File: strided_getacc_indexed_shared.c

package info (click to toggle)
mpich 4.0.2-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 423,384 kB
  • sloc: ansic: 1,088,434; cpp: 71,364; javascript: 40,763; f90: 22,829; sh: 17,463; perl: 14,773; xml: 14,418; python: 10,265; makefile: 9,246; fortran: 8,008; java: 4,355; asm: 324; ruby: 176; lisp: 19; php: 8; sed: 4
file content (150 lines) | stat: -rw-r--r-- 4,697 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/*
 * Copyright (C) by Argonne National Laboratory
 *     See COPYRIGHT in top-level directory
 */

/* One-Sided MPI 2-D Strided Accumulate Test
 *
 * Author: James Dinan <dinan@mcs.anl.gov>
 * Date  : November, 2012
 *
 * This code performs N strided put operations followed by get operations into
 * a 2d patch of a shared array.  The array has dimensions [X, Y] and the
 * subarray has dimensions [SUB_X, SUB_Y] and begins at index [0, 0].  The
 * input and output buffers are specified using an MPI indexed type.
 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <mpi.h>
#include "mpitest.h"
#include "squelch.h"

#define XDIM 8
#define YDIM 1024
#define SUB_XDIM 1
#define SUB_YDIM 2
#define ITERATIONS 10

int main(int argc, char **argv)
{
    int rank, nranks, rank_world, nranks_world;
    int i, j, peer, bufsize, errors;
    double *win_buf, *src_buf, *dst_buf;
    MPI_Win buf_win;
    MPI_Comm shr_comm;

    MTest_Init(&argc, &argv);

    MPI_Comm_rank(MPI_COMM_WORLD, &rank_world);
    MPI_Comm_size(MPI_COMM_WORLD, &nranks_world);

    MPI_Comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, rank_world, MPI_INFO_NULL, &shr_comm);

    MPI_Comm_rank(shr_comm, &rank);
    MPI_Comm_size(shr_comm, &nranks);

    bufsize = XDIM * YDIM * sizeof(double);
    MPI_Alloc_mem(bufsize, MPI_INFO_NULL, &src_buf);
    MPI_Alloc_mem(bufsize, MPI_INFO_NULL, &dst_buf);

    MPI_Win_allocate_shared(bufsize, 1, MPI_INFO_NULL, shr_comm, &win_buf, &buf_win);

    MPI_Win_fence(0, buf_win);

    for (i = 0; i < XDIM * YDIM; i++) {
        *(win_buf + i) = -1.0;
        *(src_buf + i) = 1.0 + rank;
    }

    MPI_Win_fence(0, buf_win);

    peer = (rank + 1) % nranks;

    /* Perform ITERATIONS strided accumulate operations */

    for (i = 0; i < ITERATIONS; i++) {
        int idx_rem[SUB_YDIM];
        int blk_len[SUB_YDIM];
        MPI_Datatype src_type, dst_type;

        for (j = 0; j < SUB_YDIM; j++) {
            idx_rem[j] = j * XDIM;
            blk_len[j] = SUB_XDIM;
        }

        MPI_Type_indexed(SUB_YDIM, blk_len, idx_rem, MPI_DOUBLE, &src_type);
        MPI_Type_indexed(SUB_YDIM, blk_len, idx_rem, MPI_DOUBLE, &dst_type);

        MPI_Type_commit(&src_type);
        MPI_Type_commit(&dst_type);

        /* PUT */
        MPI_Win_lock(MPI_LOCK_EXCLUSIVE, peer, 0, buf_win);
        MPI_Get_accumulate(src_buf, 1, src_type, dst_buf, 1, src_type, peer, 0,
                           1, dst_type, MPI_REPLACE, buf_win);
        MPI_Win_unlock(peer, buf_win);

        /* GET */
        MPI_Win_lock(MPI_LOCK_EXCLUSIVE, peer, 0, buf_win);
        MPI_Get_accumulate(src_buf, 1, src_type, dst_buf, 1, src_type, peer, 0,
                           1, dst_type, MPI_NO_OP, buf_win);
        MPI_Win_unlock(peer, buf_win);

        MPI_Type_free(&src_type);
        MPI_Type_free(&dst_type);
    }

    MPI_Barrier(MPI_COMM_WORLD);

    /* Verify that the results are correct */

    MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, 0, buf_win);
    errors = 0;
    for (i = 0; i < SUB_XDIM; i++) {
        for (j = 0; j < SUB_YDIM; j++) {
            const double actual = *(win_buf + i + j * XDIM);
            const double expected = (1.0 + ((rank + nranks - 1) % nranks));
            if (fabs(actual - expected) > 1.0e-10) {
                SQUELCH(printf("%d: Data validation failed at [%d, %d] expected=%f actual=%f\n",
                               rank, j, i, expected, actual););
                errors++;
                fflush(stdout);
            }
        }
    }
    for (i = SUB_XDIM; i < XDIM; i++) {
        for (j = 0; j < SUB_YDIM; j++) {
            const double actual = *(win_buf + i + j * XDIM);
            const double expected = -1.0;
            if (fabs(actual - expected) > 1.0e-10) {
                SQUELCH(printf("%d: Data validation failed at [%d, %d] expected=%f actual=%f\n",
                               rank, j, i, expected, actual););
                errors++;
                fflush(stdout);
            }
        }
    }
    for (i = 0; i < XDIM; i++) {
        for (j = SUB_YDIM; j < YDIM; j++) {
            const double actual = *(win_buf + i + j * XDIM);
            const double expected = -1.0;
            if (fabs(actual - expected) > 1.0e-10) {
                SQUELCH(printf("%d: Data validation failed at [%d, %d] expected=%f actual=%f\n",
                               rank, j, i, expected, actual););
                errors++;
                fflush(stdout);
            }
        }
    }
    MPI_Win_unlock(rank, buf_win);

    MPI_Win_free(&buf_win);
    MPI_Free_mem(src_buf);
    MPI_Free_mem(dst_buf);
    MPI_Comm_free(&shr_comm);

    MTest_Finalize(errors);
    return MTestReturnValue(errors);
}