1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/*
* Copyright (C) by Argonne National Laboratory
* See COPYRIGHT in top-level directory
*/
/* This test is going to test the atomicity for "read-modify-write" in GACC
* operations */
/* This test is similar with atomic_rmw_fop.c.
* There are three processes involved in this test: P0 (origin_shm), P1 (origin_am),
* and P2 (dest). P0 and P1 issues multiple GACC with MPI_SUM and OP_COUNT integers
* (value 1) to P2 via SHM and AM respectively. The correct results should be that the
* results on P0 and P1 never be the same for integers on the corresponding index
* in [0...OP_COUNT-1].
*/
#include "mpi.h"
#include <stdio.h>
#include "mpitest.h"
#define OP_COUNT 10
#define AM_BUF_NUM 10
#define SHM_BUF_NUM 10000
#define WIN_BUF_NUM 1
#define LOOP_SIZE 15
#define CHECK_TAG 123
int rank, size;
int dest, origin_shm, origin_am;
int *orig_buf = NULL, *result_buf = NULL, *target_buf = NULL, *check_buf = NULL;
MPI_Win win;
static void checkResults(int loop_k, int *errors)
{
int i, j, m;
MPI_Status status;
if (rank != dest) {
/* check results on P0 and P2 (origin) */
if (rank == origin_am) {
MPI_Send(result_buf, AM_BUF_NUM * OP_COUNT, MPI_INT, origin_shm, CHECK_TAG,
MPI_COMM_WORLD);
} else if (rank == origin_shm) {
MPI_Alloc_mem(sizeof(int) * AM_BUF_NUM * OP_COUNT, MPI_INFO_NULL, &check_buf);
MPI_Recv(check_buf, AM_BUF_NUM * OP_COUNT, MPI_INT, origin_am, CHECK_TAG,
MPI_COMM_WORLD, &status);
for (i = 0; i < AM_BUF_NUM; i++) {
for (j = 0; j < SHM_BUF_NUM; j++) {
for (m = 0; m < OP_COUNT; m++) {
if (check_buf[i * OP_COUNT + m] == result_buf[j * OP_COUNT + m]) {
printf
("LOOP=%d, rank=%d, FOP, both check_buf[%d] and result_buf[%d] equal to %d, expected to be different. \n",
loop_k, rank, i * OP_COUNT + m, j * OP_COUNT + m,
check_buf[i * OP_COUNT + m]);
(*errors)++;
}
}
}
}
MPI_Free_mem(check_buf);
}
} else {
MPI_Win_lock(MPI_LOCK_SHARED, rank, 0, win);
/* check results on P1 */
for (i = 0; i < OP_COUNT; i++) {
if (target_buf[i] != AM_BUF_NUM + SHM_BUF_NUM) {
printf("LOOP=%d, rank=%d, FOP, target_buf[%d] = %d, expected %d. \n",
loop_k, rank, i, target_buf[i], AM_BUF_NUM + SHM_BUF_NUM);
(*errors)++;
}
}
MPI_Win_unlock(rank, win);
}
}
int main(int argc, char *argv[])
{
int i, k;
int errors = 0;
int my_buf_num = 0; /* to suppress warning */
MPI_Datatype origin_dtp, target_dtp;
MTest_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (size != 3) {
/* run this test with three processes */
goto exit_test;
}
MPI_Type_contiguous(OP_COUNT, MPI_INT, &origin_dtp);
MPI_Type_commit(&origin_dtp);
MPI_Type_contiguous(OP_COUNT, MPI_INT, &target_dtp);
MPI_Type_commit(&target_dtp);
/* this works when MPIR_PARAM_CH3_ODD_EVEN_CLIQUES is set */
dest = 2;
origin_shm = 0;
origin_am = 1;
if (rank == origin_am)
my_buf_num = AM_BUF_NUM;
else if (rank == origin_shm)
my_buf_num = SHM_BUF_NUM;
if (rank != dest) {
MPI_Alloc_mem(sizeof(int) * my_buf_num * OP_COUNT, MPI_INFO_NULL, &orig_buf);
MPI_Alloc_mem(sizeof(int) * my_buf_num * OP_COUNT, MPI_INFO_NULL, &result_buf);
}
MPI_Win_allocate(sizeof(int) * WIN_BUF_NUM * OP_COUNT, sizeof(int), MPI_INFO_NULL,
MPI_COMM_WORLD, &target_buf, &win);
for (k = 0; k < LOOP_SIZE; k++) {
/* ====== Part 1: test basic datatypes ======== */
/* init buffers */
if (rank != dest) {
for (i = 0; i < my_buf_num * OP_COUNT; i++) {
orig_buf[i] = 1;
result_buf[i] = 0;
}
} else {
MPI_Win_lock(MPI_LOCK_SHARED, rank, 0, win);
for (i = 0; i < WIN_BUF_NUM * OP_COUNT; i++) {
target_buf[i] = 0;
}
MPI_Win_unlock(rank, win);
}
MPI_Barrier(MPI_COMM_WORLD);
MPI_Win_lock_all(0, win);
if (rank != dest) {
for (i = 0; i < my_buf_num; i++) {
MPI_Get_accumulate(&(orig_buf[i * OP_COUNT]), OP_COUNT, MPI_INT,
&(result_buf[i * OP_COUNT]), OP_COUNT, MPI_INT,
dest, 0, OP_COUNT, MPI_INT, MPI_SUM, win);
MPI_Win_flush(dest, win);
}
}
MPI_Win_unlock_all(win);
MPI_Barrier(MPI_COMM_WORLD);
checkResults(k, &errors);
/* ====== Part 2: test derived datatypes (origin derived, target derived) ======== */
/* init buffers */
if (rank != dest) {
for (i = 0; i < my_buf_num * OP_COUNT; i++) {
orig_buf[i] = 1;
result_buf[i] = 0;
}
} else {
MPI_Win_lock(MPI_LOCK_SHARED, rank, 0, win);
for (i = 0; i < WIN_BUF_NUM * OP_COUNT; i++) {
target_buf[i] = 0;
}
MPI_Win_unlock(rank, win);
}
MPI_Barrier(MPI_COMM_WORLD);
MPI_Win_lock_all(0, win);
if (rank != dest) {
for (i = 0; i < my_buf_num; i++) {
MPI_Get_accumulate(&(orig_buf[i * OP_COUNT]), 1, origin_dtp,
&(result_buf[i * OP_COUNT]), 1, origin_dtp,
dest, 0, 1, target_dtp, MPI_SUM, win);
MPI_Win_flush(dest, win);
}
}
MPI_Win_unlock_all(win);
MPI_Barrier(MPI_COMM_WORLD);
checkResults(k, &errors);
/* ====== Part 3: test derived datatypes (origin basic, target derived) ======== */
/* init buffers */
if (rank != dest) {
for (i = 0; i < my_buf_num * OP_COUNT; i++) {
orig_buf[i] = 1;
result_buf[i] = 0;
}
} else {
MPI_Win_lock(MPI_LOCK_SHARED, rank, 0, win);
for (i = 0; i < WIN_BUF_NUM * OP_COUNT; i++) {
target_buf[i] = 0;
}
MPI_Win_unlock(rank, win);
}
MPI_Barrier(MPI_COMM_WORLD);
MPI_Win_lock_all(0, win);
if (rank != dest) {
for (i = 0; i < my_buf_num; i++) {
MPI_Get_accumulate(&(orig_buf[i * OP_COUNT]), OP_COUNT, MPI_INT,
&(result_buf[i * OP_COUNT]), OP_COUNT, MPI_INT,
dest, 0, 1, target_dtp, MPI_SUM, win);
MPI_Win_flush(dest, win);
}
}
MPI_Win_unlock_all(win);
MPI_Barrier(MPI_COMM_WORLD);
checkResults(k, &errors);
/* ====== Part 4: test derived datatypes (origin derived target basic) ======== */
/* init buffers */
if (rank != dest) {
for (i = 0; i < my_buf_num * OP_COUNT; i++) {
orig_buf[i] = 1;
result_buf[i] = 0;
}
} else {
MPI_Win_lock(MPI_LOCK_SHARED, rank, 0, win);
for (i = 0; i < WIN_BUF_NUM * OP_COUNT; i++) {
target_buf[i] = 0;
}
MPI_Win_unlock(rank, win);
}
MPI_Barrier(MPI_COMM_WORLD);
MPI_Win_lock_all(0, win);
if (rank != dest) {
for (i = 0; i < my_buf_num; i++) {
MPI_Get_accumulate(&(orig_buf[i * OP_COUNT]), 1, origin_dtp,
&(result_buf[i * OP_COUNT]), 1, origin_dtp,
dest, 0, OP_COUNT, MPI_INT, MPI_SUM, win);
MPI_Win_flush(dest, win);
}
}
MPI_Win_unlock_all(win);
MPI_Barrier(MPI_COMM_WORLD);
checkResults(k, &errors);
}
MPI_Win_free(&win);
if (rank == origin_am || rank == origin_shm) {
MPI_Free_mem(orig_buf);
MPI_Free_mem(result_buf);
}
MPI_Type_free(&origin_dtp);
MPI_Type_free(&target_dtp);
exit_test:
MTest_Finalize(errors);
return MTestReturnValue(errors);
}
|