1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
/**
* Copyright (c) NVIDIA CORPORATION & AFFILIATES, 2001-2016. ALL RIGHTS RESERVED.
*
* See file LICENSE for terms.
*/
#ifndef UCX_HELLO_WORLD_H
#define UCX_HELLO_WORLD_H
#include <ucs/memory/memory_type.h>
#include <sys/poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <netdb.h>
#ifdef HAVE_CUDA
# include <cuda.h>
# include <cuda_runtime.h>
#endif
#define CHKERR_ACTION(_cond, _msg, _action) \
do { \
if (_cond) { \
fprintf(stderr, "Failed to %s\n", _msg); \
_action; \
} \
} while (0)
#define CHKERR_JUMP(_cond, _msg, _label) \
CHKERR_ACTION(_cond, _msg, goto _label)
#define CHKERR_JUMP_RETVAL(_cond, _msg, _label, _retval) \
do { \
if (_cond) { \
fprintf(stderr, "Failed to %s, return value %d\n", _msg, _retval); \
goto _label; \
} \
} while (0)
static ucs_memory_type_t test_mem_type = UCS_MEMORY_TYPE_HOST;
#define CUDA_FUNC(_func) \
do { \
cudaError_t _result = (_func); \
if (cudaSuccess != _result) { \
fprintf(stderr, "%s failed: %s\n", \
#_func, cudaGetErrorString(_result)); \
} \
} while(0)
void print_common_help(void);
void *mem_type_malloc(size_t length)
{
void *ptr;
switch (test_mem_type) {
case UCS_MEMORY_TYPE_HOST:
ptr = malloc(length);
break;
#ifdef HAVE_CUDA
case UCS_MEMORY_TYPE_CUDA:
CUDA_FUNC(cudaMalloc(&ptr, length));
break;
case UCS_MEMORY_TYPE_CUDA_MANAGED:
CUDA_FUNC(cudaMallocManaged(&ptr, length, cudaMemAttachGlobal));
break;
#endif
default:
fprintf(stderr, "Unsupported memory type: %d\n", test_mem_type);
ptr = NULL;
break;
}
return ptr;
}
void mem_type_free(void *address)
{
switch (test_mem_type) {
case UCS_MEMORY_TYPE_HOST:
free(address);
break;
#ifdef HAVE_CUDA
case UCS_MEMORY_TYPE_CUDA:
case UCS_MEMORY_TYPE_CUDA_MANAGED:
CUDA_FUNC(cudaFree(address));
break;
#endif
default:
fprintf(stderr, "Unsupported memory type: %d\n", test_mem_type);
break;
}
}
void *mem_type_memcpy(void *dst, const void *src, size_t count)
{
switch (test_mem_type) {
case UCS_MEMORY_TYPE_HOST:
memcpy(dst, src, count);
break;
#ifdef HAVE_CUDA
case UCS_MEMORY_TYPE_CUDA:
case UCS_MEMORY_TYPE_CUDA_MANAGED:
CUDA_FUNC(cudaMemcpy(dst, src, count, cudaMemcpyDefault));
break;
#endif
default:
fprintf(stderr, "Unsupported memory type: %d\n", test_mem_type);
break;
}
return dst;
}
void *mem_type_memset(void *dst, int value, size_t count)
{
switch (test_mem_type) {
case UCS_MEMORY_TYPE_HOST:
memset(dst, value, count);
break;
#ifdef HAVE_CUDA
case UCS_MEMORY_TYPE_CUDA:
case UCS_MEMORY_TYPE_CUDA_MANAGED:
CUDA_FUNC(cudaMemset(dst, value, count));
break;
#endif
default:
fprintf(stderr, "Unsupported memory type: %d", test_mem_type);
break;
}
return dst;
}
int check_mem_type_support(ucs_memory_type_t mem_type)
{
switch (test_mem_type) {
case UCS_MEMORY_TYPE_HOST:
return 1;
case UCS_MEMORY_TYPE_CUDA:
case UCS_MEMORY_TYPE_CUDA_MANAGED:
#ifdef HAVE_CUDA
return 1;
#else
return 0;
#endif
default:
fprintf(stderr, "Unsupported memory type: %d", test_mem_type);
break;
}
return 0;
}
ucs_memory_type_t parse_mem_type(const char *opt_arg)
{
if (!strcmp(opt_arg, "host")) {
return UCS_MEMORY_TYPE_HOST;
} else if (!strcmp(opt_arg, "cuda") &&
check_mem_type_support(UCS_MEMORY_TYPE_CUDA)) {
return UCS_MEMORY_TYPE_CUDA;
} else if (!strcmp(opt_arg, "cuda-managed") &&
check_mem_type_support(UCS_MEMORY_TYPE_CUDA_MANAGED)) {
return UCS_MEMORY_TYPE_CUDA_MANAGED;
} else {
fprintf(stderr, "Unsupported memory type: \"%s\".\n", opt_arg);
}
return UCS_MEMORY_TYPE_LAST;
}
void print_common_help()
{
fprintf(stderr, " -p <port> Set alternative server port (default:13337)\n");
fprintf(stderr, " -6 Use IPv6 address in data exchange\n");
fprintf(stderr, " -s <size> Set test string length (default:16)\n");
fprintf(stderr, " -m <mem type> Memory type of messages\n");
fprintf(stderr, " host - system memory (default)\n");
if (check_mem_type_support(UCS_MEMORY_TYPE_CUDA)) {
fprintf(stderr, " cuda - NVIDIA GPU memory\n");
}
if (check_mem_type_support(UCS_MEMORY_TYPE_CUDA_MANAGED)) {
fprintf(stderr, " cuda-managed - NVIDIA GPU managed/unified memory\n");
}
}
int connect_common(const char *server, uint16_t server_port, sa_family_t af)
{
int sockfd = -1;
int listenfd = -1;
int optval = 1;
char service[8];
struct addrinfo hints, *res, *t;
int ret;
snprintf(service, sizeof(service), "%u", server_port);
memset(&hints, 0, sizeof(hints));
hints.ai_flags = (server == NULL) ? AI_PASSIVE : 0;
hints.ai_family = af;
hints.ai_socktype = SOCK_STREAM;
ret = getaddrinfo(server, service, &hints, &res);
CHKERR_JUMP(ret < 0, "getaddrinfo() failed", out);
for (t = res; t != NULL; t = t->ai_next) {
sockfd = socket(t->ai_family, t->ai_socktype, t->ai_protocol);
if (sockfd < 0) {
continue;
}
if (server != NULL) {
if (connect(sockfd, t->ai_addr, t->ai_addrlen) == 0) {
break;
}
} else {
ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &optval,
sizeof(optval));
CHKERR_JUMP(ret < 0, "server setsockopt()", err_close_sockfd);
if (bind(sockfd, t->ai_addr, t->ai_addrlen) == 0) {
ret = listen(sockfd, 0);
CHKERR_JUMP(ret < 0, "listen server", err_close_sockfd);
/* Accept next connection */
fprintf(stdout, "Waiting for connection...\n");
listenfd = sockfd;
sockfd = accept(listenfd, NULL, NULL);
close(listenfd);
break;
}
}
close(sockfd);
sockfd = -1;
}
CHKERR_ACTION(sockfd < 0,
(server) ? "open client socket" : "open server socket",
(void)sockfd /* no action */);
out_free_res:
freeaddrinfo(res);
out:
return sockfd;
err_close_sockfd:
close(sockfd);
sockfd = -1;
goto out_free_res;
}
static inline int
barrier(int oob_sock, void (*progress_cb)(void *arg), void *arg)
{
struct pollfd pfd;
int dummy = 0;
ssize_t res;
res = send(oob_sock, &dummy, sizeof(dummy), 0);
if (res < 0) {
return res;
}
pfd.fd = oob_sock;
pfd.events = POLLIN;
pfd.revents = 0;
do {
res = poll(&pfd, 1, 1);
progress_cb(arg);
} while (res != 1);
res = recv(oob_sock, &dummy, sizeof(dummy), MSG_WAITALL);
/* number of received bytes should be the same as sent */
return !(res == sizeof(dummy));
}
static inline int generate_test_string(char *str, int size)
{
char *tmp_str;
int i;
tmp_str = calloc(1, size);
CHKERR_ACTION(tmp_str == NULL, "allocate memory\n", return -1);
for (i = 0; i < (size - 1); ++i) {
tmp_str[i] = 'A' + (i % 26);
}
mem_type_memcpy(str, tmp_str, size);
free(tmp_str);
return 0;
}
#endif /* UCX_HELLO_WORLD_H */
|