1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
.. _tutorial:
Tutorial
========
.. warning::
Under construction. Contributions very welcome!
*MPI for Python* supports convenient, *pickle*-based communication of
generic Python object as well as fast, near C-speed, direct array data
communication of buffer-provider objects (e.g., NumPy arrays).
* Communication of generic Python objects
You have to use **all-lowercase** methods (of the :class:`Comm`
class), like :meth:`send()`, :meth:`recv()`, :meth:`bcast()`. An
object to be sent is passed as a paramenter to the communication
call, and the received object is simply the return value.
The :meth:`isend()` and :meth:`irecv` methods return
:class:`Request` instances; completion of these methods can be
managed using the :meth:`test` and :meth:`wait` methods of the
:class:`Request` class.
The :meth:`recv` and :meth:`irecv` methods may be passed a buffer
object that can be repeatedly used to receive messages avoiding
internal memory allocation. This buffer must be sufficiently large
to accommodate the transmitted messages; hence, any buffer passed to
:meth:`recv` or :meth:`irecv` must be at least as long as the
*pickled* data transmitted to the receiver.
Collective calls like :meth:`scatter()`, :meth:`gather()`,
:meth:`allgather()`, :meth:`alltoall()` expect a single value or a
sequence of :attr:`Comm.size` elements at the root or all
process. They return a single value, a list of :attr:`Comm.size`
elements, or :const:`None`.
* Communication of buffer-like objects
You have to use method names starting with an **upper-case** letter
(of the :class:`Comm` class), like :meth:`Send()`, :meth:`Recv()`,
:meth:`Bcast()`, :meth:`Scatter()`, :meth:`Gather()`.
In general, buffer arguments to these calls must be explicitly
specified by using a 2/3-list/tuple like ``[data, MPI.DOUBLE]``, or
``[data, count, MPI.DOUBLE]`` (the former one uses the byte-size of
``data`` and the extent of the MPI datatype to define the
``count``).
Automatic MPI datatype discovery for NumPy arrays and PEP-3118
buffers is supported, but limited to basic C types (all C/C99-native
signed/unsigned integral types and single/double precision
real/complex floating types) and availability of matching datatypes
in the underlying MPI implementation. In this case, the
buffer-provider object can be passed directly as a buffer argument,
the count and MPI datatype will be inferred.
Point-to-Point Communication
----------------------------
* Python objects (:mod:`pickle` under the hood)::
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:
data = {'a': 7, 'b': 3.14}
comm.send(data, dest=1, tag=11)
elif rank == 1:
data = comm.recv(source=0, tag=11)
* Python objects with non-blocking communication::
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:
data = {'a': 7, 'b': 3.14}
req = comm.isend(data, dest=1, tag=11)
req.wait()
elif rank == 1:
req = comm.irecv(source=0, tag=11)
data = req.wait()
* NumPy arrays (the fast way!)::
from mpi4py import MPI
import numpy
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
# passing MPI datatypes explicitly
if rank == 0:
data = numpy.arange(1000, dtype='i')
comm.Send([data, MPI.INT], dest=1, tag=77)
elif rank == 1:
data = numpy.empty(1000, dtype='i')
comm.Recv([data, MPI.INT], source=0, tag=77)
# automatic MPI datatype discovery
if rank == 0:
data = numpy.arange(100, dtype=numpy.float64)
comm.Send(data, dest=1, tag=13)
elif rank == 1:
data = numpy.empty(100, dtype=numpy.float64)
comm.Recv(data, source=0, tag=13)
Collective Communication
------------------------
* Broadcasting a Python dictionary::
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:
data = {'key1' : [7, 2.72, 2+3j],
'key2' : ( 'abc', 'xyz')}
else:
data = None
data = comm.bcast(data, root=0)
* Scattering Python objects::
from mpi4py import MPI
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
if rank == 0:
data = [(i+1)**2 for i in range(size)]
else:
data = None
data = comm.scatter(data, root=0)
assert data == (rank+1)**2
* Gathering Python objects::
from mpi4py import MPI
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
data = (rank+1)**2
data = comm.gather(data, root=0)
if rank == 0:
for i in range(size):
assert data[i] == (i+1)**2
else:
assert data is None
* Broadcasting a NumPy array::
from mpi4py import MPI
import numpy as np
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:
data = np.arange(100, dtype='i')
else:
data = np.empty(100, dtype='i')
comm.Bcast(data, root=0)
for i in range(100):
assert data[i] == i
* Scattering NumPy arrays::
from mpi4py import MPI
import numpy as np
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
sendbuf = None
if rank == 0:
sendbuf = np.empty([size, 100], dtype='i')
sendbuf.T[:,:] = range(size)
recvbuf = np.empty(100, dtype='i')
comm.Scatter(sendbuf, recvbuf, root=0)
assert np.allclose(recvbuf, rank)
* Gathering NumPy arrays::
from mpi4py import MPI
import numpy as np
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
sendbuf = np.zeros(100, dtype='i') + rank
recvbuf = None
if rank == 0:
recvbuf = np.empty([size, 100], dtype='i')
comm.Gather(sendbuf, recvbuf, root=0)
if rank == 0:
for i in range(size):
assert np.allclose(recvbuf[i,:], i)
* Parallel matrix-vector product::
from mpi4py import MPI
import numpy
def matvec(comm, A, x):
m = A.shape[0] # local rows
p = comm.Get_size()
xg = numpy.zeros(m*p, dtype='d')
comm.Allgather([x, MPI.DOUBLE],
[xg, MPI.DOUBLE])
y = numpy.dot(A, xg)
return y
MPI-IO
------
* Collective I/O with NumPy arrays::
from mpi4py import MPI
import numpy as np
amode = MPI.MODE_WRONLY|MPI.MODE_CREATE
comm = MPI.COMM_WORLD
fh = MPI.File.Open(comm, "./datafile.contig", amode)
buffer = np.empty(10, dtype=np.int)
buffer[:] = comm.Get_rank()
offset = comm.Get_rank()*buffer.nbytes
fh.Write_at_all(offset, buffer)
fh.Close()
* Non-contiguous Collective I/O with NumPy arrays and datatypes::
from mpi4py import MPI
import numpy as np
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
amode = MPI.MODE_WRONLY|MPI.MODE_CREATE
fh = MPI.File.Open(comm, "./datafile.noncontig", amode)
item_count = 10
buffer = np.empty(item_count, dtype='i')
buffer[:] = rank
filetype = MPI.INT.Create_vector(item_count, 1, size)
filetype.Commit()
displacement = MPI.INT.Get_size()*rank
fh.Set_view(displacement, filetype=filetype)
fh.Write_all(buffer)
filetype.Free()
fh.Close()
Dynamic Process Management
--------------------------
* Compute Pi - Master (or parent, or client) side::
#!/usr/bin/env python
from mpi4py import MPI
import numpy
import sys
comm = MPI.COMM_SELF.Spawn(sys.executable,
args=['cpi.py'],
maxprocs=5)
N = numpy.array(100, 'i')
comm.Bcast([N, MPI.INT], root=MPI.ROOT)
PI = numpy.array(0.0, 'd')
comm.Reduce(None, [PI, MPI.DOUBLE],
op=MPI.SUM, root=MPI.ROOT)
print(PI)
comm.Disconnect()
* Compute Pi - Worker (or child, or server) side::
#!/usr/bin/env python
from mpi4py import MPI
import numpy
comm = MPI.Comm.Get_parent()
size = comm.Get_size()
rank = comm.Get_rank()
N = numpy.array(0, dtype='i')
comm.Bcast([N, MPI.INT], root=0)
h = 1.0 / N; s = 0.0
for i in range(rank, N, size):
x = h * (i + 0.5)
s += 4.0 / (1.0 + x**2)
PI = numpy.array(s * h, dtype='d')
comm.Reduce([PI, MPI.DOUBLE], None,
op=MPI.SUM, root=0)
comm.Disconnect()
Wrapping with SWIG
------------------
* C source:
.. sourcecode:: c
/* file: helloworld.c */
void sayhello(MPI_Comm comm)
{
int size, rank;
MPI_Comm_size(comm, &size);
MPI_Comm_rank(comm, &rank);
printf("Hello, World! "
"I am process %d of %d.\n",
rank, size);
}
* SWIG interface file:
.. sourcecode:: c
// file: helloworld.i
%module helloworld
%{
#include <mpi.h>
#include "helloworld.c"
}%
%include mpi4py/mpi4py.i
%mpi4py_typemap(Comm, MPI_Comm);
void sayhello(MPI_Comm comm);
* Try it in the Python prompt::
>>> from mpi4py import MPI
>>> import helloworld
>>> helloworld.sayhello(MPI.COMM_WORLD)
Hello, World! I am process 0 of 1.
Wrapping with F2Py
------------------
* Fortran 90 source:
.. sourcecode:: fortran
! file: helloworld.f90
subroutine sayhello(comm)
use mpi
implicit none
integer :: comm, rank, size, ierr
call MPI_Comm_size(comm, size, ierr)
call MPI_Comm_rank(comm, rank, ierr)
print *, 'Hello, World! I am process ',rank,' of ',size,'.'
end subroutine sayhello
* Try it in the Python prompt::
>>> from mpi4py import MPI
>>> import helloworld
>>> fcomm = MPI.COMM_WORLD.py2f()
>>> helloworld.sayhello(fcomm)
Hello, World! I am process 0 of 1.
|