1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
|
/*
* Copyright (C) by Argonne National Laboratory
* See COPYRIGHT in top-level directory
*/
#include "mpitest.h"
#include "mtest_common.h"
#include <assert.h>
#include <string.h>
/* ------------------------------------------------------------------------ */
/* Utilities related to test environment */
/* Some tests would like to test with large buffer, but an arbitrary size may fail
on machines that does not have sufficient memory or the OS may not support it.
This routine provides a portable interface to get that max size.
It is taking the simplest solution here: default to 2GB, unless user set via
environment variable -- MPITEST_MAXBUFFER
*/
MPI_Aint MTestDefaultMaxBufferSize(void)
{
MPI_Aint max_size = 1073741824;
if (sizeof(void *) == 4) {
/* 32-bit is very easy to overflow, which may still result in a
* seemingly valid size. Use a smaller maximum to reduce the chance
* -- an overflow integer is likely to be negative or very large. */
max_size = 268435456;
}
char *envval = NULL;
envval = getenv("MPITEST_MAXBUFFER");
if (envval) {
max_size = atol(envval);
}
return max_size;
}
/* ------------------------------------------------------------------------ */
/* Utilities to parse command line options */
/* Parses argument in the form of: -arg1=value1 -arg2=value2 ...
Arguments can be supplied in any order, but missing argument will cause error.
*/
typedef struct MTestArgListEntry {
char *arg;
char *val;
struct MTestArgListEntry *next;
} MTestArgListEntry;
static void MTestArgListInsert(MTestArgListEntry ** head, char *arg, char *val)
{
MTestArgListEntry *tmp = *head;
if (!tmp) {
tmp = malloc(sizeof(MTestArgListEntry));
tmp->arg = arg;
tmp->val = val;
tmp->next = NULL;
*head = tmp;
return;
}
while (tmp->next)
tmp = tmp->next;
tmp->next = malloc(sizeof(MTestArgListEntry));
tmp->next->arg = arg;
tmp->next->val = val;
tmp->next->next = NULL;
}
char *MTestArgListSearch(MTestArgList * dummy_head, const char *arg)
{
MTestArgListEntry *head = dummy_head;
char *val = NULL;
while (head && strcmp(head->arg, arg))
head = head->next;
if (head)
val = head->val;
return val;
}
static void MTestArgListPrintError(const char *arg)
{
fprintf(stderr, "Error: argument -%s= has not been defined!\n", arg);
exit(-1);
}
void MTestArgListDestroy(MTestArgList * head)
{
MTestArgListEntry *cur = (MTestArgListEntry *) head;
while (cur) {
MTestArgListEntry *prev = cur;
cur = cur->next;
free(prev->arg);
free(prev->val);
free(prev);
}
}
/*
* following args are expected to be of the form: -arg=val
*/
MTestArgList *MTestArgListCreate(int argc, char *argv[])
{
int i;
char *string = NULL;
char *tmp = NULL;
char *arg = NULL;
char *val = NULL;
MTestArgListEntry *head = NULL;
for (i = 1; i < argc; i++) {
/* extract arg and val */
assert(argv[i][0] == '-' && argv[i][1] != '-');
string = strdup(argv[i]);
tmp = strtok(string, "=");
arg = strdup(tmp + 1); /* skip prepending '-' */
tmp = strtok(NULL, "=");
assert(tmp != NULL);
val = strdup(tmp);
MTestArgListInsert(&head, arg, val);
free(string);
}
return head;
}
char *MTestArgListGetString(MTestArgList * head, const char *arg)
{
char *tmp;
if (!(tmp = MTestArgListSearch((MTestArgListEntry *) head, arg)))
MTestArgListPrintError(arg);
return tmp;
}
const char *MTestArgListGetString_with_default(MTestArgList * head, const char *arg,
const char *default_str)
{
char *tmp;
if (!(tmp = MTestArgListSearch((MTestArgListEntry *) head, arg)))
return default_str;
return tmp;
}
int MTestArgListGetInt(MTestArgList * head, const char *arg)
{
return atoi(MTestArgListGetString(head, arg));
}
int MTestArgListGetInt_with_default(MTestArgList * head, const char *arg, int default_val)
{
const char *tmp = MTestArgListGetString_with_default(head, arg, NULL);
if (tmp)
return atoi(tmp);
else
return default_val;
}
long MTestArgListGetLong(MTestArgList * head, const char *arg)
{
return atol(MTestArgListGetString(head, arg));
}
long MTestArgListGetLong_with_default(MTestArgList * head, const char *arg, long default_val)
{
const char *tmp = MTestArgListGetString_with_default(head, arg, NULL);
if (tmp)
return atol(tmp);
else
return default_val;
}
mtest_mem_type_e MTestArgListGetMemType(MTestArgList * head, const char *arg)
{
const char *memtype = MTestArgListGetString_with_default(head, arg, NULL);
if (!memtype || strcmp(memtype, "host") == 0) {
return MTEST_MEM_TYPE__UNREGISTERED_HOST;
} else if (strcmp(memtype, "reg_host") == 0) {
return MTEST_MEM_TYPE__REGISTERED_HOST;
} else if (strcmp(memtype, "device") == 0) {
return MTEST_MEM_TYPE__DEVICE;
} else if (strcmp(memtype, "shared") == 0) {
return MTEST_MEM_TYPE__SHARED;
} else if (strcmp(memtype, "random") == 0) {
return MTEST_MEM_TYPE__RANDOM;
} else if (strcmp(memtype, "all") == 0) {
return MTEST_MEM_TYPE__ALL;
} else {
return MTEST_MEM_TYPE__UNSET;
}
}
mtest_mem_type_e MTest_memtype_random(void)
{
/* roll our own rand() since we need prevent interfering with dtpools random pool.
* Using the code from libc man page */
static unsigned long number = 1;
number = number * 1103515245 + 12345;
return number / 65536 % 4 + MTEST_MEM_TYPE__UNREGISTERED_HOST;
}
const char *MTest_memtype_name(mtest_mem_type_e memtype)
{
if (memtype == MTEST_MEM_TYPE__UNREGISTERED_HOST) {
return "host";
} else if (memtype == MTEST_MEM_TYPE__REGISTERED_HOST) {
return "reg_host";
} else if (memtype == MTEST_MEM_TYPE__DEVICE) {
return "device";
} else if (memtype == MTEST_MEM_TYPE__SHARED) {
return "shared";
} else if (memtype == MTEST_MEM_TYPE__RANDOM) {
return "random";
} else {
return "INVALID";
}
}
int MTestIsBasicDtype(MPI_Datatype type)
{
int numints, numaddrs, numtypes, combiner;
MPI_Type_get_envelope(type, &numints, &numaddrs, &numtypes, &combiner);
int is_basic = (combiner == MPI_COMBINER_NAMED);
return is_basic;
}
/* parse comma-separated integer string, return the integer array and
* set num in output. User is responsible freeing the memory.
*/
int *MTestParseIntList(const char *str, int *num)
{
int i = 0;
for (const char *s = str; *s; s++) {
if (*s == ',') {
i++;
}
}
*num = i + 1;
int *ints = malloc((*num) * sizeof(int));
i = 0;
ints[i] = atoi(str);
for (const char *s = str; *s; s++) {
if (*s == ',') {
i++;
ints[i] = atoi(s + 1);
}
}
return ints;
}
/* parse comma-separated string list, return the string array and
* set num in output. Call MTestFreeStringList to free the returned
* string list.
*/
char **MTestParseStringList(const char *str, int *num)
{
int i, j;
i = 0;
for (const char *s = str; *s; s++) {
if (*s == ',') {
i++;
}
}
*num = i + 1;
char **strlist = malloc((*num) * sizeof(char *));
i = 0; /* index to strlist */
j = 0; /* index within the str */
const char *s = str;
while (true) {
if (*s == '\0' || *s == ',') {
/* previous str has j chars */
strlist[i] = malloc(j + 1);
strncpy(strlist[i], s - j, j);
strlist[i][j] = '\0';
i++;
j = 0;
} else {
j++;
}
if (!*s) {
break;
} else {
s++;
}
}
return strlist;
}
void MTestFreeStringList(char **strlist, int num)
{
for (int i = 0; i < num; i++) {
free(strlist[i]);
}
free(strlist);
}
/* ------------------------------------------------------------------------ */
/* Utilities to support device memory allocation */
#if defined(HAVE_CUDA) || defined(HAVE_ZE) || defined(HAVE_HIP)
#include <assert.h>
#ifdef HAVE_CUDA
#include <cuda_runtime_api.h>
#define CHECK_CUDAMALLOC(err) \
if ((err) == cudaErrorMemoryAllocation) { \
fprintf(stderr, "CUDA memory allocation failed\n"); \
MPI_Abort(MPI_COMM_SELF, 1); \
}
#endif
#ifdef HAVE_HIP
#include <hip/hip_runtime_api.h>
#endif
int ndevices = -1;
#ifdef HAVE_ZE
#include "level_zero/ze_api.h"
ze_driver_handle_t driver = NULL;
ze_context_handle_t context = NULL;
ze_device_handle_t *device = NULL;
ze_result_t zerr = ZE_RESULT_SUCCESS;
ze_command_list_handle_t *command_lists = NULL;
ze_event_pool_handle_t *event_pools = NULL;
#endif
#endif
/* allocates memory of specified type */
void MTestAlloc(size_t size, mtest_mem_type_e type, void **hostbuf, void **devicebuf,
bool is_calloc, int device_id)
{
#ifdef HAVE_CUDA
if (ndevices == -1) {
cudaGetDeviceCount(&ndevices);
assert(ndevices != -1);
}
#endif
#ifdef HAVE_HIP
if (ndevices == -1) {
hipGetDeviceCount(&ndevices);
assert(ndevices != -1);
}
#endif
#ifdef HAVE_ZE
if (ndevices == -1) {
/* Initialize ZE driver and device only at first call. */
zerr = zeInit(0);
assert(zerr == ZE_RESULT_SUCCESS);
/* Get driver for Intel GPUs by first discovering all the drivers,
* and then picks the first driver that supports GPU devices */
uint32_t num_drivers = 0;
zerr = zeDriverGet(&num_drivers, NULL);
assert(zerr == ZE_RESULT_SUCCESS);
ze_driver_handle_t *all_drivers =
(ze_driver_handle_t *) malloc(num_drivers * sizeof(ze_driver_handle_t));
zerr = zeDriverGet(&num_drivers, all_drivers);
assert(zerr == ZE_RESULT_SUCCESS);
/* Find a driver for GPU device, and get handles to each of the
* available devices */
for (int i = 0; i < num_drivers; i++) {
uint32_t num_devices = 0;
zerr = zeDeviceGet(all_drivers[i], &num_devices, NULL);
assert(zerr == ZE_RESULT_SUCCESS);
ze_device_handle_t *all_devices =
(ze_device_handle_t *) malloc(num_devices * sizeof(ze_device_handle_t));
zerr = zeDeviceGet(all_drivers[i], &num_devices, all_devices);
assert(zerr == ZE_RESULT_SUCCESS);
for (int j = 0; j < num_devices; j++) {
ze_device_properties_t device_properties;
device_properties.stype = ZE_STRUCTURE_TYPE_DEVICE_PROPERTIES;
device_properties.pNext = NULL;
zerr = zeDeviceGetProperties(all_devices[j], &device_properties);
assert(zerr == ZE_RESULT_SUCCESS);
if (ZE_DEVICE_TYPE_GPU == device_properties.type) {
driver = all_drivers[i];
ndevices = num_devices;
device = all_devices;
break;
}
}
if (NULL != driver) {
break;
} else {
free(all_devices);
}
}
free(all_drivers);
ze_context_desc_t contextDesc = {
.stype = ZE_STRUCTURE_TYPE_CONTEXT_DESC,
.pNext = NULL,
.flags = 0,
};
zerr = zeContextCreate(driver, &contextDesc, &context);
assert(zerr == ZE_RESULT_SUCCESS);
/* Create command list, command queue, event pool and event, for device 0 only. */
ze_command_queue_desc_t descriptor;
descriptor.stype = ZE_STRUCTURE_TYPE_COMMAND_QUEUE_DESC;
descriptor.pNext = NULL;
descriptor.flags = 0;
descriptor.index = 0;
descriptor.mode = ZE_COMMAND_QUEUE_MODE_ASYNCHRONOUS;
descriptor.priority = ZE_COMMAND_QUEUE_PRIORITY_NORMAL;
uint32_t numQueueGroups = 0;
zerr = zeDeviceGetCommandQueueGroupProperties(device[0], &numQueueGroups, NULL);
assert(zerr == ZE_RESULT_SUCCESS && numQueueGroups);
ze_command_queue_group_properties_t *queueProperties =
(ze_command_queue_group_properties_t *)
malloc(sizeof(ze_command_queue_group_properties_t) * numQueueGroups);
for (int i = 0; i < numQueueGroups; i++) {
queueProperties[i].stype = ZE_STRUCTURE_TYPE_COMMAND_QUEUE_GROUP_PROPERTIES;
queueProperties[i].pNext = NULL;
}
zerr = zeDeviceGetCommandQueueGroupProperties(device[0], &numQueueGroups, queueProperties);
descriptor.ordinal = -1;
for (int i = 0; i < numQueueGroups; i++) {
if (queueProperties[i].flags & ZE_COMMAND_QUEUE_GROUP_PROPERTY_FLAG_COMPUTE) {
descriptor.ordinal = i;
break;
}
}
assert(descriptor.ordinal != -1);
command_lists =
(ze_command_list_handle_t *) malloc(sizeof(ze_command_list_handle_t) * ndevices);
for (int i = 0; i < ndevices; i++) {
zerr = zeCommandListCreateImmediate(context, device[i], &descriptor, &command_lists[i]);
assert(zerr == ZE_RESULT_SUCCESS);
}
/* Create event pool and event */
ze_event_pool_desc_t pool_desc;
pool_desc.stype = ZE_STRUCTURE_TYPE_EVENT_POOL_DESC;
pool_desc.pNext = NULL;
pool_desc.flags = 0;
pool_desc.count = 1;
event_pools = (ze_event_pool_handle_t *) malloc(sizeof(ze_event_pool_handle_t) * ndevices);
for (int i = 0; i < ndevices; i++) {
zerr = zeEventPoolCreate(context, &pool_desc, 1, &(device[i]), &event_pools[i]);
assert(zerr == ZE_RESULT_SUCCESS);
}
}
#endif
if (type == MTEST_MEM_TYPE__UNREGISTERED_HOST) {
if (is_calloc)
*devicebuf = calloc(size, 1);
else
*devicebuf = malloc(size);
if (hostbuf)
*hostbuf = *devicebuf;
#ifdef HAVE_CUDA
} else if (type == MTEST_MEM_TYPE__REGISTERED_HOST) {
CHECK_CUDAMALLOC(cudaMallocHost(devicebuf, size));
if (is_calloc)
memset(*devicebuf, 0, size);
if (hostbuf)
*hostbuf = *devicebuf;
} else if (type == MTEST_MEM_TYPE__DEVICE) {
cudaSetDevice(device_id % ndevices);
CHECK_CUDAMALLOC(cudaMalloc(devicebuf, size));
if (hostbuf) {
CHECK_CUDAMALLOC(cudaMallocHost(hostbuf, size));
if (is_calloc)
memset(*hostbuf, 0, size);
}
} else if (type == MTEST_MEM_TYPE__SHARED) {
cudaSetDevice(device_id % ndevices);
CHECK_CUDAMALLOC(cudaMallocManaged(devicebuf, size, cudaMemAttachGlobal));
if (hostbuf)
*hostbuf = *devicebuf;
#endif
#ifdef HAVE_HIP
} else if (type == MTEST_MEM_TYPE__REGISTERED_HOST) {
hipHostMalloc(devicebuf, size, hipHostMallocDefault);
if (is_calloc)
memset(*devicebuf, 0, size);
if (hostbuf)
*hostbuf = *devicebuf;
} else if (type == MTEST_MEM_TYPE__DEVICE) {
hipSetDevice(device_id % ndevices);
hipMalloc(devicebuf, size);
if (hostbuf) {
hipHostMalloc(hostbuf, size, hipHostMallocDefault);
if (is_calloc)
memset(*hostbuf, 0, size);
}
} else if (type == MTEST_MEM_TYPE__SHARED) {
hipSetDevice(device_id % ndevices);
hipMallocManaged(devicebuf, size, hipMemAttachGlobal);
if (hostbuf)
*hostbuf = *devicebuf;
#endif
#ifdef HAVE_ZE
} else if (type == MTEST_MEM_TYPE__REGISTERED_HOST) {
size_t mem_alignment;
ze_host_mem_alloc_desc_t host_desc;
host_desc.stype = ZE_STRUCTURE_TYPE_HOST_MEM_ALLOC_DESC;
host_desc.pNext = NULL;
host_desc.flags = 0;
/* Currently ZE ignores this argument and uses an internal alignment
* value. However, this behavior can change in the future. */
mem_alignment = 1;
zerr = zeMemAllocHost(context, &host_desc, size, mem_alignment, devicebuf);
assert(zerr == ZE_RESULT_SUCCESS);
if (is_calloc)
memset(*devicebuf, 0, size);
if (hostbuf)
*hostbuf = *devicebuf;
} else if (type == MTEST_MEM_TYPE__DEVICE) {
size_t mem_alignment;
ze_device_mem_alloc_desc_t device_desc;
device_desc.stype = ZE_STRUCTURE_TYPE_DEVICE_MEM_ALLOC_DESC;
device_desc.pNext = NULL;
device_desc.flags = 0;
device_desc.ordinal = 0; /* We currently support a single memory type */
/* Currently ZE ignores this argument and uses an internal alignment
* value. However, this behavior can change in the future. */
mem_alignment = 1;
zerr = zeMemAllocDevice(context, &device_desc, size, mem_alignment,
device[device_id % ndevices], devicebuf);
assert(zerr == ZE_RESULT_SUCCESS);
if (hostbuf) {
ze_host_mem_alloc_desc_t host_desc;
host_desc.stype = ZE_STRUCTURE_TYPE_HOST_MEM_ALLOC_DESC;
host_desc.pNext = NULL;
host_desc.flags = 0;
zerr = zeMemAllocHost(context, &host_desc, size, mem_alignment, hostbuf);
assert(zerr == ZE_RESULT_SUCCESS);
if (is_calloc)
memset(*hostbuf, 0, size);
}
} else if (type == MTEST_MEM_TYPE__SHARED) {
size_t mem_alignment;
ze_device_mem_alloc_desc_t device_desc;
ze_host_mem_alloc_desc_t host_desc;
device_desc.stype = ZE_STRUCTURE_TYPE_DEVICE_MEM_ALLOC_DESC;
device_desc.pNext = NULL;
device_desc.flags = 0;
device_desc.ordinal = 0; /* We currently support a single memory type */
host_desc.stype = ZE_STRUCTURE_TYPE_HOST_MEM_ALLOC_DESC;
host_desc.pNext = NULL;
host_desc.flags = 0;
/* Currently ZE ignores this argument and uses an internal alignment
* value. However, this behavior can change in the future. */
mem_alignment = 1;
zerr =
zeMemAllocShared(context, &device_desc, &host_desc, size, mem_alignment,
device[device_id % ndevices], devicebuf);
assert(zerr == ZE_RESULT_SUCCESS);
if (hostbuf)
*hostbuf = *devicebuf;
#endif
} else {
fprintf(stderr, "ERROR: unsupported memory type %d\n", type);
exit(1);
}
}
void MTestFree(mtest_mem_type_e type, void *hostbuf, void *devicebuf)
{
if (type == MTEST_MEM_TYPE__UNREGISTERED_HOST) {
free(hostbuf);
#ifdef HAVE_CUDA
} else if (type == MTEST_MEM_TYPE__REGISTERED_HOST) {
cudaFreeHost(devicebuf);
} else if (type == MTEST_MEM_TYPE__DEVICE) {
cudaFree(devicebuf);
if (hostbuf) {
cudaFreeHost(hostbuf);
}
} else if (type == MTEST_MEM_TYPE__SHARED) {
cudaFree(devicebuf);
#endif
#ifdef HAVE_HIP
} else if (type == MTEST_MEM_TYPE__REGISTERED_HOST) {
hipHostFree(devicebuf);
} else if (type == MTEST_MEM_TYPE__DEVICE) {
hipFree(devicebuf);
if (hostbuf) {
hipHostFree(hostbuf);
}
} else if (type == MTEST_MEM_TYPE__SHARED) {
hipFree(devicebuf);
#endif
#ifdef HAVE_ZE
} else if (type == MTEST_MEM_TYPE__REGISTERED_HOST) {
zerr = zeMemFree(context, devicebuf);
assert(zerr == ZE_RESULT_SUCCESS);
} else if (type == MTEST_MEM_TYPE__DEVICE) {
zerr = zeMemFree(context, devicebuf);
assert(zerr == ZE_RESULT_SUCCESS);
if (hostbuf) {
zerr = zeMemFree(context, hostbuf);
assert(zerr == ZE_RESULT_SUCCESS);
}
} else if (type == MTEST_MEM_TYPE__SHARED) {
zerr = zeMemFree(context, devicebuf);
assert(zerr == ZE_RESULT_SUCCESS);
#endif
}
}
void MTestCopyContent(const void *sbuf, void *dbuf, size_t size, mtest_mem_type_e type)
{
if (type == MTEST_MEM_TYPE__DEVICE) {
#ifdef HAVE_CUDA
cudaMemcpy(dbuf, sbuf, size, cudaMemcpyDefault);
#endif
#ifdef HAVE_HIP
hipMemcpy(dbuf, sbuf, size, hipMemcpyDefault);
#endif
#ifdef HAVE_ZE
int dev_id = -1, s_dev_id = -1, d_dev_id = -1;
struct {
ze_memory_allocation_properties_t prop;
ze_device_handle_t device;
} s_attr, d_attr;
s_attr.prop.stype = ZE_STRUCTURE_TYPE_MEMORY_ALLOCATION_PROPERTIES;
s_attr.prop.pNext = NULL;
d_attr.prop.stype = ZE_STRUCTURE_TYPE_MEMORY_ALLOCATION_PROPERTIES;
d_attr.prop.pNext = NULL;
zerr = zeMemGetAllocProperties(context, sbuf, &s_attr.prop, &s_attr.device);
assert(zerr == ZE_RESULT_SUCCESS);
if (s_attr.device) {
for (int i = 0; i < ndevices; i++) {
if (device[i] == s_attr.device) {
s_dev_id = i;
break;
}
}
}
zerr = zeMemGetAllocProperties(context, dbuf, &d_attr.prop, &d_attr.device);
assert(zerr == ZE_RESULT_SUCCESS);
if (d_attr.device) {
for (int i = 0; i < ndevices; i++) {
if (device[i] == d_attr.device) {
d_dev_id = i;
break;
}
}
}
if (s_dev_id != -1 || d_dev_id != -1) {
if (s_dev_id != -1)
dev_id = s_dev_id;
if (d_dev_id != -1) {
if (dev_id != -1)
assert(s_dev_id == d_dev_id);
else
dev_id = d_dev_id;
}
}
assert(dev_id != -1);
ze_event_handle_t event;
ze_event_desc_t event_desc = {
.stype = ZE_STRUCTURE_TYPE_EVENT_DESC,
.pNext = NULL,
.index = 0,
.signal = ZE_EVENT_SCOPE_FLAG_HOST,
.wait = ZE_EVENT_SCOPE_FLAG_HOST
};
zerr = zeEventCreate(event_pools[dev_id], &event_desc, &event);
assert(zerr == ZE_RESULT_SUCCESS);
zerr = zeCommandListReset(command_lists[dev_id]);
assert(zerr == ZE_RESULT_SUCCESS);
zerr =
zeCommandListAppendMemoryCopy(command_lists[dev_id], dbuf, sbuf, size, event, 0, NULL);
assert(zerr == ZE_RESULT_SUCCESS);
zerr = zeEventHostSynchronize(event, UINT32_MAX);
assert(zerr == ZE_RESULT_SUCCESS);
zerr = zeEventDestroy(event);
assert(zerr == ZE_RESULT_SUCCESS);
#endif
}
}
void MTest_finalize_gpu(void)
{
#ifdef HAVE_ZE
if (ndevices != -1) {
/* Free GPU resource */
free(device);
assert(event_pools && command_lists);
for (int i = 0; i < ndevices; i++) {
zerr = zeEventPoolDestroy(event_pools[i]);
assert(zerr == ZE_RESULT_SUCCESS);
zerr = zeCommandListDestroy(command_lists[i]);
assert(zerr == ZE_RESULT_SUCCESS);
}
free(event_pools);
free(command_lists);
zerr = zeContextDestroy(context);
}
#endif
}
void MTest_init_visibility_gpu()
{
int err = 0;
#ifdef HAVE_ZE
const char *dev_str = 0;
const char *subdev_str = 0;
const char *affinity_str = 0;
char *mask = 0;
int device_count = -1;
int subdevice_count = -1;
/* Only set a mask if MTEST_GPU_VISIBILITY_AFFINITY is set. Possible options:
* - CONTIGUOUS_DEVICE: processes are given a single device in monotonically increasing order
* - Example (3 devices, 4 ranks):
* rank 0: ZE_AFFINITY_MASK=0
* rank 1: ZE_AFFINITY_MASK=1
* rank 2: ZE_AFFINITY_MASK=2
* rank 3: ZE_AFFINITY_MASK=0
* - CONTIGUOUS_SUBDEVICE: processes are given a single subdevice in monotonically increasing
* order
* - Example (2 device, 2 subdevices each, 4 ranks):
* rank 0: ZE_AFFINITY_MASK=0.0
* rank 1: ZE_AFFINITY_MASK=0.1
* rank 2: ZE_AFFINITY_MASK=1.0
* rank 3: ZE_AFFINITY_MASK=1.1
* - CONTIGUOUS_SINGLE_SUBDEVICE: Only a single subdevice of each device is used, given in
* monotonically increasing order
* - Example (3 devices, 2 subdevices each, 4 ranks):
* rank 0: ZE_AFFINITY_MASK=0.0
* rank 1: ZE_AFFINITY_MASK=1.0
* rank 2: ZE_AFFINITY_MASK=2.0
* rank 3: ZE_AFFINITY_MASK=0.0
* - CONTIGUOUS_MULTI_SUBDEVICE: processes are each given all subdevices for a single device
* in monotonically increasing order
* - Example (3 devices, 2 subdevices each, 4 ranks):
* rank 0: ZE_AFFINITY_MASK=0.0,0.1
* rank 1: ZE_AFFINITY_MASK=1.0,1.1
* rank 2: ZE_AFFINITY_MASK=2.0,2.1
* rank 3: ZE_AFFINITY_MASK=0.0,0.1
*/
affinity_str = getenv("MTEST_GPU_VISIBILITY_AFFINITY");
if (affinity_str && *affinity_str) {
/* Get max device ID */
dev_str = getenv("MTEST_GPU_VISIBILITY_DEVICE_COUNT");
if (dev_str && *dev_str) {
device_count = atoi(dev_str);
}
/* Get max subdevice ID */
subdev_str = getenv("MTEST_GPU_VISIBILITY_SUBDEVICE_COUNT");
if (subdev_str && *subdev_str) {
subdevice_count = atoi(dev_str);
}
if (device_count > 0) {
int local_rank_id = -1;
const char *local_rank_id_str = 0;
/* Get the MPI local rank ID */
local_rank_id_str = getenv("MPI_LOCALRANKID");
if (local_rank_id_str && *local_rank_id_str) {
local_rank_id = atoi(local_rank_id_str);
}
/* Set the affinity mask based on affinity type */
if (strcmp(affinity_str, "CONTIGUOUS_DEVICE") == 0 ||
strcmp(affinity_str, "contiguous_device") == 0) {
int buf_sz = 1;
int device_affinity = local_rank_id % device_count;
buf_sz += snprintf(NULL, 0, "%d", device_affinity);
mask = malloc(buf_sz * sizeof(char));
snprintf(mask, sizeof(mask), "%d", device_affinity);
} else if (subdevice_count > 0 && (strcmp(affinity_str, "CONTIGUOUS_SUBDEVICE") == 0 ||
strcmp(affinity_str, "contiguous_subdevice") == 0)) {
/* This assumes every device has the same number of subdevices */
int buf_sz = 1;
int total_subdev = device_count * subdevice_count;
int device_affinity =
((local_rank_id % (total_subdev)) / subdevice_count) % device_count;
int subdevice_affinity = local_rank_id % subdevice_count;
buf_sz += snprintf(NULL, 0, "%d.%d", device_affinity, subdevice_affinity);
mask = malloc(buf_sz * sizeof(char));
snprintf(mask, sizeof(mask), "%d.%d", device_affinity, subdevice_affinity);
} else if (subdevice_count > 0 &&
(strcmp(affinity_str, "CONTIGUOUS_SINGLE_SUBDEVICE") == 0 ||
strcmp(affinity_str, "contiguous_single_subdevice") == 0)) {
int buf_sz = 1;
int device_affinity = local_rank_id % device_count;
int subdevice_affinity = 0;
buf_sz += snprintf(NULL, 0, "%d.%d", device_affinity, subdevice_affinity);
mask = malloc(buf_sz * sizeof(char));
snprintf(mask, sizeof(mask), "%d.%d", device_affinity, subdevice_affinity);
} else if (subdevice_count > 0 &&
(strcmp(affinity_str, "CONTIGUOUS_MULTI_SUBDEVICE") == 0 ||
strcmp(affinity_str, "contiguous_multi_subdevice") == 0)) {
int offset = 0;
int buf_sz = 1;
int device_affinity = local_rank_id % device_count;
/* Calculate the size of the mask */
for (int i = 0; i < subdevice_count; ++i) {
if (i > 0) {
buf_sz += 1; // For a comma
}
buf_sz += snprintf(NULL, 0, "%d.%d", device_affinity, i);
}
mask = malloc(buf_sz * sizeof(char));
/* Calculate the size of the mask */
for (int i = 0; i < subdevice_count; ++i) {
if (i > 0) {
offset += snprintf(mask + offset, buf_sz - offset, ",");
}
offset += snprintf(mask + offset, buf_sz - offset, "%d.%d", device_affinity, i);
}
} else {
fprintf(stderr, "Unrecognized device affinity %s\n", affinity_str);
/* Use exit since MPI_Init/Init_thread has not been called. */
exit(1);
}
err = setenv("ZE_AFFINITY_MASK", mask, 1);
if (mask) {
free(mask);
}
}
}
#endif
}
|