File: tutorial.rst

package info (click to toggle)
mpi4py 4.1.0-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,540 kB
  • sloc: python: 34,465; ansic: 16,475; makefile: 614; sh: 325; cpp: 193; f90: 178
file content (548 lines) | stat: -rw-r--r-- 14,862 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
.. _tutorial:

Tutorial
========

.. currentmodule:: mpi4py.MPI

.. warning::

   Under construction. Contributions very welcome!

.. tip::

   `Rolf Rabenseifner`_ at `HLRS`_ developed a comprehensive
   MPI-3.1/4.0 course with slides and a large set of exercises
   including solutions. This material is `available online
   <hlrs-mpi_>`_ for self-study. The slides and exercises show the C,
   Fortran, and Python (mpi4py) interfaces. For performance reasons,
   most Python exercises use NumPy arrays and communication routines
   involving buffer-like objects.

   .. _Rolf Rabenseifner: https://www.hlrs.de/people/rolf-rabenseifner
   .. _HLRS: https://www.hlrs.de/
   .. _hlrs-mpi: https://www.hlrs.de/training/self-study-materials/mpi-course-material

.. tip::

   `Victor Eijkhout`_ at `TACC`_ authored the book *Parallel
   Programming for Science and Engineering*. This book is `available
   online <ppse-book_>`_ in PDF and `HTML <ppse-html_>`_ formats. The
   book covers parallel programming with MPI and OpenMP in C/C++ and
   Fortran, and MPI in Python using mpi4py.

   .. _Victor Eijkhout: https://tacc.utexas.edu/about/staff-directory/victor-eijkhout
   .. _TACC: https://tacc.utexas.edu/
   .. _ppse-book: https://theartofhpc.com/pcse.html
   .. _ppse-html: https://theartofhpc.com/pcse/index.html


*MPI for Python* supports convenient, *pickle*-based communication of
generic Python object as well as fast, near C-speed, direct array data
communication of buffer-provider objects (e.g., NumPy arrays).

* Communication of generic Python objects

  You have to use methods with **all-lowercase** names, like
  `Comm.send`, `Comm.recv`, `Comm.bcast`, `Comm.scatter`,
  `Comm.gather` . An object to be sent is passed as a parameter to the
  communication call, and the received object is simply the return
  value.

  The `Comm.isend` and `Comm.irecv` methods return `Request`
  instances; completion of these methods can be managed using the
  `Request.test` and `Request.wait` methods.

  The `Comm.recv` and `Comm.irecv` methods may be passed a buffer
  object that can be repeatedly used to receive messages avoiding
  internal memory allocation. This buffer must be sufficiently large
  to accommodate the transmitted messages; hence, any buffer passed to
  `Comm.recv` or `Comm.irecv` must be at least as long as the
  *pickled* data transmitted to the receiver.

  Collective calls like `Comm.scatter`, `Comm.gather`,
  `Comm.allgather`, `Comm.alltoall` expect a single value or a
  sequence of `Comm.size` elements at the root or all process. They
  return a single value, a list of `Comm.size` elements, or `None`.

  .. note::

     *MPI for Python* uses the **highest** :ref:`protocol version
     <pickle-protocols>` available in the Python runtime (see the
     :data:`~pickle.HIGHEST_PROTOCOL` constant in the :mod:`pickle`
     module).  The default protocol can be changed at import time by
     setting the :envvar:`MPI4PY_PICKLE_PROTOCOL` environment
     variable, or at runtime by assigning a different value to the
     :attr:`~mpi4py.MPI.Pickle.PROTOCOL` attribute of the
     :obj:`~mpi4py.MPI.pickle` object within the :mod:`~mpi4py.MPI`
     module.

* Communication of buffer-like objects

  You have to use method names starting with an **upper-case** letter,
  like `Comm.Send`, `Comm.Recv`, `Comm.Bcast`, `Comm.Scatter`,
  `Comm.Gather`.

  In general, buffer arguments to these calls must be explicitly
  specified by using a 2/3-list/tuple like ``[data, MPI.DOUBLE]``, or
  ``[data, count, MPI.DOUBLE]`` (the former one uses the byte-size of
  ``data`` and the extent of the MPI datatype to define ``count``).

  For vector collectives communication operations like
  `Comm.Scatterv` and `Comm.Gatherv`, buffer arguments are
  specified as ``[data, count, displ, datatype]``, where ``count`` and
  ``displ`` are sequences of integral values.

  Automatic MPI datatype discovery for NumPy/GPU arrays and PEP-3118
  buffers is supported, but limited to basic C types (all C/C99-native
  signed/unsigned integral types and single/double precision
  real/complex floating types) and availability of matching datatypes
  in the underlying MPI implementation. In this case, the
  buffer-provider object can be passed directly as a buffer argument,
  the count and MPI datatype will be inferred.

  If mpi4py is built against a GPU-aware MPI implementation, GPU
  arrays can be passed to upper-case methods as long as they have
  either the ``__dlpack__`` and ``__dlpack_device__`` methods or the
  ``__cuda_array_interface__`` attribute that are compliant with the
  respective standard specifications. Moreover, only C-contiguous or
  Fortran-contiguous GPU arrays are supported. It is important to note
  that GPU buffers must be fully ready before any MPI routines operate
  on them to avoid race conditions. This can be ensured by using the
  synchronization API of your array library. mpi4py does not have
  access to any GPU-specific functionality and thus cannot perform
  this operation automatically for users.


Running Python scripts with MPI
-------------------------------

Most MPI programs can be run with the command :program:`mpiexec`. In
practice, running Python programs looks like::

  $ mpiexec -n 4 python script.py

to run the program with 4 processors.


Point-to-Point Communication
----------------------------

* Python objects (:mod:`pickle` under the hood)::

   from mpi4py import MPI

   comm = MPI.COMM_WORLD
   rank = comm.Get_rank()

   if rank == 0:
       data = {'a': 7, 'b': 3.14}
       comm.send(data, dest=1, tag=11)
   elif rank == 1:
       data = comm.recv(source=0, tag=11)

* Python objects with non-blocking communication::

   from mpi4py import MPI

   comm = MPI.COMM_WORLD
   rank = comm.Get_rank()

   if rank == 0:
       data = {'a': 7, 'b': 3.14}
       req = comm.isend(data, dest=1, tag=11)
       req.wait()
   elif rank == 1:
       req = comm.irecv(source=0, tag=11)
       data = req.wait()

* NumPy arrays (the fast way!)::

   from mpi4py import MPI
   import numpy

   comm = MPI.COMM_WORLD
   rank = comm.Get_rank()

   # passing MPI datatypes explicitly
   if rank == 0:
       data = numpy.arange(1000, dtype='i')
       comm.Send([data, MPI.INT], dest=1, tag=77)
   elif rank == 1:
       data = numpy.empty(1000, dtype='i')
       comm.Recv([data, MPI.INT], source=0, tag=77)

   # automatic MPI datatype discovery
   if rank == 0:
       data = numpy.arange(100, dtype=numpy.float64)
       comm.Send(data, dest=1, tag=13)
   elif rank == 1:
       data = numpy.empty(100, dtype=numpy.float64)
       comm.Recv(data, source=0, tag=13)


Collective Communication
------------------------

* Broadcasting a Python dictionary::

   from mpi4py import MPI

   comm = MPI.COMM_WORLD
   rank = comm.Get_rank()

   if rank == 0:
       data = {'key1' : [7, 2.72, 2+3j],
               'key2' : ( 'abc', 'xyz')}
   else:
       data = None
   data = comm.bcast(data, root=0)

* Scattering Python objects::

   from mpi4py import MPI

   comm = MPI.COMM_WORLD
   size = comm.Get_size()
   rank = comm.Get_rank()

   if rank == 0:
       data = [(i+1)**2 for i in range(size)]
   else:
       data = None
   data = comm.scatter(data, root=0)
   assert data == (rank+1)**2

* Gathering Python objects::

   from mpi4py import MPI

   comm = MPI.COMM_WORLD
   size = comm.Get_size()
   rank = comm.Get_rank()

   data = (rank+1)**2
   data = comm.gather(data, root=0)
   if rank == 0:
       for i in range(size):
           assert data[i] == (i+1)**2
   else:
       assert data is None

* Broadcasting a NumPy array::

   from mpi4py import MPI
   import numpy as np

   comm = MPI.COMM_WORLD
   rank = comm.Get_rank()

   if rank == 0:
       data = np.arange(100, dtype='i')
   else:
       data = np.empty(100, dtype='i')
   comm.Bcast(data, root=0)
   for i in range(100):
       assert data[i] == i

* Scattering NumPy arrays::

   from mpi4py import MPI
   import numpy as np

   comm = MPI.COMM_WORLD
   size = comm.Get_size()
   rank = comm.Get_rank()

   sendbuf = None
   if rank == 0:
       sendbuf = np.empty([size, 100], dtype='i')
       sendbuf.T[:,:] = range(size)
   recvbuf = np.empty(100, dtype='i')
   comm.Scatter(sendbuf, recvbuf, root=0)
   assert np.allclose(recvbuf, rank)

* Gathering NumPy arrays::

   from mpi4py import MPI
   import numpy as np

   comm = MPI.COMM_WORLD
   size = comm.Get_size()
   rank = comm.Get_rank()

   sendbuf = np.zeros(100, dtype='i') + rank
   recvbuf = None
   if rank == 0:
       recvbuf = np.empty([size, 100], dtype='i')
   comm.Gather(sendbuf, recvbuf, root=0)
   if rank == 0:
       for i in range(size):
           assert np.allclose(recvbuf[i,:], i)

* Parallel matrix-vector product::

   from mpi4py import MPI
   import numpy

   def matvec(comm, A, x):
       m = A.shape[0] # local rows
       p = comm.Get_size()
       xg = numpy.zeros(m*p, dtype='d')
       comm.Allgather([x,  MPI.DOUBLE],
                      [xg, MPI.DOUBLE])
       y = numpy.dot(A, xg)
       return y


Input/Output (MPI-IO)
---------------------

* Collective I/O with NumPy arrays::

    from mpi4py import MPI
    import numpy as np

    amode = MPI.MODE_WRONLY|MPI.MODE_CREATE
    comm = MPI.COMM_WORLD
    fh = MPI.File.Open(comm, "./datafile.contig", amode)

    buffer = np.empty(10, dtype=np.int)
    buffer[:] = comm.Get_rank()

    offset = comm.Get_rank()*buffer.nbytes
    fh.Write_at_all(offset, buffer)

    fh.Close()

* Non-contiguous Collective I/O with NumPy arrays and datatypes::

    from mpi4py import MPI
    import numpy as np

    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    size = comm.Get_size()

    amode = MPI.MODE_WRONLY|MPI.MODE_CREATE
    fh = MPI.File.Open(comm, "./datafile.noncontig", amode)

    item_count = 10

    buffer = np.empty(item_count, dtype='i')
    buffer[:] = rank

    filetype = MPI.INT.Create_vector(item_count, 1, size)
    filetype.Commit()

    displacement = MPI.INT.Get_size()*rank
    fh.Set_view(displacement, filetype=filetype)

    fh.Write_all(buffer)
    filetype.Free()
    fh.Close()


Dynamic Process Management
--------------------------

* Compute Pi - Master (or parent, or client) side::

   #!/usr/bin/env python
   from mpi4py import MPI
   import numpy
   import sys

   comm = MPI.COMM_SELF.Spawn(sys.executable,
                              args=['cpi.py'],
                              maxprocs=5)

   N = numpy.array(100, 'i')
   comm.Bcast([N, MPI.INT], root=MPI.ROOT)
   PI = numpy.array(0.0, 'd')
   comm.Reduce(None, [PI, MPI.DOUBLE],
               op=MPI.SUM, root=MPI.ROOT)
   print(PI)

   comm.Disconnect()

* Compute Pi - Worker (or child, or server) side::

   #!/usr/bin/env python
   from mpi4py import MPI
   import numpy

   comm = MPI.Comm.Get_parent()
   size = comm.Get_size()
   rank = comm.Get_rank()

   N = numpy.array(0, dtype='i')
   comm.Bcast([N, MPI.INT], root=0)
   h = 1.0 / N; s = 0.0
   for i in range(rank, N, size):
       x = h * (i + 0.5)
       s += 4.0 / (1.0 + x**2)
   PI = numpy.array(s * h, dtype='d')
   comm.Reduce([PI, MPI.DOUBLE], None,
               op=MPI.SUM, root=0)

   comm.Disconnect()


GPU-aware MPI + Python GPU arrays
---------------------------------

* Reduce-to-all CuPy arrays::

   from mpi4py import MPI
   import cupy as cp

   comm = MPI.COMM_WORLD
   size = comm.Get_size()
   rank = comm.Get_rank()

   sendbuf = cp.arange(10, dtype='i')
   recvbuf = cp.empty_like(sendbuf)
   cp.cuda.get_current_stream().synchronize()
   comm.Allreduce(sendbuf, recvbuf)

   assert cp.allclose(recvbuf, sendbuf*size)


One-Sided Communication (RMA)
-----------------------------

* Read from (write to) the entire RMA window::

    import numpy as np
    from mpi4py import MPI
    from mpi4py.util import dtlib

    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()

    datatype = MPI.FLOAT
    np_dtype = dtlib.to_numpy_dtype(datatype)
    itemsize = datatype.Get_size()

    N = 10
    win_size = N * itemsize if rank == 0 else 0
    win = MPI.Win.Allocate(win_size, comm=comm)

    buf = np.empty(N, dtype=np_dtype)
    if rank == 0:
        buf.fill(42)
        win.Lock(rank=0)
        win.Put(buf, target_rank=0)
        win.Unlock(rank=0)
        comm.Barrier()
    else:
        comm.Barrier()
        win.Lock(rank=0)
        win.Get(buf, target_rank=0)
        win.Unlock(rank=0)
        assert np.all(buf == 42)

* Accessing a part of the RMA window using the ``target`` argument,
  which is defined as ``(offset, count, datatype)``::

    import numpy as np
    from mpi4py import MPI
    from mpi4py.util import dtlib

    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()

    datatype = MPI.FLOAT
    np_dtype = dtlib.to_numpy_dtype(datatype)
    itemsize = datatype.Get_size()

    N = comm.Get_size() + 1
    win_size = N * itemsize if rank == 0 else 0
    win = MPI.Win.Allocate(
        size=win_size,
        disp_unit=itemsize,
        comm=comm,
    )
    if rank == 0:
        mem = np.frombuffer(win, dtype=np_dtype)
        mem[:] = np.arange(len(mem), dtype=np_dtype)
    comm.Barrier()

    buf = np.zeros(3, dtype=np_dtype)
    target = (rank, 2, datatype)
    win.Lock(rank=0)
    win.Get(buf, target_rank=0, target=target)
    win.Unlock(rank=0)
    assert np.all(buf == [rank, rank+1, 0])


Wrapping with SWIG
------------------

* C source:

  .. sourcecode:: c

      /* file: helloworld.c */
      void sayhello(MPI_Comm comm)
      {
        int size, rank;
        MPI_Comm_size(comm, &size);
        MPI_Comm_rank(comm, &rank);
        printf("Hello, World! "
               "I am process %d of %d.\n",
               rank, size);
      }

* SWIG interface file:

  .. sourcecode:: c

      // file: helloworld.i
      %module helloworld
      %{
      #include <mpi.h>
      #include "helloworld.c"
      }%

      %include mpi4py/mpi4py.i
      %mpi4py_typemap(Comm, MPI_Comm);
      void sayhello(MPI_Comm comm);

* Try it in the Python prompt::

      >>> from mpi4py import MPI
      >>> import helloworld
      >>> helloworld.sayhello(MPI.COMM_WORLD)
      Hello, World! I am process 0 of 1.


Wrapping with F2Py
------------------

* Fortran 90 source:

  .. sourcecode:: fortran

      ! file: helloworld.f90
      subroutine sayhello(comm)
        use mpi
        implicit none
        integer :: comm, rank, size, ierr
        call MPI_Comm_size(comm, size, ierr)
        call MPI_Comm_rank(comm, rank, ierr)
        print *, 'Hello, World! I am process ',rank,' of ',size,'.'
      end subroutine sayhello

* Compiling example using f2py ::

      $ f2py -c --f90exec=mpif90 helloworld.f90 -m helloworld

* Try it in the Python prompt::

      >>> from mpi4py import MPI
      >>> import helloworld
      >>> fcomm = MPI.COMM_WORLD.py2f()
      >>> helloworld.sayhello(fcomm)
      Hello, World! I am process 0 of 1.