File: mpi4py.1

package info (click to toggle)
mpi4py 3.0.3-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,428 kB
  • sloc: python: 18,672; javascript: 9,118; ansic: 7,092; makefile: 567; sh: 183; f90: 158; cpp: 103
file content (2483 lines) | stat: -rw-r--r-- 82,625 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
.\" Man page generated from reStructuredText.
.
.TH "MPI4PY" "1" "Nov 04, 2019" "3.0" "MPI for Python"
.SH NAME
mpi4py \- MPI for Python
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.INDENT 0.0
.TP
.B Author
Lisandro Dalcin
.TP
.B Contact
\fI\%dalcinl@gmail.com\fP
.TP
.B Web Site
\fI\%https://bitbucket.org/mpi4py/mpi4py\fP
.TP
.B Date
Nov 04, 2019
.UNINDENT
.SS Abstract
.sp
This document describes the \fIMPI for Python\fP package.  \fIMPI for
Python\fP provides bindings of the \fIMessage Passing Interface\fP (MPI)
standard for the Python programming language, allowing any Python
program to exploit multiple processors.
.sp
This package is constructed on top of the MPI\-1/2/3 specifications
and provides an object oriented interface which resembles the
MPI\-2 C++ bindings. It supports point\-to\-point (sends, receives)
and collective (broadcasts, scatters, gathers) communications of
any \fIpicklable\fP Python object, as well as optimized communications
of Python object exposing the single\-segment buffer interface
(NumPy arrays, builtin bytes/string/array objects)
.SH INTRODUCTION
.sp
Over the last years, high performance computing has become an
affordable resource to many more researchers in the scientific
community than ever before. The conjunction of quality open source
software and commodity hardware strongly influenced the now widespread
popularity of \fI\%Beowulf\fP class clusters and cluster of workstations.
.sp
Among many parallel computational models, message\-passing has proven
to be an effective one.  This paradigm is specially suited for (but
not limited to) distributed memory architectures and is used in
today’s most demanding scientific and engineering application related
to modeling, simulation, design, and signal processing.  However,
portable message\-passing parallel programming used to be a nightmare
in the past because of the many incompatible options developers were
faced to.  Fortunately, this situation definitely changed after the
MPI Forum released its standard specification.
.sp
High performance computing is traditionally associated with software
development using compiled languages. However, in typical applications
programs, only a small part of the code is time\-critical enough to
require the efficiency of compiled languages. The rest of the code is
generally related to memory management, error handling, input/output,
and user interaction, and those are usually the most error prone and
time\-consuming lines of code to write and debug in the whole
development process.  Interpreted high\-level languages can be really
advantageous for this kind of tasks.
.sp
For implementing general\-purpose numerical computations, MATLAB [1]
is the dominant interpreted programming language. In the open source
side, Octave and Scilab are well known, freely distributed software
packages providing compatibility with the MATLAB language. In this
work, we present MPI for Python, a new package enabling applications
to exploit multiple processors using standard MPI “look and feel” in
Python scripts.
.IP [1] 5
MATLAB is a registered trademark of The MathWorks, Inc.
.SS What is MPI?
.sp
\fI\%MPI\fP, [mpi\-using] [mpi\-ref] the \fIMessage Passing Interface\fP, is a
standardized and portable message\-passing system designed to function
on a wide variety of parallel computers. The standard defines the
syntax and semantics of library routines and allows users to write
portable programs in the main scientific programming languages
(Fortran, C, or C++).
.sp
Since its release, the MPI specification [mpi\-std1] [mpi\-std2] has
become the leading standard for message\-passing libraries for parallel
computers.  Implementations are available from vendors of
high\-performance computers and from well known open source projects
like \fI\%MPICH\fP [mpi\-mpich] and \fI\%Open MPI\fP [mpi\-openmpi]\&.
.SS What is Python?
.sp
\fI\%Python\fP is a modern, easy to learn, powerful programming language. It
has efficient high\-level data structures and a simple but effective
approach to object\-oriented programming with dynamic typing and
dynamic binding. It supports modules and packages, which encourages
program modularity and code reuse. Python’s elegant syntax, together
with its interpreted nature, make it an ideal language for scripting
and rapid application development in many areas on most platforms.
.sp
The Python interpreter and the extensive standard library are
available in source or binary form without charge for all major
platforms, and can be freely distributed. It is easily extended with
new functions and data types implemented in C or C++. Python is also
suitable as an extension language for customizable applications.
.sp
Python is an ideal candidate for writing the higher\-level parts of
large\-scale scientific applications [Hinsen97] and driving
simulations in parallel architectures [Beazley97] like clusters of
PC’s or SMP’s. Python codes are quickly developed, easily maintained,
and can achieve a high degree of integration with other libraries
written in compiled languages.
.SS Related Projects
.sp
As this work started and evolved, some ideas were borrowed from well
known MPI and Python related open source projects from the Internet.
.INDENT 0.0
.IP \(bu 2
\fI\%OOMPI\fP
.INDENT 2.0
.IP \(bu 2
It has not relation with Python, but is an excellent object
oriented approach to MPI.
.IP \(bu 2
It is a C++ class library specification layered on top of the C
bindings that encapsulates MPI into a functional class hierarchy.
.IP \(bu 2
It provides a flexible and intuitive interface by adding some
abstractions, like \fIPorts\fP and \fIMessages\fP, which enrich and
simplify the syntax.
.UNINDENT
.IP \(bu 2
\fI\%Pypar\fP
.INDENT 2.0
.IP \(bu 2
Its interface is rather minimal. There is no support for
communicators or process topologies.
.IP \(bu 2
It does not require the Python interpreter to be modified or
recompiled, but does not permit interactive parallel runs.
.IP \(bu 2
General (\fIpicklable\fP) Python objects of any type can be
communicated. There is good support for numeric arrays,
practically full MPI bandwidth can be achieved.
.UNINDENT
.IP \(bu 2
\fI\%pyMPI\fP
.INDENT 2.0
.IP \(bu 2
It rebuilds the Python interpreter providing a built\-in module
for message passing. It does permit interactive parallel runs,
which are useful for learning and debugging.
.IP \(bu 2
It provides an interface suitable for basic parallel programing.
There is not full support for defining new communicators or process
topologies.
.IP \(bu 2
General (picklable) Python objects can be messaged between
processors. There is not support for numeric arrays.
.UNINDENT
.IP \(bu 2
\fI\%Scientific Python\fP
.INDENT 2.0
.IP \(bu 2
It provides a collection of Python modules that are
useful for scientific computing.
.IP \(bu 2
There is an interface to MPI and BSP (\fIBulk Synchronous Parallel
programming\fP).
.IP \(bu 2
The interface is simple but incomplete and does not resemble
the MPI specification. There is support for numeric arrays.
.UNINDENT
.UNINDENT
.sp
Additionally, we would like to mention some available tools for
scientific computing and software development with Python.
.INDENT 0.0
.IP \(bu 2
\fI\%NumPy\fP is a package that provides array manipulation and
computational capabilities similar to those found in IDL, MATLAB, or
Octave. Using NumPy, it is possible to write many efficient
numerical data processing applications directly in Python without
using any C, C++ or Fortran code.
.IP \(bu 2
\fI\%SciPy\fP is an open source library of scientific tools for Python,
gathering a variety of high level science and engineering modules
together as a single package. It includes modules for graphics and
plotting, optimization, integration, special functions, signal and
image processing, genetic algorithms, ODE solvers, and others.
.IP \(bu 2
\fI\%Cython\fP is a language that makes writing C extensions for the
Python language as easy as Python itself. The Cython language is
very close to the Python language, but Cython additionally supports
calling C functions and declaring C types on variables and class
attributes. This allows the compiler to generate very efficient C
code from Cython code. This makes Cython the ideal language for
wrapping for external C libraries, and for fast C modules that speed
up the execution of Python code.
.IP \(bu 2
\fI\%SWIG\fP is a software development tool that connects programs
written in C and C++ with a variety of high\-level programming
languages like Perl, Tcl/Tk, Ruby and Python. Issuing header files
to SWIG is the simplest approach to interfacing C/C++ libraries from
a Python module.
.UNINDENT
.IP [mpi-std1] 5
MPI Forum. MPI: A Message Passing Interface Standard.
International Journal of Supercomputer Applications, volume 8,
number 3\-4, pages 159\-416, 1994.
.IP [mpi-std2] 5
MPI Forum. MPI: A Message Passing Interface Standard.
High Performance Computing Applications, volume 12, number 1\-2,
pages 1\-299, 1998.
.IP [mpi-using] 5
William Gropp, Ewing Lusk, and Anthony Skjellum.  Using
MPI: portable parallel programming with the message\-passing
interface.  MIT Press, 1994.
.IP [mpi-ref] 5
Mark Snir, Steve Otto, Steven Huss\-Lederman, David
Walker, and Jack Dongarra.  MPI \- The Complete Reference, volume 1,
The MPI Core.  MIT Press, 2nd. edition, 1998.
.IP [mpi-mpich] 5
W. Gropp, E. Lusk, N. Doss, and A. Skjellum.  A
high\-performance, portable implementation of the MPI message
passing interface standard.  Parallel Computing, 22(6):789\-828,
September 1996.
.IP [mpi-openmpi] 5
Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara
Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay,
Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph
H. Castain, David J. Daniel, Richard L. Graham, and Timothy
S. Woodall. Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004.
.IP [Hinsen97] 5
Konrad Hinsen.  The Molecular Modelling Toolkit: a case
study of a large scientific application in Python.  In Proceedings
of the 6th International Python Conference, pages 29\-35, San Jose,
Ca., October 1997.
.IP [Beazley97] 5
David M. Beazley and Peter S. Lomdahl.  Feeding a
large\-scale physics application to Python.  In Proceedings of the
6th International Python Conference, pages 21\-29, San Jose, Ca.,
October 1997.
.SH OVERVIEW
.sp
MPI for Python provides an object oriented approach to message passing
which grounds on the standard MPI\-2 C++ bindings. The interface was
designed with focus in translating MPI syntax and semantics of
standard MPI\-2 bindings for C++ to Python. Any user of the standard
C/C++ MPI bindings should be able to use this module without need of
learning a new interface.
.SS Communicating Python Objects and Array Data
.sp
The Python standard library supports different mechanisms for data
persistence. Many of them rely on disk storage, but \fIpickling\fP and
\fImarshaling\fP can also work with memory buffers.
.sp
The \fI\%pickle\fP modules provide user\-extensible facilities to
serialize general Python objects using ASCII or binary formats. The
\fI\%marshal\fP module provides facilities to serialize built\-in Python
objects using a binary format specific to Python, but independent of
machine architecture issues.
.sp
\fIMPI for Python\fP can communicate any built\-in or user\-defined Python
object taking advantage of the features provided by the \fI\%pickle\fP
module. These facilities will be routinely used to build binary
representations of objects to communicate (at sending processes), and
restoring them back (at receiving processes).
.sp
Although simple and general, the serialization approach (i.e.,
\fIpickling\fP and \fIunpickling\fP) previously discussed imposes important
overheads in memory as well as processor usage, especially in the
scenario of objects with large memory footprints being
communicated. Pickling general Python objects, ranging from primitive
or container built\-in types to user\-defined classes, necessarily
requires computer resources.  Processing is also needed for
dispatching the appropriate serialization method (that depends on the
type of the object) and doing the actual packing. Additional memory is
always needed, and if its total amount is not known \fIa priori\fP, many
reallocations can occur.  Indeed, in the case of large numeric arrays,
this is certainly unacceptable and precludes communication of objects
occupying half or more of the available memory resources.
.sp
\fIMPI for Python\fP supports direct communication of any object exporting
the single\-segment buffer interface. This interface is a standard
Python mechanism provided by some types (e.g., strings and numeric
arrays), allowing access in the C side to a contiguous memory buffer
(i.e., address and length) containing the relevant data. This feature,
in conjunction with the capability of constructing user\-defined MPI
datatypes describing complicated memory layouts, enables the
implementation of many algorithms involving multidimensional numeric
arrays (e.g., image processing, fast Fourier transforms, finite
difference schemes on structured Cartesian grids) directly in Python,
with negligible overhead, and almost as fast as compiled Fortran, C,
or C++ codes.
.SS Communicators
.sp
In \fIMPI for Python\fP, \fBMPI.Comm\fP is the base class of
communicators. The \fBMPI.Intracomm\fP and \fBMPI.Intercomm\fP
classes are sublcasses of the \fBMPI.Comm\fP class.  The
\fBMPI.Comm.Is_inter()\fP method (and \fBMPI.Comm.Is_intra()\fP,
provided for convenience but not part of the MPI specification) is
defined for communicator objects and can be used to determine the
particular communicator class.
.sp
The two predefined intracommunicator instances are available:
\fBMPI.COMM_SELF\fP and \fBMPI.COMM_WORLD\fP\&. From them, new
communicators can be created as needed.
.sp
The number of processes in a communicator and the calling process rank
can be respectively obtained with methods \fBMPI.Comm.Get_size()\fP
and \fBMPI.Comm.Get_rank()\fP\&. The associated process group can be
retrieved from a communicator by calling the
\fBMPI.Comm.Get_group()\fP method, which returns an instance of the
\fBMPI.Group\fP class. Set operations with \fBMPI.Group\fP
objects like like \fBMPI.Group.Union()\fP, \fBMPI.Group.Intersect()\fP
and \fBMPI.Group.Difference()\fP are fully supported, as well as the
creation of new communicators from these groups using
\fBMPI.Comm.Create()\fP and \fBMPI.Comm.Create_group()\fP\&.
.sp
New communicator instances can be obtained with the
\fBMPI.Comm.Clone()\fP, \fBMPI.Comm.Dup()\fP and
\fBMPI.Comm.Split()\fP methods, as well methods
\fBMPI.Intracomm.Create_intercomm()\fP and
\fBMPI.Intercomm.Merge()\fP\&.
.sp
Virtual topologies (\fBMPI.Cartcomm\fP, \fBMPI.Graphcomm\fP and
\fBMPI.Distgraphcomm\fP classes, which are specializations of the
\fBMPI.Intracomm\fP class) are fully supported. New instances can
be obtained from intracommunicator instances with factory methods
\fBMPI.Intracomm.Create_cart()\fP and
\fBMPI.Intracomm.Create_graph()\fP\&.
.SS Point\-to\-Point Communications
.sp
Point to point communication is a fundamental capability of message
passing systems. This mechanism enables the transmission of data
between a pair of processes, one side sending, the other receiving.
.sp
MPI provides a set of \fIsend\fP and \fIreceive\fP functions allowing the
communication of \fItyped\fP data with an associated \fItag\fP\&.  The type
information enables the conversion of data representation from one
architecture to another in the case of heterogeneous computing
environments; additionally, it allows the representation of
non\-contiguous data layouts and user\-defined datatypes, thus avoiding
the overhead of (otherwise unavoidable) packing/unpacking
operations. The tag information allows selectivity of messages at the
receiving end.
.SS Blocking Communications
.sp
MPI provides basic send and receive functions that are \fIblocking\fP\&.
These functions block the caller until the data buffers involved in
the communication can be safely reused by the application program.
.sp
In \fIMPI for Python\fP, the \fBMPI.Comm.Send()\fP, \fBMPI.Comm.Recv()\fP
and \fBMPI.Comm.Sendrecv()\fP methods of communicator objects provide
support for blocking point\-to\-point communications within
\fBMPI.Intracomm\fP and \fBMPI.Intercomm\fP instances. These
methods can communicate memory buffers. The variants
\fBMPI.Comm.send()\fP, \fBMPI.Comm.recv()\fP and
\fBMPI.Comm.sendrecv()\fP can communicate general Python objects.
.SS Nonblocking Communications
.sp
On many systems, performance can be significantly increased by
overlapping communication and computation. This is particularly true
on systems where communication can be executed autonomously by an
intelligent, dedicated communication controller.
.sp
MPI provides \fInonblocking\fP send and receive functions. They allow the
possible overlap of communication and computation.  Non\-blocking
communication always come in two parts: posting functions, which begin
the requested operation; and test\-for\-completion functions, which
allow to discover whether the requested operation has completed.
.sp
In \fIMPI for Python\fP, the \fBMPI.Comm.Isend()\fP and
\fBMPI.Comm.Irecv()\fP methods initiate send and receive operations,
respectively. These methods return a \fBMPI.Request\fP instance,
uniquely identifying the started operation.  Its completion can be
managed using the \fBMPI.Request.Test()\fP, \fBMPI.Request.Wait()\fP
and \fBMPI.Request.Cancel()\fP methods. The management of
\fBMPI.Request\fP objects and associated memory buffers involved in
communication requires a careful, rather low\-level coordination. Users
must ensure that objects exposing their memory buffers are not
accessed at the Python level while they are involved in nonblocking
message\-passing operations.
.SS Persistent Communications
.sp
Often a communication with the same argument list is repeatedly
executed within an inner loop. In such cases, communication can be
further optimized by using persistent communication, a particular case
of nonblocking communication allowing the reduction of the overhead
between processes and communication controllers. Furthermore , this
kind of optimization can also alleviate the extra call overheads
associated to interpreted, dynamic languages like Python.
.sp
In \fIMPI for Python\fP, the \fBMPI.Comm.Send_init()\fP and
\fBMPI.Comm.Recv_init()\fP methods create persistent requests for a
send and receive operation, respectively.  These methods return an
instance of the \fBMPI.Prequest\fP class, a subclass of the
\fBMPI.Request\fP class. The actual communication can be
effectively started using the \fBMPI.Prequest.Start()\fP method, and
its completion can be managed as previously described.
.SS Collective Communications
.sp
Collective communications allow the transmittal of data between
multiple processes of a group simultaneously. The syntax and semantics
of collective functions is consistent with point\-to\-point
communication. Collective functions communicate \fItyped\fP data, but
messages are not paired with an associated \fItag\fP; selectivity of
messages is implied in the calling order. Additionally, collective
functions come in blocking versions only.
.sp
The more commonly used collective communication operations are the
following.
.INDENT 0.0
.IP \(bu 2
Barrier synchronization across all group members.
.IP \(bu 2
Global communication functions
.INDENT 2.0
.IP \(bu 2
Broadcast data from one member to all members of a group.
.IP \(bu 2
Gather data from all members to one member of a group.
.IP \(bu 2
Scatter data from one member to all members of a group.
.UNINDENT
.IP \(bu 2
Global reduction operations such as sum, maximum, minimum, etc.
.UNINDENT
.sp
In \fIMPI for Python\fP, the \fBMPI.Comm.Bcast()\fP,
\fBMPI.Comm.Scatter()\fP, \fBMPI.Comm.Gather()\fP,
\fBMPI.Comm.Allgather()\fP, and \fBMPI.Comm.Alltoall()\fP
\fBMPI.Comm.Alltoallw()\fP methods provide support for collective
communications of memory buffers. The lower\-case variants
\fBMPI.Comm.bcast()\fP, \fBMPI.Comm.scatter()\fP,
\fBMPI.Comm.gather()\fP, \fBMPI.Comm.allgather()\fP and
\fBMPI.Comm.alltoall()\fP can communicate general Python objects.  The
vector variants (which can communicate different amounts of data to
each process) \fBMPI.Comm.Scatterv()\fP, \fBMPI.Comm.Gatherv()\fP,
\fBMPI.Comm.Allgatherv()\fP, \fBMPI.Comm.Alltoallv()\fP and
\fBMPI.Comm.Alltoallw()\fP are also supported, they can only
communicate objects exposing memory buffers.
.sp
Global reduction operations on memory buffers are accessible through
the \fBMPI.Comm.Reduce()\fP, \fIMPI.Comm.Reduce_scatter\fP,
\fBMPI.Comm.Allreduce()\fP, \fBMPI.Intracomm.Scan()\fP and
\fBMPI.Intracomm.Exscan()\fP methods. The lower\-case variants
\fBMPI.Comm.reduce()\fP, \fBMPI.Comm.allreduce()\fP,
\fBMPI.Intracomm.scan()\fP and \fBMPI.Intracomm.exscan()\fP can
communicate general Python objects; however, the actual required
reduction computations are performed sequentially at some process. All
the predefined (i.e., \fBMPI.SUM\fP, \fBMPI.PROD\fP,
\fBMPI.MAX\fP, etc.)  reduction operations can be applied.
.SS Dynamic Process Management
.sp
In the context of the MPI\-1 specification, a parallel application is
static; that is, no processes can be added to or deleted from a
running application after it has been started. Fortunately, this
limitation was addressed in MPI\-2. The new specification added a
process management model providing a basic interface between an
application and external resources and process managers.
.sp
This MPI\-2 extension can be really useful, especially for sequential
applications built on top of parallel modules, or parallel
applications with a client/server model. The MPI\-2 process model
provides a mechanism to create new processes and establish
communication between them and the existing MPI application. It also
provides mechanisms to establish communication between two existing
MPI applications, even when one did not \fIstart\fP the other.
.sp
In \fIMPI for Python\fP, new independent process groups can be created by
calling the \fBMPI.Intracomm.Spawn()\fP method within an
intracommunicator.  This call returns a new intercommunicator (i.e.,
an \fBMPI.Intercomm\fP instance) at the parent process group. The
child process group can retrieve the matching intercommunicator by
calling the \fBMPI.Comm.Get_parent()\fP class method. At each side,
the new intercommunicator can be used to perform point to point and
collective communications between the parent and child groups of
processes.
.sp
Alternatively, disjoint groups of processes can establish
communication using a client/server approach. Any server application
must first call the \fBMPI.Open_port()\fP function to open a \fIport\fP
and the \fBMPI.Publish_name()\fP function to publish a provided
\fIservice\fP, and next call the \fBMPI.Intracomm.Accept()\fP method.  Any
client applications can first find a published \fIservice\fP by calling
the \fBMPI.Lookup_name()\fP function, which returns the \fIport\fP where a
server can be contacted; and next call the
\fBMPI.Intracomm.Connect()\fP method. Both
\fBMPI.Intracomm.Accept()\fP and \fBMPI.Intracomm.Connect()\fP methods
return an \fBMPI.Intercomm\fP instance. When connection between
client/server processes is no longer needed, all of them must
cooperatively call the \fBMPI.Comm.Disconnect()\fP
method. Additionally, server applications should release resources by
calling the \fBMPI.Unpublish_name()\fP and \fBMPI.Close_port()\fP
functions.
.SS One\-Sided Communications
.sp
One\-sided communications (also called \fIRemote Memory Access\fP, \fIRMA\fP)
supplements the traditional two\-sided, send/receive based MPI
communication model with a one\-sided, put/get based
interface. One\-sided communication that can take advantage of the
capabilities of highly specialized network hardware. Additionally,
this extension lowers latency and software overhead in applications
written using a shared\-memory\-like paradigm.
.sp
The MPI specification revolves around the use of objects called
\fIwindows\fP; they intuitively specify regions of a process’s memory that
have been made available for remote read and write operations.  The
published memory blocks can be accessed through three functions for
put (remote send), get (remote write), and accumulate (remote update
or reduction) data items. A much larger number of functions support
different synchronization styles; the semantics of these
synchronization operations are fairly complex.
.sp
In \fIMPI for Python\fP, one\-sided operations are available by using
instances of the \fBMPI.Win\fP class. New window objects are
created by calling the \fBMPI.Win.Create()\fP method at all processes
within a communicator and specifying a memory buffer . When a window
instance is no longer needed, the \fBMPI.Win.Free()\fP method should
be called.
.sp
The three one\-sided MPI operations for remote write, read and
reduction are available through calling the methods
\fBMPI.Win.Put()\fP, \fBMPI.Win.Get()\fP, and
\fBMPI.Win.Accumulate()\fP respectively within a \fBWin\fP
instance.  These methods need an integer rank identifying the target
process and an integer offset relative the base address of the remote
memory block being accessed.
.sp
The one\-sided operations read, write, and reduction are implicitly
nonblocking, and must be synchronized by using two primary modes.
Active target synchronization requires the origin process to call the
\fBMPI.Win.Start()\fP and \fBMPI.Win.Complete()\fP methods at the
origin process, and target process cooperates by calling the
\fBMPI.Win.Post()\fP and \fBMPI.Win.Wait()\fP methods. There is also a
collective variant provided by the \fBMPI.Win.Fence()\fP
method. Passive target synchronization is more lenient, only the
origin process calls the \fBMPI.Win.Lock()\fP and
\fBMPI.Win.Unlock()\fP methods. Locks are used to protect remote
accesses to the locked remote window and to protect local load/store
accesses to a locked local window.
.SS Parallel Input/Output
.sp
The POSIX standard provides a model of a widely portable file
system. However, the optimization needed for parallel input/output
cannot be achieved with this generic interface. In order to ensure
efficiency and scalability, the underlying parallel input/output
system must provide a high\-level interface supporting partitioning of
file data among processes and a collective interface supporting
complete transfers of global data structures between process memories
and files. Additionally, further efficiencies can be gained via
support for asynchronous input/output, strided accesses to data, and
control over physical file layout on storage devices. This scenario
motivated the inclusion in the MPI\-2 standard of a custom interface in
order to support more elaborated parallel input/output operations.
.sp
The MPI specification for parallel input/output revolves around the
use objects called \fIfiles\fP\&. As defined by MPI, files are not just
contiguous byte streams. Instead, they are regarded as ordered
collections of \fItyped\fP data items. MPI supports sequential or random
access to any integral set of these items. Furthermore, files are
opened collectively by a group of processes.
.sp
The common patterns for accessing a shared file (broadcast, scatter,
gather, reduction) is expressed by using user\-defined datatypes.
Compared to the communication patterns of point\-to\-point and
collective communications, this approach has the advantage of added
flexibility and expressiveness. Data access operations (read and
write) are defined for different kinds of positioning (using explicit
offsets, individual file pointers, and shared file pointers),
coordination (non\-collective and collective), and synchronism
(blocking, nonblocking, and split collective with begin/end phases).
.sp
In \fIMPI for Python\fP, all MPI input/output operations are performed
through instances of the \fBMPI.File\fP class. File handles are
obtained by calling the \fBMPI.File.Open()\fP method at all processes
within a communicator and providing a file name and the intended
access mode.  After use, they must be closed by calling the
\fBMPI.File.Close()\fP method.  Files even can be deleted by calling
method \fBMPI.File.Delete()\fP\&.
.sp
After creation, files are typically associated with a per\-process
\fIview\fP\&. The view defines the current set of data visible and
accessible from an open file as an ordered set of elementary
datatypes. This data layout can be set and queried with the
\fBMPI.File.Set_view()\fP and \fBMPI.File.Get_view()\fP methods
respectively.
.sp
Actual input/output operations are achieved by many methods combining
read and write calls with different behavior regarding positioning,
coordination, and synchronism. Summing up, \fIMPI for Python\fP provides
the thirty (30) methods defined in MPI\-2 for reading from or writing
to files using explicit offsets or file pointers (individual or
shared), in blocking or nonblocking and collective or noncollective
versions.
.SS Environmental Management
.SS Initialization and Exit
.sp
Module functions \fBMPI.Init()\fP or \fBMPI.Init_thread()\fP and
\fBMPI.Finalize()\fP provide MPI initialization and finalization
respectively. Module functions \fBMPI.Is_initialized()\fP and
\fBMPI.Is_finalized()\fP provide the respective tests for
initialization and finalization.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
\fBMPI_Init()\fP or \fBMPI_Init_thread()\fP is actually
called when you import the \fBMPI\fP module from the \fBmpi4py\fP
package, but only if MPI is not already initialized. In such case,
calling \fBMPI.Init()\fP or \fBMPI.Init_thread()\fP from Python is
expected to generate an MPI error, and in turn an exception will be
raised.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
\fBMPI_Finalize()\fP is registered (by using Python C/API
function \fI\%Py_AtExit()\fP) for being automatically called when
Python processes exit, but only if \fBmpi4py\fP actually
initialized MPI. Therefore, there is no need to call
\fBMPI.Finalize()\fP from Python to ensure MPI finalization.
.UNINDENT
.UNINDENT
.SS Implementation Information
.INDENT 0.0
.IP \(bu 2
The MPI version number can be retrieved from module function
\fBMPI.Get_version()\fP\&. It returns a two\-integer tuple
\fB(version,subversion)\fP\&.
.IP \(bu 2
The \fBMPI.Get_processor_name()\fP function can be used to access
the processor name.
.IP \(bu 2
The values of predefined attributes attached to the world
communicator can be obtained by calling the
\fBMPI.Comm.Get_attr()\fP method within the \fBMPI.COMM_WORLD\fP
instance.
.UNINDENT
.SS Timers
.sp
MPI timer functionalities are available through the \fBMPI.Wtime()\fP
and \fBMPI.Wtick()\fP functions.
.SS Error Handling
.sp
In order facilitate handle sharing with other Python modules
interfacing MPI\-based parallel libraries, the predefined MPI error
handlers \fBMPI.ERRORS_RETURN\fP and \fBMPI.ERRORS_ARE_FATAL\fP
can be assigned to and retrieved from communicators, windows and files
using methods \fBMPI.{Comm|Win|File}.Set_errhandler()\fP and
\fBMPI.{Comm|Win|File}.Get_errhandler()\fP\&.
.sp
When the predefined error handler \fBMPI.ERRORS_RETURN\fP is set,
errors returned from MPI calls within Python code will raise an
instance of the exception class \fBMPI.Exception\fP, which is a
subclass of the standard Python exception \fI\%RuntimeError\fP\&.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
After import, mpi4py overrides the default MPI rules governing
inheritance of error handlers. The \fBMPI.ERRORS_RETURN\fP error
handler is set in the predefined \fBMPI.COMM_SELF\fP and
\fBMPI.COMM_WORLD\fP communicators, as well as any new
\fBMPI.Comm\fP, \fBMPI.Win\fP, or \fBMPI.File\fP instance
created through mpi4py. If you ever pass such handles to
C/C++/Fortran library code, it is recommended to set the
\fBMPI.ERRORS_ARE_FATAL\fP error handler on them to ensure MPI
errors do not pass silently.
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
Importing with \fBfrom mpi4py.MPI import *\fP will cause a name
clashing with the standard Python \fI\%Exception\fP base class.
.UNINDENT
.UNINDENT
.SH TUTORIAL
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
Under construction. Contributions very welcome!
.UNINDENT
.UNINDENT
.sp
\fIMPI for Python\fP supports convenient, \fIpickle\fP\-based communication of
generic Python object as well as fast, near C\-speed, direct array data
communication of buffer\-provider objects (e.g., NumPy arrays).
.INDENT 0.0
.IP \(bu 2
Communication of generic Python objects
.sp
You have to use \fBall\-lowercase\fP methods (of the \fBComm\fP
class), like \fBsend()\fP, \fBrecv()\fP, \fBbcast()\fP\&. An
object to be sent is passed as a paramenter to the communication
call, and the received object is simply the return value.
.sp
The \fBisend()\fP and \fBirecv()\fP methods return
\fBRequest\fP instances; completion of these methods can be
managed using the \fBtest()\fP and \fBwait()\fP methods of the
\fBRequest\fP class.
.sp
The \fBrecv()\fP and \fBirecv()\fP methods may be passed a buffer
object that can be repeatedly used to receive messages avoiding
internal memory allocation. This buffer must be sufficiently large
to accommodate the transmitted messages; hence, any buffer passed to
\fBrecv()\fP or \fBirecv()\fP must be at least as long as the
\fIpickled\fP data transmitted to the receiver.
.sp
Collective calls like \fBscatter()\fP, \fBgather()\fP,
\fBallgather()\fP, \fBalltoall()\fP expect a single value or a
sequence of \fBComm.size\fP elements at the root or all
process. They return a single value, a list of \fBComm.size\fP
elements, or \fBNone\fP\&.
.IP \(bu 2
Communication of buffer\-like objects
.sp
You have to use method names starting with an \fBupper\-case\fP letter
(of the \fBComm\fP class), like \fBSend()\fP, \fBRecv()\fP,
\fBBcast()\fP, \fBScatter()\fP, \fBGather()\fP\&.
.sp
In general, buffer arguments to these calls must be explicitly
specified by using a 2/3\-list/tuple like \fB[data, MPI.DOUBLE]\fP, or
\fB[data, count, MPI.DOUBLE]\fP (the former one uses the byte\-size of
\fBdata\fP and the extent of the MPI datatype to define \fBcount\fP).
.sp
For vector collectives communication operations like
\fBScatterv()\fP and \fBGatherv()\fP, buffer arguments are
specified as \fB[data, count, displ, datatype]\fP, where \fBcount\fP and
\fBdispl\fP are sequences of integral values.
.sp
Automatic MPI datatype discovery for NumPy arrays and PEP\-3118
buffers is supported, but limited to basic C types (all C/C99\-native
signed/unsigned integral types and single/double precision
real/complex floating types) and availability of matching datatypes
in the underlying MPI implementation. In this case, the
buffer\-provider object can be passed directly as a buffer argument,
the count and MPI datatype will be inferred.
.UNINDENT
.SS Running Python scripts with MPI
.sp
Most MPI programs can be run with the command \fBmpiexec\fP\&. In practice, running
Python programs looks like:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ mpiexec \-n 4 python script.py
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
to run the program with 4 processors.
.SS Point\-to\-Point Communication
.INDENT 0.0
.IP \(bu 2
Python objects (\fI\%pickle\fP under the hood):
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    data = {\(aqa\(aq: 7, \(aqb\(aq: 3.14}
    comm.send(data, dest=1, tag=11)
elif rank == 1:
    data = comm.recv(source=0, tag=11)
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Python objects with non\-blocking communication:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    data = {\(aqa\(aq: 7, \(aqb\(aq: 3.14}
    req = comm.isend(data, dest=1, tag=11)
    req.wait()
elif rank == 1:
    req = comm.irecv(source=0, tag=11)
    data = req.wait()
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
NumPy arrays (the fast way!):
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

# passing MPI datatypes explicitly
if rank == 0:
    data = numpy.arange(1000, dtype=\(aqi\(aq)
    comm.Send([data, MPI.INT], dest=1, tag=77)
elif rank == 1:
    data = numpy.empty(1000, dtype=\(aqi\(aq)
    comm.Recv([data, MPI.INT], source=0, tag=77)

# automatic MPI datatype discovery
if rank == 0:
    data = numpy.arange(100, dtype=numpy.float64)
    comm.Send(data, dest=1, tag=13)
elif rank == 1:
    data = numpy.empty(100, dtype=numpy.float64)
    comm.Recv(data, source=0, tag=13)
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SS Collective Communication
.INDENT 0.0
.IP \(bu 2
Broadcasting a Python dictionary:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    data = {\(aqkey1\(aq : [7, 2.72, 2+3j],
            \(aqkey2\(aq : ( \(aqabc\(aq, \(aqxyz\(aq)}
else:
    data = None
data = comm.bcast(data, root=0)
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Scattering Python objects:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

if rank == 0:
    data = [(i+1)**2 for i in range(size)]
else:
    data = None
data = comm.scatter(data, root=0)
assert data == (rank+1)**2
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Gathering Python objects:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

data = (rank+1)**2
data = comm.gather(data, root=0)
if rank == 0:
    for i in range(size):
        assert data[i] == (i+1)**2
else:
    assert data is None
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Broadcasting a NumPy array:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    data = np.arange(100, dtype=\(aqi\(aq)
else:
    data = np.empty(100, dtype=\(aqi\(aq)
comm.Bcast(data, root=0)
for i in range(100):
    assert data[i] == i
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Scattering NumPy arrays:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

sendbuf = None
if rank == 0:
    sendbuf = np.empty([size, 100], dtype=\(aqi\(aq)
    sendbuf.T[:,:] = range(size)
recvbuf = np.empty(100, dtype=\(aqi\(aq)
comm.Scatter(sendbuf, recvbuf, root=0)
assert np.allclose(recvbuf, rank)
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Gathering NumPy arrays:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

sendbuf = np.zeros(100, dtype=\(aqi\(aq) + rank
recvbuf = None
if rank == 0:
    recvbuf = np.empty([size, 100], dtype=\(aqi\(aq)
comm.Gather(sendbuf, recvbuf, root=0)
if rank == 0:
    for i in range(size):
        assert np.allclose(recvbuf[i,:], i)
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Parallel matrix\-vector product:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI
import numpy

def matvec(comm, A, x):
    m = A.shape[0] # local rows
    p = comm.Get_size()
    xg = numpy.zeros(m*p, dtype=\(aqd\(aq)
    comm.Allgather([x,  MPI.DOUBLE],
                   [xg, MPI.DOUBLE])
    y = numpy.dot(A, xg)
    return y
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SS MPI\-IO
.INDENT 0.0
.IP \(bu 2
Collective I/O with NumPy arrays:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI
import numpy as np

amode = MPI.MODE_WRONLY|MPI.MODE_CREATE
comm = MPI.COMM_WORLD
fh = MPI.File.Open(comm, "./datafile.contig", amode)

buffer = np.empty(10, dtype=np.int)
buffer[:] = comm.Get_rank()

offset = comm.Get_rank()*buffer.nbytes
fh.Write_at_all(offset, buffer)

fh.Close()
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Non\-contiguous Collective I/O with NumPy arrays and datatypes:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

amode = MPI.MODE_WRONLY|MPI.MODE_CREATE
fh = MPI.File.Open(comm, "./datafile.noncontig", amode)

item_count = 10

buffer = np.empty(item_count, dtype=\(aqi\(aq)
buffer[:] = rank

filetype = MPI.INT.Create_vector(item_count, 1, size)
filetype.Commit()

displacement = MPI.INT.Get_size()*rank
fh.Set_view(displacement, filetype=filetype)

fh.Write_all(buffer)
filetype.Free()
fh.Close()
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SS Dynamic Process Management
.INDENT 0.0
.IP \(bu 2
Compute Pi \- Master (or parent, or client) side:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
#!/usr/bin/env python
from mpi4py import MPI
import numpy
import sys

comm = MPI.COMM_SELF.Spawn(sys.executable,
                           args=[\(aqcpi.py\(aq],
                           maxprocs=5)

N = numpy.array(100, \(aqi\(aq)
comm.Bcast([N, MPI.INT], root=MPI.ROOT)
PI = numpy.array(0.0, \(aqd\(aq)
comm.Reduce(None, [PI, MPI.DOUBLE],
            op=MPI.SUM, root=MPI.ROOT)
print(PI)

comm.Disconnect()
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Compute Pi \- Worker (or child, or server) side:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
#!/usr/bin/env python
from mpi4py import MPI
import numpy

comm = MPI.Comm.Get_parent()
size = comm.Get_size()
rank = comm.Get_rank()

N = numpy.array(0, dtype=\(aqi\(aq)
comm.Bcast([N, MPI.INT], root=0)
h = 1.0 / N; s = 0.0
for i in range(rank, N, size):
    x = h * (i + 0.5)
    s += 4.0 / (1.0 + x**2)
PI = numpy.array(s * h, dtype=\(aqd\(aq)
comm.Reduce([PI, MPI.DOUBLE], None,
            op=MPI.SUM, root=0)

comm.Disconnect()
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SS Wrapping with SWIG
.INDENT 0.0
.IP \(bu 2
C source:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
/* file: helloworld.c */
void sayhello(MPI_Comm comm)
{
  int size, rank;
  MPI_Comm_size(comm, &size);
  MPI_Comm_rank(comm, &rank);
  printf("Hello, World! "
         "I am process %d of %d.\en",
         rank, size);
}
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
SWIG interface file:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
// file: helloworld.i
%module helloworld
%{
#include <mpi.h>
#include "helloworld.c"
}%

%include mpi4py/mpi4py.i
%mpi4py_typemap(Comm, MPI_Comm);
void sayhello(MPI_Comm comm);
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Try it in the Python prompt:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
>>> from mpi4py import MPI
>>> import helloworld
>>> helloworld.sayhello(MPI.COMM_WORLD)
Hello, World! I am process 0 of 1.
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SS Wrapping with F2Py
.INDENT 0.0
.IP \(bu 2
Fortran 90 source:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
! file: helloworld.f90
subroutine sayhello(comm)
  use mpi
  implicit none
  integer :: comm, rank, size, ierr
  call MPI_Comm_size(comm, size, ierr)
  call MPI_Comm_rank(comm, rank, ierr)
  print *, \(aqHello, World! I am process \(aq,rank,\(aq of \(aq,size,\(aq.\(aq
end subroutine sayhello
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Compiling example using f2py
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
$ f2py \-c \-\-f90exec=mpif90 helloworld.f90 \-m helloworld
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Try it in the Python prompt:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
>>> from mpi4py import MPI
>>> import helloworld
>>> fcomm = MPI.COMM_WORLD.py2f()
>>> helloworld.sayhello(fcomm)
Hello, World! I am process 0 of 1.
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.SH MPI4PY.FUTURES
.sp
New in version 3.0.0.

.sp
This package provides a high\-level interface for asynchronously executing
callables on a pool of worker processes using MPI for inter\-process
communication.
.SS concurrent.futures
.sp
The \fI\%mpi4py.futures\fP package is based on \fI\%concurrent.futures\fP from
the Python standard library. More precisely, \fI\%mpi4py.futures\fP provides the
\fI\%MPIPoolExecutor\fP class as a concrete implementation of the abstract
class \fI\%Executor\fP\&.  The
\fI\%submit()\fP interface schedules a callable to
be executed asynchronously and returns a \fI\%Future\fP
object representing the execution of the callable.
\fI\%Future\fP instances can be queried for the call
result or exception. Sets of \fI\%Future\fP instances can
be passed to the \fI\%wait()\fP and
\fI\%as_completed()\fP functions.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
The \fI\%concurrent.futures\fP package was introduced in Python 3.2. A
\fI\%backport\fP targeting Python 2.7 is available on \fI\%PyPI\fP\&. The \fI\%mpi4py.futures\fP package uses
\fI\%concurrent.futures\fP if available, either from the Python 3 standard
library or the Python 2.7 backport if installed. Otherwise,
\fI\%mpi4py.futures\fP uses a bundled copy of core functionality backported
from Python 3.5 to work with Python 2.7.
.UNINDENT
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.TP
.B Module \fI\%concurrent.futures\fP
Documentation of the \fI\%concurrent.futures\fP standard module.
.UNINDENT
.UNINDENT
.UNINDENT
.SS MPIPoolExecutor
.sp
The \fI\%MPIPoolExecutor\fP class uses a pool of MPI processes to execute
calls asynchronously. By performing computations in separate processes, it
allows to side\-step the \fI\%Global Interpreter Lock\fP but also means that
only picklable objects can be executed and returned. The \fB__main__\fP module
must be importable by worker processes, thus \fI\%MPIPoolExecutor\fP instances
may not work in the interactive interpreter.
.sp
\fI\%MPIPoolExecutor\fP takes advantage of the dynamic process management
features introduced in the MPI\-2 standard. In particular, the
\fBMPI.Intracomm.Spawn()\fP method of \fBMPI.COMM_SELF()\fP is used in the
master (or parent) process to spawn new worker (or child) processes running a
Python interpreter. The master process uses a separate thread (one for each
\fI\%MPIPoolExecutor\fP instance) to communicate back and forth with the
workers.  The worker processes serve the execution of tasks in the main (and
only) thread until they are signaled for completion.
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
The worker processes must import the main script in order to \fIunpickle\fP any
callable defined in the \fI\%__main__\fP module and submitted from the master
process. Furthermore, the callables may need access to other global
variables. At the worker processes,:mod:\fImpi4py.futures\fP executes the main
script code (using the \fI\%runpy\fP module) under the \fB__worker__\fP
namespace to define the \fI\%__main__\fP module. The \fI\%__main__\fP and
\fB__worker__\fP modules are added to \fI\%sys.modules\fP (both at the
master and worker processes) to ensure proper \fIpickling\fP and \fIunpickling\fP\&.
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
During the initial import phase at the workers, the main script cannot
create and use new \fI\%MPIPoolExecutor\fP instances. Otherwise, each
worker would attempt to spawn a new pool of workers, leading to infinite
recursion. \fI\%mpi4py.futures\fP detects such recursive attempts to spawn
new workers and aborts the MPI execution environment. As the main script
code is run under the \fB__worker__\fP namespace, the easiest way to avoid
spawn recursion is using the idiom \fBif __name__ == \(aq__main__\(aq: ...\fP in
the main script.
.UNINDENT
.UNINDENT
.INDENT 0.0
.TP
.B class mpi4py.futures.MPIPoolExecutor(max_workers=None, **kwargs)
An \fI\%Executor\fP subclass that executes calls
asynchronously using a pool of at most \fImax_workers\fP processes.  If
\fImax_workers\fP is \fBNone\fP or not given, its value is determined from the
\fBMPI4PY_MAX_WORKERS\fP environment variable if set, or the MPI
universe size if set, otherwise a single worker process is spawned.  If
\fImax_workers\fP is lower than or equal to \fB0\fP, then a \fI\%ValueError\fP will
be raised.
.sp
Other parameters:
.INDENT 7.0
.IP \(bu 2
\fIpython_exe\fP: Path to the Python interpreter executable used to spawn
worker processes, otherwise \fI\%sys.executable\fP is used.
.IP \(bu 2
\fIpython_args\fP: \fI\%list\fP or iterable with additional command line
flags to pass to the Python executable. Command line flags determined from
inspection of \fI\%sys.flags\fP, \fI\%sys.warnoptions\fP and
\fI\%sys._xoptions\fP in are passed unconditionally.
.IP \(bu 2
\fImpi_info\fP: \fI\%dict\fP or iterable yielding \fB(key, value)\fP pairs.
These \fB(key, value)\fP pairs are passed (through an \fBMPI.Info\fP
object) to the \fBMPI.Intracomm.Spawn()\fP call used to spawn worker
processes. This mechanism allows telling the MPI runtime system where and
how to start the processes. Check the documentation of the backend MPI
implementation about the set of keys it interprets and the corresponding
format for values.
.IP \(bu 2
\fIglobals\fP: \fI\%dict\fP or iterable yielding \fB(name, value)\fP pairs to
initialize the main module namespace in worker processes.
.IP \(bu 2
\fImain\fP: If set to \fBFalse\fP, do not import the \fB__main__\fP module in
worker processes. Setting \fImain\fP to \fBFalse\fP prevents worker processes
from accessing definitions in the parent \fB__main__\fP namespace.
.IP \(bu 2
\fIpath\fP: \fI\%list\fP or iterable with paths to append to \fI\%sys.path\fP
in worker processes to extend the \fI\%module search path\fP\&.
.IP \(bu 2
\fIwdir\fP: Path to set the current working directory in worker processes
using \fI\%os.chdir()\fP\&. The initial working directory is set by the MPI
implementation. Quality MPI implementations should honor a \fBwdir\fP info
key passed through \fImpi_info\fP, although such feature is not mandatory.
.IP \(bu 2
\fIenv\fP: \fI\%dict\fP or iterable yielding \fB(name, value)\fP pairs with
environment variables to update \fI\%os.environ\fP in worker processes.
The initial environment is set by the MPI implementation. MPI
implementations may allow setting the initial environment through
\fImpi_info\fP, however such feature is not required nor recommended by the
MPI standard.
.UNINDENT
.INDENT 7.0
.TP
.B submit(func, *args, **kwargs)
Schedule the callable, \fIfunc\fP, to be executed as \fBfunc(*args,
**kwargs)\fP and returns a \fI\%Future\fP object
representing the execution of the callable.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
executor = MPIPoolExecutor(max_workers=1)
future = executor.submit(pow, 321, 1234)
print(future.result())
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 7.0
.TP
.B map(func, *iterables, timeout=None, chunksize=1, **kwargs)
Equivalent to \fI\%map(func, *iterables)\fP except \fIfunc\fP is
executed asynchronously and several calls to \fIfunc\fP may be made
concurrently, out\-of\-order, in separate processes.  The returned iterator
raises a \fI\%TimeoutError\fP if
\fI\%__next__()\fP is called and the result isn’t available after
\fItimeout\fP seconds from the original call to \fI\%map()\fP\&.
\fItimeout\fP can be an int or a float.  If \fItimeout\fP is not specified or
\fBNone\fP, there is no limit to the wait time.  If a call raises an
exception, then that exception will be raised when its value is retrieved
from the iterator. This method chops \fIiterables\fP into a number of chunks
which it submits to the pool as separate tasks. The (approximate) size of
these chunks can be specified by setting \fIchunksize\fP to a positive
integer. For very long iterables, using a large value for \fIchunksize\fP can
significantly improve performance compared to the default size of one. By
default, the returned iterator yields results in\-order, waiting for
successive tasks to complete . This behavior can be changed by passing
the keyword argument \fIunordered\fP as \fBTrue\fP, then the result iterator
will yield a result as soon as any of the tasks complete.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
executor = MPIPoolExecutor(max_workers=3)
for result in executor.map(pow, [2]*32, range(32)):
    print(result)
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 7.0
.TP
.B starmap(func, iterable, timeout=None, chunksize=1, **kwargs)
Equivalent to \fI\%itertools.starmap(func, iterable)\fP\&. Used instead of \fI\%map()\fP when
argument parameters are already grouped in tuples from a single iterable
(the data has been “pre\-zipped”). \fI\%map(func, *iterable)\fP is
equivalent to \fI\%starmap(func, zip(*iterable))\fP\&.
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
executor = MPIPoolExecutor(max_workers=3)
iterable = ((2, n) for n in range(32))
for result in executor.starmap(pow, iterable):
    print(result)
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 7.0
.TP
.B shutdown(wait=True)
Signal the executor that it should free any resources that it is using
when the currently pending futures are done executing.  Calls to
\fI\%submit()\fP and \fI\%map()\fP made
after \fI\%shutdown()\fP will raise \fI\%RuntimeError\fP\&.
.sp
If \fIwait\fP is \fBTrue\fP then this method will not return until all the
pending futures are done executing and the resources associated with the
executor have been freed.  If \fIwait\fP is \fBFalse\fP then this method will
return immediately and the resources associated with the executor will be
freed when all pending futures are done executing.  Regardless of the
value of \fIwait\fP, the entire Python program will not exit until all
pending futures are done executing.
.sp
You can avoid having to call this method explicitly if you use the
\fI\%with\fP statement, which will shutdown the executor instance
(waiting as if \fI\%shutdown()\fP were called with \fIwait\fP
set to \fBTrue\fP).
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
import time
with MPIPoolExecutor(max_workers=1) as executor:
    future = executor.submit(time.sleep, 2)
assert future.done()
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.INDENT 7.0
.TP
.B bootup(wait=True)
Signal the executor that it should allocate eagerly any required
resources (in particular, MPI worker processes). If \fIwait\fP is \fBTrue\fP,
then \fI\%bootup()\fP will not return until the executor
resources are ready to process submissions.  Resources are automatically
allocated in the first call to \fI\%submit()\fP, thus
calling \fI\%bootup()\fP explicitly is seldom needed.
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
As the master process uses a separate thread to perform MPI communication
with the workers, the backend MPI implementation should provide support for
\fBMPI.THREAD_MULTIPLE\fP\&. However, some popular MPI implementations do
not support yet concurrent MPI calls from multiple threads. Additionally,
users may decide to initialize MPI with a lower level of thread support. If
the level of thread support in the backend MPI is less than
\fBMPI.THREAD_MULTIPLE\fP, \fI\%mpi4py.futures\fP will use a global lock
to serialize MPI calls. If the level of thread support is less than
\fBMPI.THREAD_SERIALIZED\fP, \fI\%mpi4py.futures\fP will emit a
\fI\%RuntimeWarning\fP\&.
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
If the level of thread support in the backend MPI is less than
\fBMPI.THREAD_SERIALIZED\fP (i.e, it is either \fBMPI.THREAD_SINGLE\fP
or \fBMPI.THREAD_FUNNELED\fP), in theory \fI\%mpi4py.futures\fP cannot be
used. Rather than raising an exception, \fI\%mpi4py.futures\fP emits a
warning and takes a “cross\-fingers” attitude to continue execution in the
hope that serializing MPI calls with a global lock will actually work.
.UNINDENT
.UNINDENT
.SS MPICommExecutor
.sp
Legacy MPI\-1 implementations (as well as some vendor MPI\-2 implementations) do
not support the dynamic process management features introduced in the MPI\-2
standard. Additionally, job schedulers and batch systems in supercomputing
facilities may pose additional complications to applications using the
\fBMPI_Comm_spawn()\fP routine.
.sp
With these issues in mind, \fI\%mpi4py.futures\fP supports an additonal, more
traditional, SPMD\-like usage pattern requiring MPI\-1 calls only. Python
applications are started the usual way, e.g., using the \fBmpiexec\fP
command. Python code should make a collective call to the
\fI\%MPICommExecutor\fP context manager to partition the set of MPI processes
within a MPI communicator in one master processes and many workers
processes. The master process gets access to an \fI\%MPIPoolExecutor\fP
instance to submit tasks. Meanwhile, the worker process follow a different
execution path and team\-up to execute the tasks submitted from the master.
.sp
Besides alleviating the lack of dynamic process managment features in legacy
MPI\-1 or partial MPI\-2 implementations, the \fI\%MPICommExecutor\fP context
manager may be useful in classic MPI\-based Python applications willing to take
advantage of the simple, task\-based, master/worker approach available in the
\fI\%mpi4py.futures\fP package.
.INDENT 0.0
.TP
.B class mpi4py.futures.MPICommExecutor(comm=None, root=0)
Context manager for \fI\%MPIPoolExecutor\fP\&. This context manager splits a
MPI (intra)communicator \fIcomm\fP (defaults to \fBMPI.COMM_WORLD\fP if not
provided or \fBNone\fP) in two disjoint sets: a single master process (with
rank \fIroot\fP in \fIcomm\fP) and the remaining worker processes. These sets are
then connected through an intercommunicator.  The target of the
\fI\%with\fP statement is assigned either an \fI\%MPIPoolExecutor\fP
instance (at the master) or \fBNone\fP (at the workers).
.INDENT 7.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI
from mpi4py.futures import MPICommExecutor

with MPICommExecutor(MPI.COMM_WORLD, root=0) as executor:
    if executor is not None:
       future = executor.submit(abs, \-42)
       assert future.result() == 42
       answer = set(executor.map(abs, [\-42, 42]))
       assert answer == {42}
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
If \fI\%MPICommExecutor\fP is passed a communicator of size one (e.g.,
\fBMPI.COMM_SELF\fP), then the executor instace assigned to the target of
the \fI\%with\fP statement will execute all submitted tasks in a single
worker thread, thus ensuring that task execution still progress
asynchronously. However, the \fI\%GIL\fP will prevent the main and worker
threads from running concurrently in multicore processors. Moreover, the
thread context switching may harm noticeably the performance of CPU\-bound
tasks. In case of I/O\-bound tasks, the \fI\%GIL\fP is not usually an issue,
however, as a single worker thread is used, it progress one task at a
time. We advice against using \fI\%MPICommExecutor\fP with communicators of
size one and suggest refactoring your code to use instead a
\fI\%ThreadPoolExecutor\fP\&.
.UNINDENT
.UNINDENT
.SS Command line
.sp
Recalling the issues related to the lack of support for dynamic process
managment features in MPI implementations, \fI\%mpi4py.futures\fP supports an
alternative usage pattern where Python code (either from scripts, modules, or
zip files) is run under command line control of the \fI\%mpi4py.futures\fP
package by passing \fB\-m mpi4py.futures\fP to the \fBpython\fP
executable.  The \fBmpi4py.futures\fP invocation should be passed a \fIpyfile\fP path
to a script (or a zipfile/directory containing a \fB__main__.py\fP file).
Additionally, \fBmpi4py.futures\fP accepts \fB\-m \fP\fImod\fP to execute a module
named \fImod\fP, \fB\-c \fP\fIcmd\fP to execute a command string \fIcmd\fP, or even
\fB\-\fP to read commands from standard input (\fI\%sys.stdin\fP).
Summarizing, \fBmpi4py.futures\fP can be invoked in the following ways:
.INDENT 0.0
.IP \(bu 2
\fB$ mpiexec \-n \fP\fInumprocs\fP\fB python \-m mpi4py.futures \fP\fIpyfile\fP\fB [arg] ...\fP
.IP \(bu 2
\fB$ mpiexec \-n \fP\fInumprocs\fP\fB python \-m mpi4py.futures \-m \fP\fImod\fP\fB [arg] ...\fP
.IP \(bu 2
\fB$ mpiexec \-n \fP\fInumprocs\fP\fB python \-m mpi4py.futures \-c \fP\fIcmd\fP\fB [arg] ...\fP
.IP \(bu 2
\fB$ mpiexec \-n \fP\fInumprocs\fP\fB python \-m mpi4py.futures \- [arg] ...\fP
.UNINDENT
.sp
Before starting the main script execution, \fI\%mpi4py.futures\fP splits
\fBMPI.COMM_WORLD\fP in one master (the process with rank 0 in
\fBMPI.COMM_WORLD\fP) and 16 workers and connect them through an MPI
intercommunicator. Afterwards, the master process proceeds with the execution
of the user script code, which eventually creates \fI\%MPIPoolExecutor\fP
instances to submit tasks. Meanwhile, the worker processes follow a different
execution path to serve the master.  Upon successful termination of the main
script at the master, the entire MPI execution environment exists
gracefully. In case of any unhandled exception in the main script, the master
process calls \fBMPI.COMM_WORLD.Abort(1)\fP to prevent deadlocks and force
termination of entire MPI execution environment.
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
Running scripts under command line control of \fI\%mpi4py.futures\fP is quite
similar to executing a single\-process application that spawn additional
workers as required. However, there is a very important difference users
should be aware of. All \fI\%MPIPoolExecutor\fP instances created at the
master will share the pool of workers. Tasks submitted at the master from
many different executors will be scheduled for execution in random order as
soon as a worker is idle. Any executor can easily starve all the workers
(e.g., by calling \fI\%MPIPoolExecutor.map()\fP with long iterables). If that
ever happens, submissions from other executors will not be serviced until
free workers are available.
.UNINDENT
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.TP
.B \fI\%Command line\fP
Documentation on Python command line interface.
.UNINDENT
.UNINDENT
.UNINDENT
.SS Examples
.sp
The following \fBjulia.py\fP script computes the \fI\%Julia set\fP and dumps an
image to disk in binary \fI\%PGM\fP format. The code starts by importing
\fI\%MPIPoolExecutor\fP from the \fI\%mpi4py.futures\fP package. Next, some
global constants and functions implement the computation of the Julia set. The
computations are protected with the standard \fBif __name__ == \(aq__main__\(aq:
...\fP idiom.  The image is computed by whole scanlines submitting all these
tasks at once using the \fI\%map\fP method. The result
iterator yields scanlines in\-order as the tasks complete. Finally, each
scanline is dumped to disk.
\fBjulia.py\fP.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py.futures import MPIPoolExecutor

x0, x1, w = \-2.0, +2.0, 640*2
y0, y1, h = \-1.5, +1.5, 480*2
dx = (x1 \- x0) / w
dy = (y1 \- y0) / h

c = complex(0, 0.65)

def julia(x, y):
    z = complex(x, y)
    n = 255
    while abs(z) < 3 and n > 1:
        z = z**2 + c
        n \-= 1
    return n

def julia_line(k):
    line = bytearray(w)
    y = y1 \- k * dy
    for j in range(w):
        x = x0 + j * dx
        line[j] = julia(x, y)
    return line

if __name__ == \(aq__main__\(aq:

    with MPIPoolExecutor() as executor:
        image = executor.map(julia_line, range(h))
        with open(\(aqjulia.pgm\(aq, \(aqwb\(aq) as f:
            f.write(b\(aqP5 %d %d %d\en\(aq % (w, h, 255))
            for line in image:
                f.write(line)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The recommended way to execute the script is using the \fBmpiexec\fP
command specifying one MPI process and (optional but recommended) the desired
MPI universe size [1]\&.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ mpiexec \-n 1 \-usize 17 python julia.py
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The \fBmpiexec\fP command launches a single MPI process (the master)
running the Python interpreter and executing the main script. When required,
\fI\%mpi4py.futures\fP spawns 16 additional MPI processes (the children) to
dynamically allocate the pool of workers. The master submits tasks to the
children and waits for the results. The children receive incoming tasks,
execute them, and send back the results to the master.
.sp
Alternatively, users may decide to execute the script in a more traditional
way, that is, all the MPI process are started at once. The user script is run
under command line control of \fI\%mpi4py.futures\fP passing the \fI\%\-m\fP flag to the \fBpython\fP executable.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ mpiexec \-n 17 python \-m mpi4py.futures julia.py
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
As explained previously, the 17 processes are partitioned in one master and 16
workers. The master process executes the main script while the workers execute
the tasks submitted from the master.
.IP [1] 5
This \fBmpiexec\fP invocation example using the \fB\-usize\fP flag
(alternatively, setting the \fBMPIEXEC_UNIVERSE_SIZE\fP environment
variable) assumes the backend MPI implementation is an MPICH derivative
using the Hydra process manager. In the Open MPI implementation, the MPI
universe size can be specified by setting the \fBOMPI_UNIVERSE_SIZE\fP
environment variable to a positive integer.  Check the documentation of your
actual MPI implementation and/or batch system for the ways to specify the
desired MPI universe size.
.SH MPI4PY.RUN
.sp
New in version 3.0.0.

.sp
At import time, \fBmpi4py\fP initializes the MPI execution environment calling
\fBMPI_Init_thread()\fP and installs an exit hook to automatically call
\fBMPI_Finalize()\fP just before the Python process terminates. Additionally,
\fBmpi4py\fP overrides the default \fBMPI.ERRORS_ARE_FATAL\fP error handler
in favor of \fBMPI.ERRORS_RETURN\fP, which allows translating MPI errors in
Python exceptions. These departures from standard MPI behavior may be
controversial, but are quite convenient within the highly dynamic Python
programming environment. Third\-party code using \fBmpi4py\fP can just \fBfrom
mpi4py import MPI\fP and perform MPI calls without the tedious
initialization/finalization handling.  MPI errors, once translated
automatically to Python exceptions, can be dealt with the common
\fI\%try\fP…\fI\%except\fP…\fI\%finally\fP clauses; unhandled
MPI exceptions will print a traceback which helps in locating problems in
source code.
.sp
Unfortunately, the interplay of automatic MPI finalization and unhandled
exceptions may lead to deadlocks. In unattended runs, these deadlocks will
drain the battery of your laptop, or burn precious allocation hours in your
supercomputing facility.
.sp
Consider the following snippet of Python code. Assume this code is stored in a
standard Python script file and run with \fBmpiexec\fP in two or more
processes.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
from mpi4py import MPI
assert MPI.COMM_WORLD.Get_size() > 1
rank = MPI.COMM_WORLD.Get_rank()
if rank == 0:
    1/0
    MPI.COMM_WORLD.send(None, dest=1, tag=42)
elif rank == 1:
    MPI.COMM_WORLD.recv(source=0, tag=42)
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Process 0 raises \fI\%ZeroDivisionError\fP exception before performing a send
call to process 1. As the exception is not handled, the Python interpreter
running in process 0 will proceed to exit with non\-zero status. However, as
\fBmpi4py\fP installed a finalizer hook to call \fBMPI_Finalize()\fP before
exit, process 0 will block waiting for other processes to also enter the
\fBMPI_Finalize()\fP call. Meanwhile, process 1 will block waiting for a
message to arrive from process 0, thus never reaching to
\fBMPI_Finalize()\fP\&. The whole MPI execution environment is irremediably in
a deadlock state.
.sp
To alleviate this issue, \fBmpi4py\fP offers a simple, alternative command
line execution mechanism based on using the \fI\%\-m\fP
flag and implemented with the \fI\%runpy\fP module. To use this features, Python
code should be run passing \fB\-m mpi4py\fP in the command line invoking the
Python interpreter. In case of unhandled exceptions, the finalizer hook will
call \fBMPI_Abort()\fP on the \fBMPI_COMM_WORLD\fP communicator, thus
effectively aborting the MPI execution environment.
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
When a process is forced to abort, resources (e.g. open files) are not
cleaned\-up and any registered finalizers (either with the \fI\%atexit\fP
module, the Python C/API function \fI\%Py_AtExit()\fP, or even the C
standard library function \fBatexit()\fP) will not be executed. Thus,
aborting execution is an extremely impolite way of ensuring process
termination. However, MPI provides no other mechanism to recover from a
deadlock state.
.UNINDENT
.UNINDENT
.SS Interface options
.sp
The use of \fB\-m mpi4py\fP to execute Python code on the command line resembles
that of the Python interpreter.
.INDENT 0.0
.IP \(bu 2
\fBmpiexec \-n \fP\fInumprocs\fP\fB python \-m mpi4py \fP\fIpyfile\fP\fB [arg] ...\fP
.IP \(bu 2
\fBmpiexec \-n \fP\fInumprocs\fP\fB python \-m mpi4py \-m \fP\fImod\fP\fB [arg] ...\fP
.IP \(bu 2
\fBmpiexec \-n \fP\fInumprocs\fP\fB python \-m mpi4py \-c \fP\fIcmd\fP\fB [arg] ...\fP
.IP \(bu 2
\fBmpiexec \-n \fP\fInumprocs\fP\fB python \-m mpi4py \- [arg] ...\fP
.UNINDENT
.INDENT 0.0
.TP
.B <pyfile>
Execute the Python code contained in \fIpyfile\fP, which must be a filesystem
path referring to either a Python file, a directory containing a
\fB__main__.py\fP file, or a zipfile containing a \fB__main__.py\fP
file.
.UNINDENT
.INDENT 0.0
.TP
.B \-m <mod>
Search \fI\%sys.path\fP for the named module \fImod\fP and execute its contents.
.UNINDENT
.INDENT 0.0
.TP
.B \-c <cmd>
Execute the Python code in the \fIcmd\fP string command.
.UNINDENT
.INDENT 0.0
.TP
.B \-
Read commands from standard input (\fI\%sys.stdin\fP).
.UNINDENT
.sp
\fBSEE ALSO:\fP
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.TP
.B \fI\%Command line\fP
Documentation on Python command line interface.
.UNINDENT
.UNINDENT
.UNINDENT
.SH CITATION
.sp
If MPI for Python been significant to a project that leads to an
academic publication, please acknowledge that fact by citing the
project.
.INDENT 0.0
.IP \(bu 2
L. Dalcin, P. Kler, R. Paz, and A. Cosimo,
\fIParallel Distributed Computing using Python\fP,
Advances in Water Resources, 34(9):1124\-1139, 2011.
\fI\%http://dx.doi.org/10.1016/j.advwatres.2011.04.013\fP
.IP \(bu 2
L. Dalcin, R. Paz, M. Storti, and J. D’Elia,
\fIMPI for Python: performance improvements and MPI\-2 extensions\fP,
Journal of Parallel and Distributed Computing, 68(5):655\-662, 2008.
\fI\%http://dx.doi.org/10.1016/j.jpdc.2007.09.005\fP
.IP \(bu 2
L. Dalcin, R. Paz, and M. Storti,
\fIMPI for Python\fP,
Journal of Parallel and Distributed Computing, 65(9):1108\-1115, 2005.
\fI\%http://dx.doi.org/10.1016/j.jpdc.2005.03.010\fP
.UNINDENT
.SH INSTALLATION
.SS Requirements
.sp
You need to have the following software properly installed in order to
build \fIMPI for Python\fP:
.INDENT 0.0
.IP \(bu 2
A working MPI implementation, preferably supporting MPI\-3 and built
with shared/dynamic libraries.
.sp
\fBNOTE:\fP
.INDENT 2.0
.INDENT 3.5
If you want to build some MPI implementation from sources,
check the instructions at building\-mpi in the appendix.
.UNINDENT
.UNINDENT
.IP \(bu 2
Python 2.7, 3.3 or above.
.sp
\fBNOTE:\fP
.INDENT 2.0
.INDENT 3.5
Some MPI\-1 implementations \fBdo require\fP the actual
command line arguments to be passed in \fBMPI_Init()\fP\&. In
this case, you will need to use a rebuilt, MPI\-enabled, Python
interpreter executable. \fIMPI for Python\fP has some support for
alleviating you from this task. Check the instructions at
python\-mpi in the appendix.
.UNINDENT
.UNINDENT
.UNINDENT
.SS Using \fBpip\fP or \fBeasy_install\fP
.sp
If you already have a working MPI (either if you installed it from
sources or by using a pre\-built package from your favourite GNU/Linux
distribution) and the \fBmpicc\fP compiler wrapper is on your
search path, you can use \fBpip\fP:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ [sudo] pip install mpi4py
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
or alternatively \fIsetuptools\fP \fBeasy_install\fP (deprecated):
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ [sudo] easy_install mpi4py
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBNOTE:\fP
.INDENT 0.0
.INDENT 3.5
If the \fBmpicc\fP compiler wrapper is not on your
search path (or if it has a different name) you can use
\fBenv\fP to pass the environment variable \fBMPICC\fP
providing the full path to the MPI compiler wrapper executable:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ [sudo] env MPICC=/path/to/mpicc pip install mpi4py

$ [sudo] env MPICC=/path/to/mpicc easy_install mpi4py
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.UNINDENT
.SS Using \fBdistutils\fP
.sp
The \fIMPI for Python\fP package is available for download at the project
website generously hosted by Bitbucket. You can use \fBcurl\fP
or \fBwget\fP to get a release tarball.
.INDENT 0.0
.IP \(bu 2
Using \fBcurl\fP:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
$ curl \-O https://bitbucket.org/mpi4py/mpi4py/downloads/mpi4py\-X.Y.tar.gz
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
Using \fBwget\fP:
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
$ wget https://bitbucket.org/mpi4py/mpi4py/downloads/mpi4py\-X.Y.tar.gz
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.sp
After unpacking the release tarball:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ tar \-zxf mpi4py\-X.Y.tar.gz
$ cd mpi4py\-X.Y
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
the package is ready for building.
.sp
\fIMPI for Python\fP uses a standard distutils\-based build system. However,
some distutils commands (like \fIbuild\fP) have additional options:
.INDENT 0.0
.TP
.B \-\-mpicc=
Lets you specify a special location or name for the
\fBmpicc\fP compiler wrapper.
.UNINDENT
.INDENT 0.0
.TP
.B \-\-mpi=
Lets you pass a section with MPI configuration within a special
configuration file.
.UNINDENT
.INDENT 0.0
.TP
.B \-\-configure
Runs exhaustive tests for checking about missing MPI types,
constants, and functions. This option should be passed in order to
build \fIMPI for Python\fP against old MPI\-1 or MPI\-2 implementations,
possibly providing a subset of MPI\-3.
.UNINDENT
.sp
If you use a MPI implementation providing a \fBmpicc\fP compiler
wrapper (e.g., MPICH, Open MPI), it will be used for compilation and
linking. This is the preferred and easiest way of building \fIMPI for
Python\fP\&.
.sp
If \fBmpicc\fP is located somewhere in your search path, simply
run the \fIbuild\fP command:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ python setup.py build
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
If \fBmpicc\fP is not in your search path or the compiler wrapper
has a different name, you can run the \fIbuild\fP command specifying its
location:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ python setup.py build \-\-mpicc=/where/you/have/mpicc
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Alternatively, you can provide all the relevant information about your
MPI implementation by editing the file called \fBmpi.cfg\fP\&. You can
use the default section \fB[mpi]\fP or add a new, custom section, for
example \fB[other_mpi]\fP (see the examples provided in the
\fBmpi.cfg\fP file as a starting point to write your own section):
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
[mpi]

include_dirs         = /usr/local/mpi/include
libraries            = mpi
library_dirs         = /usr/local/mpi/lib
runtime_library_dirs = /usr/local/mpi/lib

[other_mpi]

include_dirs         = /opt/mpi/include ...
libraries            = mpi ...
library_dirs         = /opt/mpi/lib ...
runtime_library_dirs = /op/mpi/lib ...

\&...
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
and then run the \fIbuild\fP command, perhaps specifying you custom
configuration section:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ python setup.py build \-\-mpi=other_mpi
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
After building, the package is ready for install.
.sp
If you have root privileges (either by log\-in as the root user of by
using \fBsudo\fP) and you want to install \fIMPI for Python\fP in
your system for all users, just do:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ python setup.py install
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The previous steps will install the \fBmpi4py\fP package at standard
location \fB\fIprefix\fP\fP\fB/lib/python\fP\fIX\fP\fB\&.\fP\fIX\fP\fB/site\-packages\fP\&.
.sp
If you do not have root privileges or you want to install \fIMPI for
Python\fP for your private use, just do:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ python setup.py install \-\-user
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Testing
.sp
To quickly test the installation:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ mpiexec \-n 5 python \-m mpi4py.bench helloworld
Hello, World! I am process 0 of 5 on localhost.
Hello, World! I am process 1 of 5 on localhost.
Hello, World! I am process 2 of 5 on localhost.
Hello, World! I am process 3 of 5 on localhost.
Hello, World! I am process 4 of 5 on localhost.
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
If you installed from source, issuing at the command line:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ mpiexec \-n 5 python demo/helloworld.py
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
or (in the case of ancient MPI\-1 implementations):
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ mpirun \-np 5 python \(gapwd\(ga/demo/helloworld.py
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
will launch a five\-process run of the Python interpreter and run the
test script \fBdemo/helloworld.py\fP from the source distribution.
.sp
You can also run all the \fIunittest\fP scripts:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ mpiexec \-n 5 python test/runtests.py
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
or, if you have \fI\%nose\fP unit testing framework installed:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ mpiexec \-n 5 nosetests \-w test
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
or, if you have \fI\%py.test\fP unit testing framework installed:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ mpiexec \-n 5 py.test test/
.ft P
.fi
.UNINDENT
.UNINDENT
.SH APPENDIX
.SS MPI\-enabled Python interpreter
.INDENT 0.0
.INDENT 3.5
.sp
\fBWARNING:\fP
.INDENT 0.0
.INDENT 3.5
These days it is no longer required to use the MPI\-enabled Python
interpreter in most cases, and, therefore, is not built by
default anymore because it is too difficult to reliably build a
Python interpreter across different distributions.  If you know
that you still \fBreally\fP need it, see below on how to use the
\fIbuild_exe\fP and \fIinstall_exe\fP commands.
.UNINDENT
.UNINDENT
.UNINDENT
.UNINDENT
.sp
Some MPI\-1 implementations (notably, MPICH 1) \fBdo require\fP the
actual command line arguments to be passed at the time
\fBMPI_Init()\fP is called. In this case, you will need to use a
re\-built, MPI\-enabled, Python interpreter binary executable. A basic
implementation (targeting Python 2.X) of what is required is shown
below:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
#include <Python.h>
#include <mpi.h>

int main(int argc, char *argv[])
{
   int status, flag;
   MPI_Init(&argc, &argv);
   status = Py_Main(argc, argv);
   MPI_Finalized(&flag);
   if (!flag) MPI_Finalize();
   return status;
}
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
The source code above is straightforward; compiling it should also
be. However, the linking step is more tricky: special flags have to be
passed to the linker depending on your platform. In order to alleviate
you for such low\-level details, \fIMPI for Python\fP provides some
pure\-distutils based support to build and install an MPI\-enabled
Python interpreter executable:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ cd mpi4py\-X.X.X
$ python setup.py build_exe [\-\-mpi=<name>|\-\-mpicc=/path/to/mpicc]
$ [sudo] python setup.py install_exe [\-\-install\-dir=$HOME/bin]
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
After the above steps you should have the MPI\-enabled interpreter
installed as \fB\fIprefix\fP\fP\fB/bin/python\fP\fIX\fP\fB\&.\fP\fIX\fP\fB\-mpi\fP (or
\fB$HOME/bin/python\fP\fIX\fP\fB\&.\fP\fIX\fP\fB\-mpi\fP). Assuming that
\fB\fIprefix\fP\fP\fB/bin\fP (or \fB$HOME/bin\fP) is listed on your
\fBPATH\fP, you should be able to enter your MPI\-enabled Python
interactively, for example:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
$ python2.7\-mpi
Python 2.7.8 (default, Nov 10 2014, 08:19:18)
[GCC 4.9.2 20141101 (Red Hat 4.9.2\-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> sys.executable
\(aq/usr/bin/python2.7\-mpi\(aq
>>>
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Building MPI from sources
.sp
In the list below you have some executive instructions for building
some of the open\-source MPI implementations out there with support for
shared/dynamic libraries on POSIX environments.
.INDENT 0.0
.IP \(bu 2
\fIMPICH\fP
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
$ tar \-zxf mpich\-X.X.X.tar.gz
$ cd mpich\-X.X.X
$ ./configure \-\-enable\-shared \-\-prefix=/usr/local/mpich
$ make
$ make install
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
\fIOpen MPI\fP
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
$ tar \-zxf openmpi\-X.X.X tar.gz
$ cd openmpi\-X.X.X
$ ./configure \-\-prefix=/usr/local/openmpi
$ make all
$ make install
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
\fIMPICH 1\fP
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
$ tar \-zxf mpich\-X.X.X.tar.gz
$ cd mpich\-X.X.X
$ ./configure \-\-enable\-sharedlib \-\-prefix=/usr/local/mpich1
$ make
$ make install
.ft P
.fi
.UNINDENT
.UNINDENT
.UNINDENT
.sp
Perhaps you will need to set the \fBLD_LIBRARY_PATH\fP
environment variable (using \fBexport\fP, \fBsetenv\fP or
what applies to your system) pointing to the directory containing the
MPI libraries . In case of getting runtime linking errors when running
MPI programs, the following lines can be added to the user login shell
script (\fB\&.profile\fP, \fB\&.bashrc\fP, etc.).
.INDENT 0.0
.IP \(bu 2
\fIMPICH\fP
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
MPI_DIR=/usr/local/mpich
export LD_LIBRARY_PATH=$MPI_DIR/lib:$LD_LIBRARY_PATH
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
\fIOpen MPI\fP
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
MPI_DIR=/usr/local/openmpi
export LD_LIBRARY_PATH=$MPI_DIR/lib:$LD_LIBRARY_PATH
.ft P
.fi
.UNINDENT
.UNINDENT
.IP \(bu 2
\fIMPICH 1\fP
.INDENT 2.0
.INDENT 3.5
.sp
.nf
.ft C
MPI_DIR=/usr/local/mpich1
export LD_LIBRARY_PATH=$MPI_DIR/lib/shared:$LD_LIBRARY_PATH:
export MPICH_USE_SHLIB=yes
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
\fBWARNING:\fP
.INDENT 2.0
.INDENT 3.5
MPICH 1 support for dynamic libraries is not completely
transparent. Users should set the environment variable
\fBMPICH_USE_SHLIB\fP to \fByes\fP in order to avoid link
problems when using the \fBmpicc\fP compiler wrapper.
.UNINDENT
.UNINDENT
.UNINDENT
.SH AUTHOR
Lisandro Dalcin
.SH COPYRIGHT
2019, Lisandro Dalcin
.\" Generated by docutils manpage writer.
.