1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
import sys
import itertools
from mpi4py import MPI
try:
import array
except ImportError:
array = None
try:
import numpy
except ImportError:
numpy = None
try:
import cupy
cupy_version = tuple(map(int, cupy.__version__.split('.', 2)[:2]))
except ImportError:
cupy = None
try:
import numba
import numba.cuda
numba_version = tuple(map(int, numba.__version__.split('.', 2)[:2]))
if numba_version < (0, 48):
import warnings
try:
warnings.warn(
'To test Numba GPU arrays, use Numba v0.48.0+.',
RuntimeWarning, stacklevel=1,
)
except RuntimeWarning:
pass
del numba_version
numba = None
except ImportError:
numba = None
__all__ = ['loop', 'test']
def make_typemap(entries):
if sys.version_info[:2] > (3, 7):
dict_type = dict
else:
from collections import OrderedDict
dict_type = OrderedDict
typemap = dict_type(
(typecode, datatype)
for typecode, datatype in entries
if datatype != MPI.DATATYPE_NULL
)
return typemap
TypeMap = make_typemap([
('b', MPI.SIGNED_CHAR),
('h', MPI.SHORT),
('i', MPI.INT),
('l', MPI.LONG),
('q', MPI.LONG_LONG),
('f', MPI.FLOAT),
('d', MPI.DOUBLE),
('g', MPI.LONG_DOUBLE),
])
TypeMapBool = make_typemap([
('?', MPI.C_BOOL),
])
TypeMapInteger = make_typemap([
('b', MPI.SIGNED_CHAR),
('h', MPI.SHORT),
('i', MPI.INT),
('l', MPI.LONG),
('q', MPI.LONG_LONG),
])
TypeMapUnsigned = make_typemap([
('B', MPI.UNSIGNED_CHAR),
('H', MPI.UNSIGNED_SHORT),
('I', MPI.UNSIGNED_INT),
('L', MPI.UNSIGNED_LONG),
('Q', MPI.UNSIGNED_LONG_LONG),
])
TypeMapFloat = make_typemap([
('f', MPI.FLOAT),
('d', MPI.DOUBLE),
('g', MPI.LONG_DOUBLE),
])
TypeMapComplex = make_typemap([
('F', MPI.C_FLOAT_COMPLEX),
('D', MPI.C_DOUBLE_COMPLEX),
('G', MPI.C_LONG_DOUBLE_COMPLEX),
])
ArrayBackends = []
def add_backend(cls):
ArrayBackends.append(cls)
return cls
class BaseArray:
backend = None
TypeMap = TypeMap.copy()
TypeMap.pop('g', None)
def __len__(self):
return len(self.array)
def __getitem__(self, i):
return self.array[i]
def __setitem__(self, i, v):
self.array[i] = v
@property
def mpidtype(self):
try:
return self.TypeMap[self.typecode]
except KeyError:
return MPI.DATATYPE_NULL
def as_raw(self):
return self.array
def as_mpi(self):
return (self.as_raw(), self.mpidtype)
def as_mpi_c(self, count):
return (self.as_raw(), count, self.mpidtype)
def as_mpi_v(self, cnt, dsp):
return (self.as_raw(), (cnt, dsp), self.mpidtype)
if array is not None:
def product(seq):
res = 1
for s in seq:
res = res * s
return res
def mkshape(shape):
return tuple([int(s) for s in shape])
@add_backend
class ArrayArray(BaseArray):
backend = 'array'
def __init__(self, arg, typecode, shape=None):
if isinstance(arg, (int, float)):
if shape is None:
shape = ()
else:
try:
shape = mkshape(shape)
except TypeError:
shape = (int(shape),)
size = product(shape)
arg = [arg] * size
else:
size = len(arg)
if shape is None:
shape = (size,)
else:
shape = mkshape(shape)
assert size == product(shape)
self.array = array.array(typecode, arg)
@property
def address(self):
return self.array.buffer_info()[0]
@property
def typecode(self):
return self.array.typecode
@property
def itemsize(self):
return self.array.itemsize
@property
def flat(self):
return self.array
@property
def size(self):
return self.array.buffer_info()[1]
if numpy is not None:
@add_backend
class ArrayNumPy(BaseArray):
backend = 'numpy'
TypeMap = make_typemap([])
TypeMap.update(TypeMapBool)
TypeMap.update(TypeMapInteger)
TypeMap.update(TypeMapUnsigned)
TypeMap.update(TypeMapFloat)
TypeMap.update(TypeMapComplex)
def __init__(self, arg, typecode, shape=None):
if isinstance(arg, (int, float, complex)):
if shape is None:
shape = ()
else:
if shape is None:
shape = len(arg)
self.array = numpy.zeros(shape, typecode)
if isinstance(arg, (int, float, complex)):
arg = numpy.asarray(arg).astype(typecode)
self.array.fill(arg)
else:
arg = numpy.asarray(arg).astype(typecode)
self.array[...] = arg
@property
def address(self):
return self.array.__array_interface__['data'][0]
@property
def typecode(self):
return self.array.dtype.char
@property
def itemsize(self):
return self.array.itemsize
@property
def flat(self):
return self.array.flat
@property
def size(self):
return self.array.size
try:
import dlpackimpl as dlpack
except ImportError:
dlpack = None
class BaseDLPackCPU:
def __dlpack_device__(self):
return (dlpack.DLDeviceType.kDLCPU, 0)
def __dlpack__(self, stream=None):
assert stream is None
capsule = dlpack.make_py_capsule(self.array)
return capsule
def as_raw(self):
return self
if dlpack is not None and array is not None:
@add_backend
class DLPackArray(BaseDLPackCPU, ArrayArray):
backend = 'dlpack-array'
def __init__(self, arg, typecode, shape=None):
super().__init__(arg, typecode, shape)
if dlpack is not None and numpy is not None:
@add_backend
class DLPackNumPy(BaseDLPackCPU, ArrayNumPy):
backend = 'dlpack-numpy'
def __init__(self, arg, typecode, shape=None):
super().__init__(arg, typecode, shape)
def typestr(typecode, itemsize):
typestr = ''
if sys.byteorder == 'little':
typestr += '<'
if sys.byteorder == 'big':
typestr += '>'
if typecode in '?':
typestr += 'b'
if typecode in 'bhilq':
typestr += 'i'
if typecode in 'BHILQ':
typestr += 'u'
if typecode in 'fdg':
typestr += 'f'
if typecode in 'FDG':
typestr += 'c'
typestr += str(itemsize)
return typestr
class BaseFakeGPUArray:
def set_interface(self, shape, readonly=False):
self.__cuda_array_interface__ = dict(
version = 0,
data = (self.address, readonly),
typestr = typestr(self.typecode, self.itemsize),
shape = shape,
)
def as_raw(self):
return self
if array is not None:
@add_backend
class FakeGPUArrayBasic(BaseFakeGPUArray, ArrayArray):
def __init__(self, arg, typecode, shape=None, readonly=False):
super().__init__(arg, typecode, shape)
self.set_interface((len(self),), readonly)
if numpy is not None:
@add_backend
class FakeGPUArrayNumPy(BaseFakeGPUArray, ArrayNumPy):
def __init__(self, arg, typecode, shape=None, readonly=False):
super().__init__(arg, typecode, shape)
self.set_interface(self.array.shape, readonly)
if cupy is not None:
@add_backend
class GPUArrayCuPy(BaseArray):
backend = 'cupy'
TypeMap = make_typemap([])
if cupy_version >= (11, 6):
TypeMap.update(TypeMapBool)
TypeMap.update(TypeMapInteger)
TypeMap.update(TypeMapUnsigned)
TypeMap.update(TypeMapFloat)
TypeMap.update(TypeMapComplex)
try:
cupy.array(0, 'g')
except ValueError:
TypeMap.pop('g', None)
try:
cupy.array(0, 'G')
except ValueError:
TypeMap.pop('G', None)
def __init__(self, arg, typecode, shape=None, readonly=False):
if isinstance(arg, (int, float, complex)):
if shape is None:
shape = ()
else:
if shape is None:
shape = len(arg)
self.array = cupy.zeros(shape, typecode)
if isinstance(arg, (int, float, complex)):
self.array.fill(arg)
else:
self.array[:] = cupy.asarray(arg, typecode)
@property
def address(self):
return self.array.__cuda_array_interface__['data'][0]
@property
def typecode(self):
return self.array.dtype.char
@property
def itemsize(self):
return self.array.itemsize
@property
def flat(self):
return self.array.ravel()
@property
def size(self):
return self.array.size
def as_raw(self):
cupy.cuda.get_current_stream().synchronize()
return self.array
if cupy is not None:
# Note: we do not create a BaseDLPackGPU class because each GPU library
# has its own way to get device ID etc, so we have to reimplement the
# DLPack support anyway
@add_backend
class DLPackCuPy(GPUArrayCuPy):
backend = 'dlpack-cupy'
has_dlpack = None
dev_type = None
def __init__(self, arg, typecode, shape=None):
super().__init__(arg, typecode, shape)
self.has_dlpack = hasattr(self.array, '__dlpack_device__')
# TODO(leofang): test CUDA managed memory?
if cupy.cuda.runtime.is_hip:
self.dev_type = dlpack.DLDeviceType.kDLROCM
else:
self.dev_type = dlpack.DLDeviceType.kDLCUDA
def __dlpack_device__(self):
if self.has_dlpack:
return self.array.__dlpack_device__()
else:
return (self.dev_type, self.array.device.id)
def __dlpack__(self, stream=None):
cupy.cuda.get_current_stream().synchronize()
if self.has_dlpack:
return self.array.__dlpack__(stream=-1)
else:
return self.array.toDlpack()
def as_raw(self):
return self
if numba is not None:
@add_backend
class GPUArrayNumba(BaseArray):
backend = 'numba'
TypeMap = make_typemap([])
TypeMap.update(TypeMapBool)
TypeMap.update(TypeMapInteger)
TypeMap.update(TypeMapUnsigned)
TypeMap.update(TypeMapFloat)
TypeMap.update(TypeMapComplex)
# one can allocate arrays with those types,
# but the Numba compiler doesn't support them...
TypeMap.pop('g', None)
TypeMap.pop('G', None)
def __init__(self, arg, typecode, shape=None, readonly=False):
if isinstance(arg, (int, float, complex)):
if shape is None:
shape = ()
else:
if shape is None:
shape = len(arg)
self.array = numba.cuda.device_array(shape, typecode)
if isinstance(arg, (int, float, complex)):
if self.array.size > 0:
self.array[:] = arg
elif arg == [] or arg == ():
self.array = numba.cuda.device_array(0, typecode)
else:
if self.array.size > 0:
self.array[:] = numba.cuda.to_device(arg)
# def __getitem__(self, i):
# if isinstance(i, slice):
# return self.array[i]
# elif i < self.array.size:
# return self.array[i]
# else:
# raise StopIteration
@property
def address(self):
return self.array.__cuda_array_interface__['data'][0]
@property
def typecode(self):
return self.array.dtype.char
@property
def itemsize(self):
return self.array.dtype.itemsize
@property
def flat(self):
if self.array.ndim <= 1:
return self.array
else:
return self.array.ravel()
@property
def size(self):
return self.array.size
def as_raw(self):
# numba by default always runs on the legacy default stream
numba.cuda.default_stream().synchronize()
return self.array
def loop(*args):
loop.array = None
loop.typecode = None
for array in ArrayBackends:
loop.array = array
for typecode in array.TypeMap:
loop.typecode = typecode
if not args:
yield array, typecode
else:
for prod in itertools.product(*args):
yield (array, typecode) + prod
del loop.array
del loop.typecode
def test(case, **kargs):
return case.subTest(
typecode=loop.typecode,
backend=loop.array.backend,
**kargs,
)
def scalar(arg):
return loop.array(arg, loop.typecode, 1)[0]
|