File: test_ucp_peer_failure.cc

package info (click to toggle)
mpich 4.0.2-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 423,384 kB
  • sloc: ansic: 1,088,434; cpp: 71,364; javascript: 40,763; f90: 22,829; sh: 17,463; perl: 14,773; xml: 14,418; python: 10,265; makefile: 9,246; fortran: 8,008; java: 4,355; asm: 324; ruby: 176; lisp: 19; php: 8; sed: 4
file content (546 lines) | stat: -rw-r--r-- 18,858 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/**
* Copyright (C) Mellanox Technologies Ltd. 2001-2017.  ALL RIGHTS RESERVED.
*
* See file LICENSE for terms.
*/

#include <common/test.h>

#include "ucp_test.h"
#include "ucp_datatype.h"

extern "C" {
#include <ucp/core/ucp_ep.inl>    /* for testing EP RNDV configuration */
#include <ucp/core/ucp_request.h> /* for debug */
#include <ucp/core/ucp_worker.h>  /* for testing memory consumption */
}

class test_ucp_peer_failure : public ucp_test {
public:
    test_ucp_peer_failure();

    static void get_test_variants(std::vector<ucp_test_variant>& variants);

    ucp_ep_params_t get_ep_params();

protected:
    static const int AM_ID = 0;

    enum {
        TEST_AM  = UCS_BIT(0),
        TEST_RMA = UCS_BIT(1),
        FAIL_IMM = UCS_BIT(2),
        WAKEUP   = UCS_BIT(3)
    };

    enum {
        STABLE_EP_INDEX,
        FAILING_EP_INDEX
    };

    typedef ucs::handle<ucp_mem_h, ucp_context_h> mem_handle_t;

    void set_am_handler(entity &e);
    static ucs_status_t
    am_callback(void *arg, const void *header, size_t header_length, void *data,
                size_t length, const ucp_am_recv_param_t *param);
    static void err_cb(void *arg, ucp_ep_h ep, ucs_status_t status);
    ucp_ep_h stable_sender();
    ucp_ep_h failing_sender();
    entity& stable_receiver();
    entity& failing_receiver();
    void *send_nb(ucp_ep_h ep, ucp_rkey_h rkey);
    static ucs_log_func_rc_t
    warn_unreleased_rdesc_handler(const char *file, unsigned line,
                                  const char *function,
                                  ucs_log_level_t level,
                                  const ucs_log_component_config_t *comp_conf,
                                  const char *message, va_list ap);
    void fail_receiver();
    void smoke_test(bool stable_pair);
    static void unmap_memh(ucp_mem_h memh, ucp_context_h context);
    void get_rkey(ucp_ep_h ep, entity& dst, mem_handle_t& memh,
                  ucs::handle<ucp_rkey_h>& rkey);
    void set_rkeys();
    static void send_cb(void *request, ucs_status_t status, void *user_data);

    virtual void cleanup();

    void do_test(size_t msg_size, int pre_msg_count, bool force_close,
                 bool request_must_fail);

    size_t                              m_am_rx_count;
    size_t                              m_err_count;
    ucs_status_t                        m_err_status;
    std::string                         m_sbuf, m_rbuf;
    mem_handle_t                        m_stable_memh, m_failing_memh;
    ucs::handle<ucp_rkey_h>             m_stable_rkey, m_failing_rkey;
};

UCP_INSTANTIATE_TEST_CASE(test_ucp_peer_failure)


test_ucp_peer_failure::test_ucp_peer_failure() :
    m_am_rx_count(0), m_err_count(0), m_err_status(UCS_OK)
{
    ucs::fill_random(m_sbuf);
    set_tl_small_timeouts();
}

void test_ucp_peer_failure::get_test_variants(
        std::vector<ucp_test_variant> &variants)
{
    add_variant_with_value(variants, UCP_FEATURE_AM, TEST_AM, "am");
    add_variant_with_value(variants, UCP_FEATURE_RMA, TEST_RMA, "rma");
    add_variant_with_value(variants, UCP_FEATURE_AM, TEST_AM | FAIL_IMM,
                           "am_fail_imm");
    add_variant_with_value(variants, UCP_FEATURE_RMA, TEST_RMA | FAIL_IMM,
                           "rma_fail_imm");
}

ucp_ep_params_t test_ucp_peer_failure::get_ep_params() {
    ucp_ep_params_t params;
    memset(&params, 0, sizeof(params));
    params.field_mask      = UCP_EP_PARAM_FIELD_ERR_HANDLING_MODE |
                             UCP_EP_PARAM_FIELD_ERR_HANDLER;
    params.err_mode        = UCP_ERR_HANDLING_MODE_PEER;
    params.err_handler.cb  = err_cb;
    params.err_handler.arg = reinterpret_cast<void*>(this);
    return params;
}

void test_ucp_peer_failure::set_am_handler(entity &e)
{
    if (!(get_variant_value() & TEST_AM)) {
        return;
    }

    ucp_am_handler_param_t param;
    param.field_mask = UCP_AM_HANDLER_PARAM_FIELD_ID |
                       UCP_AM_HANDLER_PARAM_FIELD_CB |
                       UCP_AM_HANDLER_PARAM_FIELD_ARG;
    param.cb         = am_callback;
    param.arg        = this;
    param.id         = AM_ID;

    ucs_status_t status = ucp_worker_set_am_recv_handler(e.worker(), &param);
    ASSERT_UCS_OK(status);
}

ucs_status_t
test_ucp_peer_failure::am_callback(void *arg, const void *header,
                                   size_t header_length, void *data,
                                   size_t length,
                                   const ucp_am_recv_param_t *param)
{
    test_ucp_peer_failure *self = reinterpret_cast<test_ucp_peer_failure*>(arg);
    ++self->m_am_rx_count;
    return UCS_OK;
}

void test_ucp_peer_failure::err_cb(void *arg, ucp_ep_h ep, ucs_status_t status) {
    test_ucp_peer_failure *self = reinterpret_cast<test_ucp_peer_failure*>(arg);
    EXPECT_TRUE((UCS_ERR_CONNECTION_RESET == status) ||
                (UCS_ERR_ENDPOINT_TIMEOUT == status));
    self->m_err_status = status;
    ++self->m_err_count;
}

/* stable pair: sender = ep(0), receiver: entity(size - 1)
 * failing pair: sender = ep(1), receiver: entity(size - 2)*/
ucp_ep_h test_ucp_peer_failure::stable_sender() {
    return sender().ep(0, STABLE_EP_INDEX);
}

ucp_ep_h test_ucp_peer_failure::failing_sender() {
    return sender().ep(0, FAILING_EP_INDEX);
}

ucp_test::entity& test_ucp_peer_failure::stable_receiver() {
    return m_entities.at(m_entities.size() - 1 - STABLE_EP_INDEX);
}

ucp_test::entity& test_ucp_peer_failure::failing_receiver() {
    return m_entities.at(m_entities.size() - 1 - FAILING_EP_INDEX);
}

void *test_ucp_peer_failure::send_nb(ucp_ep_h ep, ucp_rkey_h rkey)
{
    ucp_request_param_t param;
    param.op_attr_mask = UCP_OP_ATTR_FIELD_DATATYPE |
                         UCP_OP_ATTR_FIELD_CALLBACK;
    param.datatype     = DATATYPE;
    param.cb.send      = send_cb;
    if (get_variant_value() & TEST_AM) {
        return ucp_am_send_nbx(ep, AM_ID, NULL, 0, &m_sbuf[0], m_sbuf.size(),
                               &param);
    } else if (get_variant_value() & TEST_RMA) {
        return ucp_put_nbx(ep, &m_sbuf[0], m_sbuf.size(), (uintptr_t)&m_rbuf[0],
                           rkey, &param);
    } else {
        ucs_fatal("invalid test case");
    }
}

ucs_log_func_rc_t
test_ucp_peer_failure::warn_unreleased_rdesc_handler(const char *file, unsigned line,
                                                     const char *function,
                                                     ucs_log_level_t level,
                                                     const ucs_log_component_config_t *comp_conf,
                                                     const char *message, va_list ap)
{
    if (level == UCS_LOG_LEVEL_WARN) {
        std::string err_str = format_message(message, ap);

        if (err_str.find("unexpected tag-receive descriptor") != std::string::npos) {
            return UCS_LOG_FUNC_RC_STOP;
        }
    }

    return UCS_LOG_FUNC_RC_CONTINUE;
}

void test_ucp_peer_failure::fail_receiver() {
    /* TODO: need to handle non-empty TX window in UD EP destructor",
     *       see debug message (ud_ep.c:220)
     *       ucs_debug("ep=%p id=%d conn_id=%d has %d unacked packets",
     *                 self, self->ep_id, self->conn_id,
     *                 (int)ucs_queue_length(&self->tx.window));
     */
    // TODO use force-close to close connections
    flush_worker(failing_receiver());
    m_failing_memh.reset();
    {
        /* transform warning messages about unreleased TM rdescs to test
         * message that are expected here, since we closed receiver w/o
         * reading the messages that were potentially received */
        scoped_log_handler slh(warn_unreleased_rdesc_handler);
        failing_receiver().cleanup();
    }
}

void test_ucp_peer_failure::smoke_test(bool stable_pair)
{
    ucp_ep_h send_ep = stable_pair ? stable_sender() : failing_sender();
    size_t am_count  = m_am_rx_count;

    // Send and wait for completion
    void *sreq = send_nb(send_ep, stable_pair ? m_stable_rkey : m_failing_rkey);
    request_wait(sreq);

    if (get_variant_value() & TEST_AM) {
        // Wait for active message to be received
        while (m_am_rx_count < am_count) {
            progress();
        }
    } else if (get_variant_value() & TEST_RMA) {
        // Flush the sender and expect data to arrive on receiver
        void *freq = ucp_ep_flush_nb(send_ep, 0,
                                     (ucp_send_callback_t)ucs_empty_function);
        request_wait(freq);
        EXPECT_EQ(m_sbuf, m_rbuf);
    }
}

void test_ucp_peer_failure::unmap_memh(ucp_mem_h memh, ucp_context_h context)
{
    ucs_status_t status = ucp_mem_unmap(context, memh);
    if (status != UCS_OK) {
        ucs_warn("failed to unmap memory: %s", ucs_status_string(status));
    }
}

void test_ucp_peer_failure::get_rkey(ucp_ep_h ep, entity& dst, mem_handle_t& memh,
                                     ucs::handle<ucp_rkey_h>& rkey) {
    ucp_mem_map_params_t params;

    memset(&params, 0, sizeof(params));
    params.field_mask = UCP_MEM_MAP_PARAM_FIELD_ADDRESS |
                        UCP_MEM_MAP_PARAM_FIELD_LENGTH;
    params.address    = &m_rbuf[0];
    params.length     = m_rbuf.size();

    ucp_mem_h ucp_memh;
    ucs_status_t status = ucp_mem_map(dst.ucph(), &params, &ucp_memh);
    ASSERT_UCS_OK(status);
    memh.reset(ucp_memh, unmap_memh, dst.ucph());

    void *rkey_buffer;
    size_t rkey_buffer_size;
    status = ucp_rkey_pack(dst.ucph(), memh, &rkey_buffer, &rkey_buffer_size);
    ASSERT_UCS_OK(status);

    ucp_rkey_h ucp_rkey;
    status = ucp_ep_rkey_unpack(ep, rkey_buffer, &ucp_rkey);
    ASSERT_UCS_OK(status);
    rkey.reset(ucp_rkey, ucp_rkey_destroy);

    ucp_rkey_buffer_release(rkey_buffer);
}

void test_ucp_peer_failure::set_rkeys() {

    if (get_variant_value() & TEST_RMA) {
        get_rkey(failing_sender(), failing_receiver(), m_failing_memh,
                 m_failing_rkey);
        get_rkey(stable_sender(), stable_receiver(), m_stable_memh,
                 m_stable_rkey);
    }
}

void test_ucp_peer_failure::send_cb(void *request, ucs_status_t status,
                                    void *user_data)
{
}

void test_ucp_peer_failure::cleanup() {
    m_failing_rkey.reset();
    m_stable_rkey.reset();
    m_failing_memh.reset();
    m_stable_memh.reset();
    ucp_test::cleanup();
}

void test_ucp_peer_failure::do_test(size_t msg_size, int pre_msg_count,
                                    bool force_close, bool request_must_fail)
{
    skip_loopback();

    m_sbuf.resize(msg_size);
    m_rbuf.resize(msg_size);

    /* connect 2 ep's from sender() to 2 receiver entities */
    create_entity();
    sender().connect(&stable_receiver(),  get_ep_params(), STABLE_EP_INDEX);
    sender().connect(&failing_receiver(), get_ep_params(), FAILING_EP_INDEX);
    set_am_handler(stable_receiver());
    set_am_handler(failing_receiver());

    set_rkeys();

    /* Since we don't want to test peer failure on a stable pair
     * and don't expect EP timeout error on those EPs,
     * run traffic on a stable pair to connect it */
    smoke_test(true);

    if (!(get_variant_value() & FAIL_IMM)) {
        /* if not fail immediately, run traffic on failing pair to connect it */
        smoke_test(false);
    }

    /* put some sends on the failing pair */
    std::vector<void*> sreqs_pre;
    for (int i = 0; i < pre_msg_count; ++i) {
        progress();
        void *req = send_nb(failing_sender(), m_failing_rkey);
        ASSERT_FALSE(UCS_PTR_IS_ERR(req));
        if (UCS_PTR_IS_PTR(req)) {
            sreqs_pre.push_back(req);
        }
    }

    flush_ep(sender(), 0, FAILING_EP_INDEX);
    EXPECT_EQ(UCS_OK, m_err_status);

    /* Since UCT/UD EP has a SW implementation of reliablity on which peer
     * failure mechanism is based, we should set small UCT/UD EP timeout
     * for UCT/UD EPs for sender's UCP EP to reduce testing time */
    double prev_ib_ud_timeout = sender().set_ib_ud_timeout(3.);

    {
        scoped_log_handler slh(wrap_errors_logger);

        fail_receiver();

        void *sreq = send_nb(failing_sender(), m_failing_rkey);
        flush_ep(sender(), 0, FAILING_EP_INDEX);
        while (!m_err_count) {
            progress();
        }
        EXPECT_NE(UCS_OK, m_err_status);

        if (UCS_PTR_IS_PTR(sreq)) {
            /* The request may either succeed or fail, even though the data is
             * not * delivered - depends on when the error is detected on sender
             * side and if zcopy/bcopy protocol is used. In any case, the
             * request must complete, and all resources have to be released.
             */
            ucs_status_t status = ucp_request_check_status(sreq);
            EXPECT_NE(UCS_INPROGRESS, status);
            if (request_must_fail) {
                EXPECT_TRUE((m_err_status == status) ||
                            (UCS_ERR_CANCELED == status));
            } else {
                EXPECT_TRUE((m_err_status == status) || (UCS_OK == status));
            }
            ucp_request_release(sreq);
        }

        /* Additional sends must fail */
        void *sreq2         = send_nb(failing_sender(), m_failing_rkey);
        ucs_status_t status = request_wait(sreq2);
        EXPECT_TRUE(UCS_STATUS_IS_ERR(status));
        EXPECT_EQ(m_err_status, status);

        if (force_close) {
            unsigned allocd_eps_before =
                    ucs_strided_alloc_inuse_count(&sender().worker()->ep_alloc);

            ucp_ep_h ep = sender().revoke_ep(0, FAILING_EP_INDEX);

            m_failing_rkey.reset();

            void *creq = ucp_ep_close_nb(ep, UCP_EP_CLOSE_MODE_FORCE);
            request_wait(creq);
            short_progress_loop(); /* allow discard lanes & complete destroy EP */

            unsigned allocd_eps_after =
                    ucs_strided_alloc_inuse_count(&sender().worker()->ep_alloc);

            if (!(get_variant_value() & FAIL_IMM)) {
                EXPECT_LT(allocd_eps_after, allocd_eps_before);
            }
        }

        /* release requests */
        while (!sreqs_pre.empty()) {
            void *req = sreqs_pre.back();
            sreqs_pre.pop_back();
            EXPECT_NE(UCS_INPROGRESS, ucp_request_test(req, NULL));
            ucp_request_release(req);
        }
    }

    /* Since we won't test peer failure anymore, reset UCT/UD EP timeout to the
     * default value to avoid possible UD EP timeout errors under high load */
    sender().set_ib_ud_timeout(prev_ib_ud_timeout);

    /* Check workability of stable pair */
    smoke_test(true);

    /* Check that TX polling is working well */
    while (sender().progress());

    /* Destroy rkey for failing pair */
    m_failing_rkey.reset();
}

UCS_TEST_P(test_ucp_peer_failure, basic) {
    do_test(UCS_KBYTE, /* msg_size */
            0, /* pre_msg_cnt */
            false, /* force_close */
            false /* must_fail */);
}

UCS_TEST_P(test_ucp_peer_failure, zcopy, "ZCOPY_THRESH=1023",
           /* to catch failure with TCP during progressing multi AM Zcopy,
            * since `must_fail=true` */
           "TCP_SNDBUF?=1k", "TCP_RCVBUF?=128",
           "TCP_RX_SEG_SIZE?=512", "TCP_TX_SEG_SIZE?=256") {
    do_test(UCS_KBYTE, /* msg_size */
            0, /* pre_msg_cnt */
            false, /* force_close */
            true /* must_fail */);
}

UCS_TEST_P(test_ucp_peer_failure, bcopy_multi, "SEG_SIZE?=512", "RC_TM_ENABLE?=n") {
    do_test(UCS_KBYTE, /* msg_size */
            0, /* pre_msg_cnt */
            false, /* force_close */
            false /* must_fail */);
}

UCS_TEST_P(test_ucp_peer_failure, force_close, "RC_FC_ENABLE?=n",
           /* To catch unexpected descriptors leak, for multi-fragment protocol
              with TCP */
           "TCP_RX_SEG_SIZE?=1024", "TCP_TX_SEG_SIZE?=1024")
{
    do_test(16000, /* msg_size */
            1000, /* pre_msg_cnt */
            true, /* force_close */
            false /* must_fail */);
}

class test_ucp_peer_failure_keepalive : public test_ucp_peer_failure
{
public:
    test_ucp_peer_failure_keepalive() {
        m_sbuf.resize(1 * UCS_MBYTE);
        m_rbuf.resize(1 * UCS_MBYTE);

        m_env.push_back(new ucs::scoped_setenv("UCX_TCP_KEEPIDLE", "inf"));
        m_env.push_back(new ucs::scoped_setenv("UCX_UD_TIMEOUT", "3s"));
    }

    void init() {
        test_ucp_peer_failure::init();
        create_entity();
        sender().connect(&stable_receiver(), get_ep_params(), STABLE_EP_INDEX);
        sender().connect(&failing_receiver(), get_ep_params(), FAILING_EP_INDEX);
        stable_receiver().connect(&sender(), get_ep_params());
        failing_receiver().connect(&sender(), get_ep_params());
        set_am_handler(failing_receiver());
        set_am_handler(stable_receiver());
    }

    static void get_test_variants(std::vector<ucp_test_variant>& variants) {
        add_variant_with_value(variants, UCP_FEATURE_AM, TEST_AM, "am");
        add_variant_with_value(variants, UCP_FEATURE_AM | UCP_FEATURE_WAKEUP,
                               TEST_AM | WAKEUP, "am_wakeup");
    }
};

UCS_TEST_P(test_ucp_peer_failure_keepalive, kill_receiver,
           "KEEPALIVE_INTERVAL=0.3", "KEEPALIVE_NUM_EPS=inf") {
    /* TODO: wireup is not tested yet */

    scoped_log_handler err_handler(wrap_errors_logger);
    scoped_log_handler warn_handler(hide_warns_logger);

    /* initiate p2p pairing */
    ucp_ep_resolve_remote_id(failing_sender(), 0);
    smoke_test(true); /* allow wireup to complete */
    smoke_test(false);

    if (ucp_ep_config(stable_sender())->key.ep_check_map == 0) {
        UCS_TEST_SKIP_R("Unsupported");
    }

    /* ensure both pair have ep_check map */
    ASSERT_NE(0, ucp_ep_config(failing_sender())->key.ep_check_map);

    /* aux (ud) transport doesn't support keepalive feature and
     * we are assuming that wireup/connect procedure is done */

    EXPECT_EQ(0, m_err_count); /* ensure no errors are detected */

    /* flush all outstanding ops to allow keepalive to run */
    flush_worker(sender());
    if (get_variant_value() & WAKEUP) {
        wait_for_wakeup({ sender().worker(), failing_receiver().worker() },
                        100, true);
    }

    /* kill EPs & ifaces */
    failing_receiver().close_all_eps(*this, 0, UCP_EP_CLOSE_MODE_FORCE);
    if (get_variant_value() & WAKEUP) {
        wait_for_wakeup({ sender().worker() });
    }
    wait_for_flag(&m_err_count);

    /* dump warnings */
    int warn_count = m_warnings.size();
    for (int i = 0; i < warn_count; ++i) {
        UCS_TEST_MESSAGE << "< " << m_warnings[i] << " >";
    }

    EXPECT_NE(0, m_err_count);

    /* check if stable receiver is still works */
    m_err_count = 0;
    smoke_test(true);

    EXPECT_EQ(0, m_err_count); /* ensure no errors are detected */
}

UCP_INSTANTIATE_TEST_CASE(test_ucp_peer_failure_keepalive)