1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* Copyright (C) by Argonne National Laboratory
* See COPYRIGHT in top-level directory
*/
#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
#include "mpitest.h"
#include <string.h>
/*
static char MTEST_Descrip[] = "Mix synchronization types";
*/
void delay(double time);
void delay(double time)
{
double t1;
t1 = MPI_Wtime();
while (MPI_Wtime() - t1 < time);
}
int main(int argc, char *argv[])
{
int errs = 0;
int crank, csize, source, dest, loop;
int *buf0, *buf1, *buf2, *inbuf2, count0, count1, count2, count, i;
MPI_Comm comm;
MPI_Win win;
int *winbuf;
MTest_Init(&argc, &argv);
comm = MPI_COMM_WORLD;
count0 = 1000;
count1 = 1;
count2 = 100;
count = count0 + count1 + count2 + 2;
/* Allocate and initialize the local buffers */
buf0 = (int *) malloc(count0 * sizeof(int));
buf1 = (int *) malloc(count1 * sizeof(int));
buf2 = (int *) malloc(count2 * sizeof(int));
inbuf2 = (int *) malloc(count2 * sizeof(int));
if (!buf0 || !buf1 || !buf2 || !inbuf2) {
fprintf(stderr, "Unable to allocated buf0-2\n");
MPI_Abort(MPI_COMM_WORLD, 1);
}
for (i = 0; i < count0; i++)
buf0[i] = i;
for (i = 0; i < count1; i++)
buf1[i] = i + count0;
for (i = 0; i < count2; i++)
buf2[i] = i + count0 + count1;
/* Allocate the window buffer and create the memory window. */
MPI_Alloc_mem(count * sizeof(int), MPI_INFO_NULL, &winbuf);
if (!winbuf) {
fprintf(stderr, "Unable to allocate %d words\n", count);
MPI_Abort(MPI_COMM_WORLD, 0);
}
MPI_Win_create(winbuf, count * sizeof(int), sizeof(int), MPI_INFO_NULL, comm, &win);
MPI_Comm_size(comm, &csize);
MPI_Comm_rank(comm, &crank);
dest = 0;
source = 1;
for (loop = 0; loop < 2; loop++) {
/* Perform several communication operations, mixing synchronization
* types. Use multiple communication to avoid the single-operation
* optimization that may be present. */
MTestPrintfMsg(3, "Beginning loop %d of mixed sync put operations\n", loop);
MPI_Barrier(comm);
if (crank == source) {
MTestPrintfMsg(3, "About to perform exclusive lock\n");
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, dest, 0, win);
MPI_Put(buf0, count0, MPI_INT, dest, 0, count0, MPI_INT, win);
MPI_Put(buf1, count1, MPI_INT, dest, count0, count1, MPI_INT, win);
MPI_Put(buf2, count2, MPI_INT, dest, count0 + count1, count2, MPI_INT, win);
MPI_Win_unlock(dest, win);
MTestPrintfMsg(3, "Released exclusive lock\n");
} else if (crank == dest) {
/* Just delay a bit */
delay(0.0001);
}
/* The synchronization mode can only be changed when the process
* memory and public copy are guaranteed to have the same values
* (See 11.7, Semantics and Correctness). This barrier ensures that
* the lock/unlock completes before the fence call. */
MPI_Barrier(comm);
MTestPrintfMsg(3, "About to start fence\n");
MPI_Win_fence(0, win);
if (crank == source) {
MPI_Put(buf0, count0, MPI_INT, dest, 1, count0, MPI_INT, win);
MPI_Put(buf1, count1, MPI_INT, dest, 1 + count0, count1, MPI_INT, win);
MPI_Put(buf2, count2, MPI_INT, dest, 1 + count0 + count1, count2, MPI_INT, win);
}
MPI_Win_fence(0, win);
MTestPrintfMsg(3, "Finished with fence sync\n");
/* Check results */
if (crank == dest) {
for (i = 0; i < count0 + count1 + count2; i++) {
if (winbuf[1 + i] != i) {
errs++;
if (errs < 10) {
fprintf(stderr, "winbuf[%d] = %d, expected %d\n", 1 + i, winbuf[1 + i], i);
fflush(stderr);
}
}
}
}
/* End of test loop */
}
/* Use mixed put and accumulate */
for (loop = 0; loop < 2; loop++) {
/* Perform several communication operations, mixing synchronization
* types. Use multiple communication to avoid the single-operation
* optimization that may be present. */
MTestPrintfMsg(3, "Beginning loop %d of mixed sync put/acc operations\n", loop);
memset(winbuf, 0, count * sizeof(int));
MPI_Barrier(comm);
if (crank == source) {
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, dest, 0, win);
MPI_Accumulate(buf0, count0, MPI_INT, dest, 0, count0, MPI_INT, MPI_SUM, win);
MPI_Accumulate(buf1, count1, MPI_INT, dest, count0, count1, MPI_INT, MPI_SUM, win);
MPI_Put(buf2, count2, MPI_INT, dest, count0 + count1, count2, MPI_INT, win);
MPI_Win_unlock(dest, win);
} else if (crank == dest) {
/* Just delay a bit */
delay(0.0001);
}
/* See above - the fence should not start until the unlock completes */
MPI_Barrier(comm);
MPI_Win_fence(0, win);
if (crank == source) {
MPI_Accumulate(buf0, count0, MPI_INT, dest, 1, count0, MPI_INT, MPI_REPLACE, win);
MPI_Accumulate(buf1, count1, MPI_INT, dest, 1 + count0, count1,
MPI_INT, MPI_REPLACE, win);
MPI_Put(buf2, count2, MPI_INT, dest, 1 + count0 + count1, count2, MPI_INT, win);
}
MPI_Win_fence(0, win);
/* Check results */
if (crank == dest) {
for (i = 0; i < count0 + count1 + count2; i++) {
if (winbuf[1 + i] != i) {
errs++;
if (errs < 10) {
fprintf(stderr, "winbuf[%d] = %d, expected %d\n", 1 + i, winbuf[1 + i], i);
fflush(stderr);
}
}
}
}
/* End of test loop */
}
/* Use mixed accumulate and get */
for (loop = 0; loop < 2; loop++) {
/* Perform several communication operations, mixing synchronization
* types. Use multiple communication to avoid the single-operation
* optimization that may be present. */
MTestPrintfMsg(3, "Beginning loop %d of mixed sync put/get/acc operations\n", loop);
MPI_Barrier(comm);
if (crank == source) {
MPI_Win_lock(MPI_LOCK_EXCLUSIVE, dest, 0, win);
MPI_Accumulate(buf0, count0, MPI_INT, dest, 0, count0, MPI_INT, MPI_REPLACE, win);
MPI_Put(buf1, count1, MPI_INT, dest, count0, count1, MPI_INT, win);
MPI_Get(inbuf2, count2, MPI_INT, dest, count0 + count1, count2, MPI_INT, win);
MPI_Win_unlock(dest, win);
} else if (crank == dest) {
/* Just delay a bit */
delay(0.0001);
}
/* See above - the fence should not start until the unlock completes */
MPI_Barrier(comm);
MPI_Win_fence(0, win);
if (crank == source) {
MPI_Accumulate(buf0, count0, MPI_INT, dest, 1, count0, MPI_INT, MPI_REPLACE, win);
MPI_Put(buf1, count1, MPI_INT, dest, 1 + count0, count1, MPI_INT, win);
MPI_Get(inbuf2, count2, MPI_INT, dest, 1 + count0 + count1, count2, MPI_INT, win);
}
MPI_Win_fence(0, win);
/* Check results */
if (crank == dest) {
/* Do the put/accumulate parts */
for (i = 0; i < count0 + count1; i++) {
if (winbuf[1 + i] != i) {
errs++;
if (errs < 10) {
fprintf(stderr, "winbuf[%d] = %d, expected %d\n", 1 + i, winbuf[1 + i], i);
fflush(stderr);
}
}
}
}
/* End of test loop */
}
MTestPrintfMsg(3, "Freeing the window\n");
MPI_Barrier(comm);
MPI_Win_free(&win);
MPI_Free_mem(winbuf);
free(buf0);
free(buf1);
free(buf2);
free(inbuf2);
MTest_Finalize(errs);
return MTestReturnValue(errs);
}
|