1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/*
* Copyright (C) by Argonne National Laboratory
* See COPYRIGHT in top-level directory
*/
/************************************************/
/* Inline file to be included in mtest_thread.c */
/************************************************/
/* Error handling */
static void MTest_abt_error(int err, const char *msg, const char *file, int line)
{
char *err_str;
size_t len;
int ret;
if (err == ABT_SUCCESS)
return;
ret = ABT_error_get_str(err, NULL, &len);
if (ret != ABT_SUCCESS) {
fprintf(stderr, "Error %d at ABT_error_get_str\n", ret);
exit(EXIT_FAILURE);
}
err_str = (char *) malloc(sizeof(char) * len + 1);
if (ret != ABT_SUCCESS) {
fprintf(stderr, "Error %d at malloc\n", ret);
exit(EXIT_FAILURE);
}
ret = ABT_error_get_str(err, err_str, NULL);
if (ret != ABT_SUCCESS) {
fprintf(stderr, "Error %d at ABT_error_get_str\n", ret);
exit(EXIT_FAILURE);
}
fprintf(stderr, "%s (%d): %s (%s:%d)\n", err_str, err, msg, file, line);
free(err_str);
exit(EXIT_FAILURE);
}
#define MTEST_ABT_ERROR(e,m) MTest_abt_error(e,m,__FILE__,__LINE__)
#define MTEST_NUM_XSTREAMS 2
/* -------------------------------------------- */
extern ABT_pool pools[MTEST_NUM_XSTREAMS];
int MTest_Start_thread(MTEST_THREAD_RETURN_TYPE(*fn) (void *p), void *arg)
{
int ret;
ABT_thread_attr thread_attr;
if (nthreads >= MTEST_MAX_THREADS) {
fprintf(stderr, "Too many threads already created: max is %d\n", MTEST_MAX_THREADS);
return 1;
}
/* Make stack size large. */
ret = ABT_thread_attr_create(&thread_attr);
MTEST_ABT_ERROR(ret, "ABT_thread_attr_create");
ret = ABT_thread_attr_set_stacksize(thread_attr, 2 * 1024 * 1024);
MTEST_ABT_ERROR(ret, "ABT_thread_attr_set_stacksize");
/* We push threads to pools[0] and let the random work-stealing
* scheduler balance things out. */
ret = ABT_thread_create(pools[0], fn, arg, thread_attr, &threads[nthreads]);
MTEST_ABT_ERROR(ret, "ABT_thread_create");
ret = ABT_thread_attr_free(&thread_attr);
MTEST_ABT_ERROR(ret, "ABT_thread_attr_free");
nthreads++;
return 0;
}
int MTest_Join_threads(void)
{
int i, ret, err = 0;
for (i = 0; i < nthreads; i++) {
ret = ABT_thread_free(&threads[i]);
MTEST_ABT_ERROR(ret, "ABT_thread_free");
}
nthreads = 0;
return 0;
}
int MTest_thread_lock_create(MTEST_THREAD_LOCK_TYPE * lock)
{
int ret;
ret = ABT_mutex_create(lock);
MTEST_ABT_ERROR(ret, "ABT_mutex_create");
return 0;
}
int MTest_thread_lock(MTEST_THREAD_LOCK_TYPE * lock)
{
int ret;
ret = ABT_mutex_lock(*(lock));
MTEST_ABT_ERROR(ret, "ABT_mutex_lock");
return 0;
}
int MTest_thread_unlock(MTEST_THREAD_LOCK_TYPE * lock)
{
int ret;
ret = ABT_mutex_unlock(*(lock));
MTEST_ABT_ERROR(ret, "ABT_mutex_unlock");
return 0;
}
int MTest_thread_lock_free(MTEST_THREAD_LOCK_TYPE * lock)
{
int ret;
ret = ABT_mutex_free(lock);
MTEST_ABT_ERROR(ret, "ABT_mutex_free");
return 0;
}
int MTest_thread_yield(void)
{
int ret;
ret = ABT_thread_yield();
MTEST_ABT_ERROR(ret, "ABT_thread_yield");
return 0;
}
/* -------------------------------------------- */
#define HAVE_MTEST_THREAD_BARRIER 1
static MTEST_THREAD_LOCK_TYPE barrierLock;
static ABT_barrier barrier;
static int bcount = -1;
int MTest_thread_barrier_init(void)
{
bcount = -1; /* must reset to force barrier re-creation */
return MTest_thread_lock_create(&barrierLock);
}
int MTest_thread_barrier_free(void)
{
int ret;
MTest_thread_lock_free(&barrierLock);
ret = ABT_barrier_free(&barrier);
MTEST_ABT_ERROR(ret, "ABT_barrier_free");
return 0;
}
/* FIXME this barrier interface should be changed to more closely match the
* pthread interface. Specifically, nt should not be a barrier-time
* parameter but an init-time parameter. The double-checked locking below
* isn't valid according to pthreads, and it isn't guaranteed to be robust
* in the presence of aggressive CPU/compiler optimization. */
int MTest_thread_barrier(int nt)
{
int ret;
if (nt < 0)
nt = nthreads;
if (bcount != nt) {
/* One thread needs to initialize the barrier */
ret = MTest_thread_lock(&barrierLock);
/* Test again in case another thread already fixed the problem */
if (bcount != nt) {
if (bcount > 0) {
ret = ABT_barrier_free(&barrier);
MTEST_ABT_ERROR(ret, "ABT_barrier_free");
}
ret = ABT_barrier_create(nt, &barrier);
MTEST_ABT_ERROR(ret, "ABT_barrier_create");
bcount = nt;
}
ret = MTest_thread_unlock(&barrierLock);
}
ret = ABT_barrier_wait(barrier);
MTEST_ABT_ERROR(ret, "ABT_barrier_wait");
return 0;
}
/* -------------------------------------------- */
#define HAVE_MTEST_INIT_THREAD_PKG
static ABT_xstream xstreams[MTEST_NUM_XSTREAMS];
static ABT_sched scheds[MTEST_NUM_XSTREAMS];
ABT_pool pools[MTEST_NUM_XSTREAMS];
void MTest_init_thread_pkg(void)
{
int i, k, ret;
int num_xstreams;
ABT_init(0, NULL);
/* Get the main pool of the primary execution stream.
*
* When MPI_Init_thread() is called before MTest_init_thread_pkg() e.g.
* threads/spawn/th_taskmanager, so some threads (e.g., asynchronous
* progress threads) can be associated with the current main pool of the
* primary execution stream. Since we cannot update the scheduler of the
* primary execution stream in that case, the default scheduler and its pool
* are used for the primary execution stream. */
ret = ABT_xstream_self(&xstreams[0]);
MTEST_ABT_ERROR(ret, "ABT_xstream_self");
ret = ABT_xstream_get_main_pools(xstreams[0], 1, &pools[0]);
MTEST_ABT_ERROR(ret, "ABT_xstream_get_main_pools");
/* Create pools */
for (i = 1; i < MTEST_NUM_XSTREAMS; i++) {
ret = ABT_pool_create_basic(ABT_POOL_FIFO, ABT_POOL_ACCESS_MPMC, ABT_TRUE, &pools[i]);
MTEST_ABT_ERROR(ret, "ABT_pool_create_basic");
}
/* Create schedulers */
ABT_pool my_pools[MTEST_NUM_XSTREAMS];
num_xstreams = MTEST_NUM_XSTREAMS;
scheds[0] = ABT_SCHED_NULL;
for (i = 1; i < num_xstreams; i++) {
for (k = 0; k < num_xstreams; k++) {
my_pools[k] = pools[(i + k) % num_xstreams];
}
ret = ABT_sched_create_basic(ABT_SCHED_RANDWS, num_xstreams, my_pools,
ABT_SCHED_CONFIG_NULL, &scheds[i]);
MTEST_ABT_ERROR(ret, "ABT_sched_create_basic");
}
/* Create Execution Streams */
for (i = 1; i < num_xstreams; i++) {
ret = ABT_xstream_create(scheds[i], &xstreams[i]);
MTEST_ABT_ERROR(ret, "ABT_xstream_create");
}
}
void MTest_finalize_thread_pkg(void)
{
int i, ret;
int num_xstreams = MTEST_NUM_XSTREAMS;
for (i = 1; i < num_xstreams; i++) {
ret = ABT_xstream_join(xstreams[i]);
MTEST_ABT_ERROR(ret, "ABT_xstream_join");
ret = ABT_xstream_free(&xstreams[i]);
MTEST_ABT_ERROR(ret, "ABT_xstream_free");
}
ret = ABT_finalize();
MTEST_ABT_ERROR(ret, "ABT_finalize");
}
|