1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
from __future__ import print_function
from time import time
import importlib
import functools
import numpy as np
from mpi4py_fft import fftw
from mpi4py_fft.libfft import FFT
has_backend = {'fftw': True}
for backend in ('pyfftw', 'mkl_fft', 'scipy', 'numpy'):
has_backend[backend] = True
try:
importlib.import_module(backend)
except ImportError:
has_backend[backend] = False
abstol = dict(f=5e-5, d=1e-14, g=1e-14)
def allclose(a, b):
atol = abstol[a.dtype.char.lower()]
return np.allclose(a, b, rtol=0, atol=atol)
def test_libfft():
from itertools import product
dims = (1, 2, 3)
sizes = (7, 8, 9)
types = ''
for t in 'fd':
if fftw.get_fftw_lib(t):
types += t+t.upper()
for backend in ('pyfftw', 'mkl_fft', 'scipy', 'numpy', 'fftw'):
if has_backend[backend] is False:
continue
t0 = 0
for typecode in types:
for dim in dims:
for shape in product(*([sizes]*dim)):
allaxes = tuple(reversed(range(dim)))
for i in range(dim):
for j in range(i+1, dim):
for axes in (None, allaxes[i:j]):
#print(shape, axes, typecode)
fft = FFT(shape, axes, dtype=typecode, backend=backend,
planner_effort='FFTW_ESTIMATE')
A = fft.forward.input_array
B = fft.forward.output_array
A[...] = np.random.random(A.shape).astype(typecode)
X = A.copy()
B.fill(0)
t0 -= time()
B = fft.forward(A, B)
t0 += time()
A.fill(0)
t0 -= time()
A = fft.backward(B, A)
t0 += time()
assert allclose(A, X)
print('backend: ', backend, t0)
# Padding is different because the physical space is padded and as such
# difficult to initialize. We solve this problem by making one extra
# transform
for backend in ('pyfftw', 'mkl_fft', 'scipy', 'numpy', 'fftw'):
if has_backend[backend] is False:
continue
for padding in (1.5, 2.0):
for typecode in types:
for dim in dims:
for shape in product(*([sizes]*dim)):
allaxes = tuple(reversed(range(dim)))
for i in range(dim):
axis = allaxes[i]
axis -= len(shape)
shape = list(shape)
shape[axis] = int(shape[axis]*padding)
#print(shape, axis, typecode, backend)
fft = FFT(shape, axis, dtype=typecode, backend=backend,
padding=padding, planner_effort='FFTW_ESTIMATE')
A = fft.forward.input_array
B = fft.forward.output_array
A[...] = np.random.random(A.shape).astype(typecode)
B.fill(0)
B = fft.forward(A, B)
X = B.copy()
A.fill(0)
A = fft.backward(B, A)
B.fill(0)
B = fft.forward(A, B)
assert allclose(B, X), np.linalg.norm(B-X)
for backend in ('pyfftw', 'mkl_fft', 'scipy', 'numpy', 'fftw'):
if has_backend[backend] is False:
continue
if backend == 'fftw':
dctn = functools.partial(fftw.dctn, type=3)
idctn = functools.partial(fftw.idctn, type=3)
transforms = {(1,): (dctn, idctn),
(0, 1): (dctn, idctn)}
elif backend == 'pyfftw':
import pyfftw
transforms = {(1,): (pyfftw.builders.rfftn, pyfftw.builders.irfftn),
(0, 1): (pyfftw.builders.rfftn, pyfftw.builders.irfftn)}
elif backend == 'numpy':
transforms = {(1,): (np.fft.rfftn, np.fft.irfftn),
(0, 1): (np.fft.rfftn, np.fft.irfftn)}
elif backend == 'mkl_fft':
import mkl_fft
transforms = {(1,): (mkl_fft._numpy_fft.rfftn, mkl_fft._numpy_fft.irfftn),
(0, 1): (mkl_fft._numpy_fft.rfftn, mkl_fft._numpy_fft.irfftn)}
elif backend == 'scipy':
from scipy.fftpack import fftn, ifftn
transforms = {(1,): (fftn, ifftn),
(0, 1): (fftn, ifftn)}
for axis in ((1,), (0, 1)):
fft = FFT(shape, axis, backend=backend, transforms=transforms)
A = fft.forward.input_array
B = fft.forward.output_array
A[...] = np.random.random(A.shape)
X = A.copy()
B.fill(0)
B = fft.forward(A, B)
A.fill(0)
A = fft.backward(B, A)
assert allclose(A, X)
if __name__ == '__main__':
test_libfft()
|