit')

            u0 = newDistArray(T, forward_output=forward_output, rank=rank)
            read = reader[backend](filename)
            read.read(u0, 'u', step=0)
            u0.read(filename, 'u', 2)
            u0.read(read, 'u', 2)
            assert np.allclose(u0, u)
            if backend == 'netcdf4': # Test opening file in mode 'a' when not existing
                remove_if_exists('nctesta.nc')
                _ = NCFile('nctesta.nc', domain=domain, mode='a')
    T.destroy()

def test_3D(backend, forward_output):
    if backend == 'netcdf4':
        assert forward_output is False
    T = PFFT(comm, (N[0], N[1], N[2]))
    d0 = ((0, np.pi), (0, 2*np.pi), (0, 3*np.pi))
    d1 = (np.arange(N[0], dtype=float)*1*np.pi/N[0],
          np.arange(N[1], dtype=float)*2*np.pi/N[1],
          np.arange(N[2], dtype=float)*3*np.pi/N[2])
    for i, domain in enumerate([None, d0, d1]):
        for rank in range(3):
            filename = ''.join(('test_{}{}{}'.format(ex[i == 0], ex[forward_output], rank),
                                ending[backend]))
            if backend == 'netcdf4':
                remove_if_exists('uv'+filename)
                remove_if_exists('v'+filename)

            u = newDistArray(T, forward_output=forward_output, rank=rank)
            v = newDistArray(T, forward_output=forward_output, rank=rank)
            h0file = writer[backend]('uv'+filename, domain=domain)
            h1file = writer[backend]('v'+filename, domain=domain)
            u[:] = np.random.random(u.shape)
            v[:] = 2
            for k in range(3):
                h0file.write(k, {'u': [u,
                                       (u, [slice(None), slice(None), 4]),
                                       (u, [5, 5, slice(None)])],
                                 'v': [v,
                                       (v, [slice(None), 6, slice(None)])]})
                h1file.write(k, {'v': [v,
                                       (v, [slice(None), 6, slice(None)]),
                                       (v, [6, 6, slice(None)])]})
            # One more time with same k
            h0file.write(k, {'u': [u,
                                   (u, [slice(None), slice(None), 4]),
                                   (u, [5, 5, slice(None)])],
                             'v': [v,
                                   (v, [slice(None), 6, slice(None)])]})
            h1file.write(k, {'v': [v,
                                   (v, [slice(None), 6, slice(None)]),
                                   (v, [6, 6, slice(None)])]})

            if rank > 0:
                for k in range(3):
                    u.write('uv'+filename, 'u', k, as_scalar=True)
                    u.write('uv'+filename, 'u', k, [slice(None), slice(None), 4], as_scalar=True)
                    u.write('uv'+filename, 'u', k, [5, 5, slice(None)], as_scalar=True)
                    v.write('uv'+filename, 'v', k, as_scalar=True)
                    v.write('uv'+filename, 'v', k, [slice(None), 6, slice(None)], as_scalar=True)

            if not forward_output and backend == 'hdf5' and comm.Get_rank() == 0:
                generate_xdmf('uv'+filename)
                generate_xdmf('v'+filename, periodic=False)
                generate_xdmf('v'+filename, periodic=(True, True, True))
                generate_xdmf('v'+filename, order='visit')

            u0 = newDistArray(T, forward_output=forward_output, rank=rank)
            read = reader[backend]('uv'+filename)
            read.read(u0, 'u', step=0)
            assert np.allclose(u0, u)
            read.read(u0, 'v', step=0)
            assert np.allclose(u0, v)
    T.destroy()

def test_4D(backend, forward_output):
    if backend == 'netcdf4':
        assert forward_output is False
    T = PFFT(comm, (N[0], N[1], N[2], N[3]))
    d0 = ((0, np.pi), (0, 2*np.pi), (0, 3*np.pi), (0, 4*np.pi))
    d1 = (np.arange(N[0], dtype=float)*1*np.pi/N[0],
          np.arange(N[1], dtype=float)*2*np.pi/N[1],
          np.arange(N[2], dtype=float)*3*np.pi/N[2],
          np.arange(N[3], dtype=float)*4*np.pi/N[3]
         )
    for i, domain in enumerate([None, d0, d1]):
        for rank in range(3):
            filename = "".join(('h5test4_{}{}{}'.format(ex[i == 0], ex[forward_output], rank),
                                ending[backend]))
            if backend == 'netcdf4':
                remove_if_exists('uv'+filename)
            u = newDistArray(T, forward_output=forward_output, rank=rank)
            v = newDistArray(T, forward_output=forward_output, rank=rank)
            h0file = writer[backend]('uv'+filename, domain=domain)
            u[:] = np.random.random(u.shape)
            v[:] = 2
            for k in range(3):
                h0file.write(k, {'u': [u, (u, [slice(None), 4, slice(None), slice(None)])],
                                 'v': [v, (v, [slice(None), slice(None), 5, 6])]})

            if not forward_output and backend == 'hdf5' and comm.Get_rank() == 0:
                generate_xdmf('uv'+filename)

            u0 = newDistArray(T, forward_output=forward_output, rank=rank)
            read = reader[backend]('uv'+filename)
            read.read(u0, 'u', step=0)
            assert np.allclose(u0, u)
            read.read(u0, 'v', step=0)
            assert np.allclose(u0, v)
    T.destroy()

if __name__ == '__main__':
    #pylint: disable=unused-import
    cleanup()
    skip = {'hdf5': False, 'netcdf4': True}
    try:
        import h5py
    except ImportError:
        skip['hdf5'] = True
    try:
        import netCDF4
    except ImportError:
        skip['netcdf4'] = True
    for bnd in ('hdf5', 'netcdf4'):
        if not skip[bnd]:
            forw_output = [False]
            if bnd == 'hdf5':
                forw_output.append(True)
            for kind in forw_output:
                test_3D(bnd, kind)
                test_2D(bnd, kind)
                if bnd == 'hdf5':
                    test_4D(bnd, kind)
    cleanup()