File: test_mpifft.py

package info (click to toggle)
mpi4py-fft 2.0.6-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 720 kB
  • sloc: python: 3,053; ansic: 87; makefile: 42; sh: 33
file content (256 lines) | stat: -rw-r--r-- 12,840 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from __future__ import print_function
import functools
import numpy as np
from mpi4py import MPI
from mpi4py_fft.mpifft import PFFT
from mpi4py_fft.pencil import Subcomm
from mpi4py_fft.distarray import newDistArray
from mpi4py_fft import fftw

backends = ['fftw']
try:
    import pyfftw
    backends.append('pyfftw')
except ImportError:
    pass

abstol = dict(f=0.1, d=2e-10, g=1e-10)

def allclose(a, b):
    atol = abstol[a.dtype.char.lower()]
    return np.allclose(a, b, rtol=0, atol=atol)

def random_like(array):
    shape = array.shape
    dtype = array.dtype
    return np.random.random(shape).astype(dtype)

def random_true_or_false(comm):
    r = 0
    if comm.rank == 0:
        r = np.random.randint(2)
    r = comm.bcast(r)
    return r

def test_r2r():
    N = (5, 6, 7, 8, 9)
    assert MPI.COMM_WORLD.Get_size() < 6
    dctn = functools.partial(fftw.dctn, type=3)
    idctn = functools.partial(fftw.idctn, type=3)
    dstn = functools.partial(fftw.dstn, type=3)
    idstn = functools.partial(fftw.idstn, type=3)
    fft = PFFT(MPI.COMM_WORLD, N, axes=((0,), (1, 2), (3, 4)), grid=(-1,),
               transforms={(1, 2): (dctn, idctn), (3, 4): (dstn, idstn)})

    A = newDistArray(fft, forward_output=False)
    A[:] = np.random.random(A.shape)
    C = fftw.aligned_like(A)
    B = fft.forward(A)
    C = fft.backward(B, C)
    assert np.allclose(A, C)

def test_mpifft():
    from itertools import product

    comm = MPI.COMM_WORLD
    dims = (2, 3, 4,)
    sizes = (12, 13)
    assert MPI.COMM_WORLD.Get_size() < 8, "due to sizes"
    types = ''
    for t in 'fdg':
        if fftw.get_fftw_lib(t):
            types += t+t.upper()

    grids = {2: (None,),
             3: ((-1,), None),
             4: ((-1,), None)}

    for typecode in types:
        for dim in dims:
            for shape in product(*([sizes]*dim)):

                if dim < 3:
                    n = min(shape)
                    if typecode in 'fdg':
                        n //= 2
                        n += 1
                    if n < comm.size:
                        continue
                for grid in grids[dim]:
                    padding = False
                    for collapse in (True, False):
                        for backend in backends:
                            transforms = None
                            if dim < 3:
                                allaxes = [None, (-1,), (-2,),
                                           (-1, -2,), (-2, -1),
                                           (-1, 0), (0, -1),
                                           ((0,), (1,))]
                            elif dim < 4:
                                allaxes = [None, ((0,), (1, 2)),
                                           ((0,), (-2, -1))]
                            elif dim > 3:
                                allaxes = [None, ((0,), (1,), (2,), (3,)),
                                           ((0,), (1, 2, 3)),
                                           ((0,), (1,), (2, 3))]
                                dctn = functools.partial(fftw.dctn, type=3)
                                idctn = functools.partial(fftw.idctn, type=3)

                                if not typecode in 'FDG':
                                    if backend == 'pyfftw':
                                        transforms = {(3,): (pyfftw.builders.rfftn, pyfftw.builders.irfftn),
                                                      (2, 3): (pyfftw.builders.rfftn, pyfftw.builders.irfftn),
                                                      (1, 2, 3): (pyfftw.builders.rfftn, pyfftw.builders.irfftn),
                                                      (0, 1, 2, 3): (pyfftw.builders.rfftn, pyfftw.builders.irfftn)}
                                    else:
                                        transforms = {(3,): (dctn, idctn),
                                                      (2, 3): (dctn, idctn),
                                                      (1, 2, 3): (dctn, idctn),
                                                      (0, 1, 2, 3): (dctn, idctn)}
                            for axes in allaxes:
                                # Test also the slab is number interface
                                _grid = grid
                                if grid is not None:
                                    ax = -1
                                    if axes is not None:
                                        ax = axes[-1] if isinstance(axes[-1], int) else axes[-1][-1]
                                    _slab = (ax+1) % len(shape)
                                    _grid = [1]*(_slab+1)
                                    _grid[_slab] = 0
                                _comm = comm
                                # Test also the comm is Subcomm interfaces
                                # For PFFT the Subcomm needs to be as long as shape
                                if len(shape) > 2 and axes is None and grid is None:
                                    _dims = [0] * len(shape)
                                    _dims[-1] = 1 # distribute all but last axis (axes is None)
                                    _comm = comm
                                    if random_true_or_false(comm) == 1:
                                        # then test Subcomm with a MPI.CART argument
                                        _dims = MPI.Compute_dims(comm.Get_size(), _dims)
                                        _comm = comm.Create_cart(_dims)
                                        _dims = None
                                    _comm = Subcomm(_comm, _dims)
                                #print(typecode, shape, axes, collapse, _grid)
                                fft = PFFT(_comm, shape, axes=axes, dtype=typecode,
                                           padding=padding, grid=_grid, collapse=collapse,
                                           backend=backend, transforms=transforms)

                                #if comm.rank == 0:
                                #    grid_ = [c.size for c in fft.subcomm]
                                #    print('grid:{} shape:{} typecode:{} backend:{} axes:{}'
                                #          .format(grid_, shape, typecode, backend, axes))

                                assert fft.dtype(True) == fft.forward.output_array.dtype
                                assert fft.dtype(False) == fft.forward.input_array.dtype
                                assert len(fft.axes) == len(fft.xfftn)
                                assert len(fft.axes) == len(fft.transfer) + 1
                                assert (fft.forward.input_pencil.subshape ==
                                        fft.forward.input_array.shape)
                                assert (fft.forward.output_pencil.subshape ==
                                        fft.forward.output_array.shape)
                                assert (fft.backward.input_pencil.subshape ==
                                        fft.backward.input_array.shape)
                                assert (fft.backward.output_pencil.subshape ==
                                        fft.backward.output_array.shape)
                                assert np.all(np.array(fft.global_shape(True)) == np.array(fft.forward.output_pencil.shape))
                                assert np.all(np.array(fft.global_shape(False)) == np.array(fft.forward.input_pencil.shape))
                                ax = -1 if axes is None else axes[-1] if isinstance(axes[-1], int) else axes[-1][-1]
                                assert fft.forward.input_pencil.substart[ax] == 0
                                assert fft.backward.output_pencil.substart[ax] == 0
                                ax = 0 if axes is None else axes[0] if isinstance(axes[0], int) else axes[0][0]
                                assert fft.forward.output_pencil.substart[ax] == 0
                                assert fft.backward.input_pencil.substart[ax] == 0
                                assert fft.dimensions == len(shape)

                                U = random_like(fft.forward.input_array)

                                if random_true_or_false(comm) == 1:
                                    F = fft.forward(U)
                                    V = fft.backward(F)
                                    assert allclose(V, U)
                                else:
                                    fft.forward.input_array[...] = U
                                    fft.forward()
                                    fft.backward()
                                    V = fft.backward.output_array
                                    assert allclose(V, U)

                                fft.destroy()

                    padding = [1.5]*len(shape)
                    for backend in backends:
                        if dim < 3:
                            allaxes = [None, (-1,), (-2,),
                                       (-1, -2,), (-2, -1),
                                       (-1, 0), (0, -1),
                                       ((0,), (1,))]
                        elif dim < 4:
                            allaxes = [None, ((0,), (1,), (2,)),
                                       ((0,), (-2,), (-1,))]
                        elif dim > 3:
                            allaxes = [None, (0, 1, -2, -1),
                                       ((0,), (1,), (2,), (3,))]

                        for axes in allaxes:

                            _grid = grid
                            if grid is not None:
                                ax = -1
                                if axes is not None:
                                    ax = axes[-1] if isinstance(axes[-1], int) else axes[-1][-1]
                                _slab = (ax+1) % len(shape)
                                _grid = [1]*(_slab+1)
                                _grid[_slab] = 0

                            fft = PFFT(comm, shape, axes=axes, dtype=typecode,
                                       padding=padding, grid=_grid, backend=backend)

                            #if comm.rank == 0:
                            #    grid = [c.size for c in fft.subcomm]
                            #    print('grid:{} shape:{} typecode:{} backend:{} axes:{}'
                            #          .format(grid, shape, typecode, backend, axes))

                            assert len(fft.axes) == len(fft.xfftn)
                            assert len(fft.axes) == len(fft.transfer) + 1
                            assert (fft.forward.input_pencil.subshape ==
                                    fft.forward.input_array.shape)
                            assert (fft.forward.output_pencil.subshape ==
                                    fft.forward.output_array.shape)
                            assert (fft.backward.input_pencil.subshape ==
                                    fft.backward.input_array.shape)
                            assert (fft.backward.output_pencil.subshape ==
                                    fft.backward.output_array.shape)
                            ax = -1 if axes is None else axes[-1] if isinstance(axes[-1], int) else axes[-1][-1]
                            assert fft.forward.input_pencil.substart[ax] == 0
                            assert fft.backward.output_pencil.substart[ax] == 0
                            ax = 0 if axes is None else axes[0] if isinstance(axes[0], int) else axes[0][0]
                            assert fft.forward.output_pencil.substart[ax] == 0
                            assert fft.backward.input_pencil.substart[ax] == 0

                            U = random_like(fft.forward.input_array)
                            F = fft.forward(U)

                            if random_true_or_false(comm) == 1:
                                Fc = F.copy()
                                V = fft.backward(F)
                                F = fft.forward(V)
                                assert allclose(F, Fc)
                            else:
                                fft.backward.input_array[...] = F
                                fft.backward()
                                fft.forward()
                                V = fft.forward.output_array
                                assert allclose(F, V)

                                # Test normalization on backward transform instead of default
                                fft.backward.input_array[...] = F
                                fft.backward(normalize=True)
                                fft.forward(normalize=False)
                                V = fft.forward.output_array
                                assert allclose(F, V)

                            fft.destroy()

if __name__ == '__main__':
    test_mpifft()
    test_r2r()