1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*
* Copyright (C) by Argonne National Laboratory
* See COPYRIGHT in top-level directory
*/
#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
#include "mpitest.h"
/*
static char MTEST_Descrip[] = "Test MPI_Reduce with non-commutative user-define operations and arbitrary root";
*/
/*
* This tests that the reduce operation respects the noncommutative flag.
* and that can distinguish between P_{root} P_{root+1}
* ... P_{root-1} and P_0 ... P_{size-1} . The MPI standard clearly
* specifies that the result is P_0 ... P_{size-1}, independent of the root
* (see 4.9.4 in MPI-1)
*/
/* This implements a simple matrix-matrix multiply. This is an associative
but not commutative operation. The matrix size is set in matSize;
the number of matrices is the count argument. The matrix is stored
in C order, so that
c(i,j) is cin[j+i*matSize]
*/
#define MAXCOL 256
static int matSize = 0; /* Must be < MAXCOL */
void uop(void *cinPtr, void *coutPtr, int *count, MPI_Datatype * dtype);
void uop(void *cinPtr, void *coutPtr, int *count, MPI_Datatype * dtype)
{
const int *cin;
int *cout;
int i, j, k, nmat;
int tempCol[MAXCOL];
if (*count != 1)
printf("Panic!\n");
for (nmat = 0; nmat < *count; nmat++) {
cin = (const int *) cinPtr;
cout = (int *) coutPtr;
for (j = 0; j < matSize; j++) {
for (i = 0; i < matSize; i++) {
tempCol[i] = 0;
for (k = 0; k < matSize; k++) {
/* col[i] += cin(i,k) * cout(k,j) */
tempCol[i] += cin[k + i * matSize] * cout[j + k * matSize];
}
}
for (i = 0; i < matSize; i++) {
cout[j + i * matSize] = tempCol[i];
}
}
cinPtr = (int *) cinPtr + matSize * matSize;
coutPtr = (int *) coutPtr + matSize * matSize;
}
}
/* Initialize the integer matrix as a permutation of rank with rank+1.
If we call this matrix P_r, we know that product of P_0 P_1 ... P_{size-1}
is the matrix with rows ordered as
1,size,2,3,4,...,size-1
(The matrix is basically a circular shift right,
shifting right n-1 steps for an n x n dimensional matrix, with the last
step swapping rows 1 and size)
*/
static void initMat(MPI_Comm comm, int mat[])
{
int i, size, rank;
MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);
/* Remember the matrix size */
matSize = size;
for (i = 0; i < matSize * matSize; i++)
mat[i] = 0;
for (i = 0; i < matSize; i++) {
if (i == rank)
mat[((i + 1) % matSize) + i * matSize] = 1;
else if (i == ((rank + 1) % matSize))
mat[((i + matSize - 1) % matSize) + i * matSize] = 1;
else
mat[i + i * matSize] = 1;
}
}
/* Compare a matrix with the identity matrix */
/*
static int isIdentity(MPI_Comm comm, int mat[])
{
int i, j, size, rank, errs = 0;
MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);
for (i=0; i<size; i++) {
for (j=0; j<size; j++) {
if (j == i) {
if (mat[j+i*size] != 1) {
printf("mat(%d,%d) = %d, should = 1\n",
i, j, mat[j+i*size]);
errs++;
}
}
else {
if (mat[j+i*size] != 0) {
printf("mat(%d,%d) = %d, should = 0\n",
i, j, mat[j+i*size]);
errs++;
}
}
}
}
return errs;
}
*/
/* Compare a matrix with the identity matrix with rows permuted to as rows
1,size,2,3,4,5,...,size-1 */
static int isPermutedIdentity(MPI_Comm comm, int mat[])
{
int i, j, size, rank, errs = 0;
MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);
/* Check the first two last rows */
i = 0;
for (j = 0; j < size; j++) {
if (j == 0) {
if (mat[j] != 1) {
printf("mat(%d,%d) = %d, should = 1\n", i, j, mat[j]);
errs++;
}
} else {
if (mat[j] != 0) {
printf("mat(%d,%d) = %d, should = 0\n", i, j, mat[j]);
errs++;
}
}
}
i = 1;
for (j = 0; j < size; j++) {
if (j == size - 1) {
if (mat[j + i * size] != 1) {
printf("mat(%d,%d) = %d, should = 1\n", i, j, mat[j + i * size]);
errs++;
}
} else {
if (mat[j + i * size] != 0) {
printf("mat(%d,%d) = %d, should = 0\n", i, j, mat[j + i * size]);
errs++;
}
}
}
/* The remaint rows are shifted down by one */
for (i = 2; i < size; i++) {
for (j = 0; j < size; j++) {
if (j == i - 1) {
if (mat[j + i * size] != 1) {
printf("mat(%d,%d) = %d, should = 1\n", i, j, mat[j + i * size]);
errs++;
}
} else {
if (mat[j + i * size] != 0) {
printf("mat(%d,%d) = %d, should = 0\n", i, j, mat[j + i * size]);
errs++;
}
}
}
}
return errs;
}
int main(int argc, char *argv[])
{
int errs = 0;
int rank, size, root;
int minsize = 2, count;
MPI_Comm comm;
int *buf, *bufout;
MPI_Op op;
MPI_Datatype mattype;
MTest_Init(&argc, &argv);
MPI_Op_create(uop, 0, &op);
while (MTestGetIntracommGeneral(&comm, minsize, 1)) {
if (comm == MPI_COMM_NULL)
continue;
MPI_Comm_size(comm, &size);
MPI_Comm_rank(comm, &rank);
if (size > MAXCOL) {
/* Skip because there are too many processes */
MTestFreeComm(&comm);
continue;
}
/* Only one matrix for now */
count = 1;
/* A single matrix, the size of the communicator */
MPI_Type_contiguous(size * size, MPI_INT, &mattype);
MPI_Type_commit(&mattype);
buf = (int *) malloc(count * size * size * sizeof(int));
if (!buf)
MPI_Abort(MPI_COMM_WORLD, 1);
bufout = (int *) malloc(count * size * size * sizeof(int));
if (!bufout)
MPI_Abort(MPI_COMM_WORLD, 1);
for (root = 0; root < size; root++) {
initMat(comm, buf);
MPI_Reduce(buf, bufout, count, mattype, op, root, comm);
if (rank == root) {
errs += isPermutedIdentity(comm, bufout);
}
/* Try the same test, but using MPI_IN_PLACE */
initMat(comm, bufout);
if (rank == root) {
MPI_Reduce(MPI_IN_PLACE, bufout, count, mattype, op, root, comm);
} else {
MPI_Reduce(bufout, NULL, count, mattype, op, root, comm);
}
if (rank == root) {
errs += isPermutedIdentity(comm, bufout);
}
}
MPI_Type_free(&mattype);
free(buf);
free(bufout);
MTestFreeComm(&comm);
}
MPI_Op_free(&op);
MTest_Finalize(errs);
return MTestReturnValue(errs);
}
|