1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/*
* Copyright (C) by Argonne National Laboratory
* See COPYRIGHT in top-level directory
*/
/* MPI-3 distributed linked list construction example
* --------------------------------------------------
*
* Construct a distributed shared linked list using proposed MPI-3 dynamic
* windows. Initially process 0 creates the head of the list, attaches it to
* the window, and broadcasts the pointer to all processes. Each process p then
* appends N new elements to the list when the tail reaches process p-1.
*/
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
#include <assert.h>
#include "mpitest.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#define NUM_ELEMS 1000
#define MAX_NPROBE nproc
#define MIN_NPROBE 1
#define ELEM_PER_ROW 16
#define MIN(X,Y) ((X < Y) ? (X) : (Y))
#define MAX(X,Y) ((X > Y) ? (X) : (Y))
/* Linked list pointer */
typedef struct {
int rank;
MPI_Aint disp;
} llist_ptr_t;
/* Linked list element */
typedef struct {
int value;
llist_ptr_t next;
} llist_elem_t;
static const llist_ptr_t nil = { -1, (MPI_Aint) MPI_BOTTOM };
static const int verbose = 0;
static const int print_perf = 0;
/* List of locally allocated list elements. */
static llist_elem_t **my_elems = NULL;
static int my_elems_size = 0;
static int my_elems_count = 0;
/* Allocate a new shared linked list element */
static MPI_Aint alloc_elem(int value, MPI_Win win)
{
MPI_Aint disp;
llist_elem_t *elem_ptr;
/* Allocate the new element and register it with the window */
MPI_Alloc_mem(sizeof(llist_elem_t), MPI_INFO_NULL, &elem_ptr);
elem_ptr->value = value;
elem_ptr->next = nil;
MPI_Win_attach(win, elem_ptr, sizeof(llist_elem_t));
/* Add the element to the list of local elements so we can free it later. */
if (my_elems_size == my_elems_count) {
my_elems_size += 100;
my_elems = realloc(my_elems, my_elems_size * sizeof(void *));
}
my_elems[my_elems_count] = elem_ptr;
my_elems_count++;
MPI_Get_address(elem_ptr, &disp);
return disp;
}
int main(int argc, char **argv)
{
int procid, nproc, i, j, my_nelem;
int pollint = 0;
double time;
MPI_Win llist_win;
llist_ptr_t head_ptr, tail_ptr;
int errs = 0;
MTest_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &procid);
MPI_Comm_size(MPI_COMM_WORLD, &nproc);
MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &llist_win);
/* Process 0 creates the head node */
if (procid == 0)
head_ptr.disp = alloc_elem(procid, llist_win);
/* Broadcast the head pointer to everyone */
head_ptr.rank = 0;
MPI_Bcast(&head_ptr.disp, 1, MPI_AINT, 0, MPI_COMM_WORLD);
tail_ptr = head_ptr;
/* All processes append NUM_ELEMS elements to the list; rank 0 has already
* appended an element. */
if (procid == 0)
i = 1;
else
i = 0;
my_nelem = NUM_ELEMS / nproc;
if (procid < NUM_ELEMS % nproc)
my_nelem++;
MPI_Barrier(MPI_COMM_WORLD);
time = MPI_Wtime();
for (; i < my_nelem; i++) {
llist_ptr_t new_elem_ptr;
int success = 0;
MTEST_VG_MEM_INIT(&new_elem_ptr, sizeof(llist_ptr_t));
/* Create a new list element and register it with the window */
new_elem_ptr.rank = procid;
new_elem_ptr.disp = alloc_elem(procid, llist_win);
/* Append the new node to the list. This might take multiple attempts if
* others have already appended and our tail pointer is stale. */
do {
int flag;
/* The tail is at my left neighbor, append my element. */
if (tail_ptr.rank == (procid + nproc - 1) % nproc) {
if (verbose)
printf("%d: Appending to <%d, %p>\n", procid, tail_ptr.rank,
(void *) tail_ptr.disp);
#ifdef USE_MODE_NOCHECK
MPI_Win_lock(MPI_LOCK_SHARED, tail_ptr.rank, MPI_MODE_NOCHECK, llist_win);
#else
MPI_Win_lock(MPI_LOCK_SHARED, tail_ptr.rank, 0, llist_win);
#endif
MPI_Accumulate(&new_elem_ptr, sizeof(llist_ptr_t), MPI_BYTE, tail_ptr.rank,
(MPI_Aint) & (((llist_elem_t *) tail_ptr.disp)->next),
sizeof(llist_ptr_t), MPI_BYTE, MPI_REPLACE, llist_win);
MPI_Win_unlock(tail_ptr.rank, llist_win);
success = 1;
tail_ptr = new_elem_ptr;
}
/* Otherwise, chase the tail. */
else {
llist_ptr_t next_tail_ptr;
#ifdef USE_MODE_NOCHECK
MPI_Win_lock(MPI_LOCK_SHARED, tail_ptr.rank, MPI_MODE_NOCHECK, llist_win);
#else
MPI_Win_lock(MPI_LOCK_SHARED, tail_ptr.rank, 0, llist_win);
#endif
MPI_Get_accumulate(NULL, 0, MPI_DATATYPE_NULL, &next_tail_ptr,
sizeof(llist_ptr_t), MPI_BYTE, tail_ptr.rank,
(MPI_Aint) & (((llist_elem_t *) tail_ptr.disp)->next),
sizeof(llist_ptr_t), MPI_BYTE, MPI_NO_OP, llist_win);
MPI_Win_unlock(tail_ptr.rank, llist_win);
if (next_tail_ptr.rank != nil.rank) {
if (verbose)
printf("%d: Chasing to <%d, %p>\n", procid, next_tail_ptr.rank,
(void *) next_tail_ptr.disp);
tail_ptr = next_tail_ptr;
pollint = MAX(MIN_NPROBE, pollint / 2);
} else {
for (j = 0; j < pollint; j++)
MPI_Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &flag,
MPI_STATUS_IGNORE);
pollint = MIN(MAX_NPROBE, pollint * 2);
}
}
} while (!success);
}
MPI_Barrier(MPI_COMM_WORLD);
time = MPI_Wtime() - time;
/* Traverse the list and verify that all processes inserted exactly the correct
* number of elements. */
if (procid == 0) {
int *counts, count = 0;
counts = (int *) malloc(sizeof(int) * nproc);
assert(counts != NULL);
for (i = 0; i < nproc; i++)
counts[i] = 0;
tail_ptr = head_ptr;
MPI_Win_lock_all(0, llist_win);
/* Walk the list and tally up the number of elements inserted by each rank */
while (tail_ptr.disp != nil.disp) {
llist_elem_t elem;
MPI_Get(&elem, sizeof(llist_elem_t), MPI_BYTE,
tail_ptr.rank, tail_ptr.disp, sizeof(llist_elem_t), MPI_BYTE, llist_win);
MPI_Win_flush(tail_ptr.rank, llist_win);
tail_ptr = elem.next;
assert(elem.value >= 0 && elem.value < nproc);
counts[elem.value]++;
count++;
if (verbose) {
int last_elem = tail_ptr.disp == nil.disp;
printf("%2d%s", elem.value, last_elem ? "" : " -> ");
if (count % ELEM_PER_ROW == 0 && !last_elem)
printf("\n");
}
}
MPI_Win_unlock_all(llist_win);
if (verbose)
printf("\n\n");
/* Verify the counts we collected */
for (i = 0; i < nproc; i++) {
int expected;
expected = NUM_ELEMS / nproc;
if (i < NUM_ELEMS % nproc)
expected++;
if (counts[i] != expected) {
printf("Error: Rank %d inserted %d elements, expected %d\n", i, counts[i],
expected);
errs++;
}
}
free(counts);
}
if (print_perf) {
double max_time;
MPI_Reduce(&time, &max_time, 1, MPI_DOUBLE, MPI_MAX, 0, MPI_COMM_WORLD);
if (procid == 0) {
printf("Total time = %0.2f sec, elem/sec = %0.2f, sec/elem = %0.2f usec\n", max_time,
NUM_ELEMS / max_time, max_time / NUM_ELEMS * 1.0e6);
}
}
MPI_Win_free(&llist_win);
/* Free all the elements in the list */
for (; my_elems_count > 0; my_elems_count--)
MPI_Free_mem(my_elems[my_elems_count - 1]);
MTest_Finalize(errs);
return MTestReturnValue(errs);
}
|