1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
#include "mpi.h"
#include <cmath>
#include <cassert>
#include <cstdlib>
#include <cstdio>
#include <ctime>
#define LIN(x, y, dimX) ((x) + (y)*(dimX))
#define LIN2(x,y,dimX) (LIN(x+1,y+1,dimX+2))
#define CYCLIN(x, y, dimX, dimY) LIN((x+dimX) % (dimX), (y+dimY) % (dimY), (dimX))
static double ks = 1.0;
class Grid {
private:
double *myGridPrev_, *myGridCurr_, *myGridNext_;
double *leftEdgeIn_, *leftEdgeOut_, *rightEdgeIn_, *rightEdgeOut_;
int numGridsX_, numGridsY_, dimX_, dimY_;
int myGridX_, myGridY_;
public:
Grid(int dimX, int dimY, int numGridsX, int numGridsY, int numInitialPerturbations)
: dimX_(dimX), dimY_(dimY), numGridsX_(numGridsX), numGridsY_(numGridsY) {
myGridPrev_ = new double[(dimX+2)*(2+dimY)]();
myGridCurr_ = new double[(dimX+2)*(2+dimY)]();
myGridNext_ = new double[(dimX+2)*(2+dimY)]();
leftEdgeIn_ = new double[dimY];
rightEdgeIn_ = new double[dimY];
leftEdgeOut_ = new double[dimY];
rightEdgeOut_ = new double[dimY];
int myRank;
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
myGridX_ = myRank % numGridsX_;
myGridY_ = myRank / numGridsX_;
initGrid(numInitialPerturbations);
}
~Grid() {
delete[] myGridPrev_;
delete[] myGridCurr_;
delete[] myGridNext_;
delete[] leftEdgeIn_;
delete[] rightEdgeIn_;
delete[] leftEdgeOut_;
delete[] rightEdgeOut_;
}
void doIterations(int numIterations) {
for (int i = 0; i < numIterations; ++i) {
exchangeEdges();
doOneIteration();
double *tmp = myGridPrev_;
myGridPrev_ = myGridCurr_;
myGridCurr_ = myGridNext_;
myGridNext_ = tmp;
}
}
private:
void initGrid(int numInitialPerturbations) {
for(int s = 0; s < numInitialPerturbations; s++){
// Determine where to place a circle within the interior of the 2-d domain
int radius = 20+rand() % 30;
int xcenter = radius + rand() % (dimX_*numGridsX_ - 2*radius);
int ycenter = radius + rand() % (dimY_*numGridsY_ - 2*radius);
// Draw the circle
for(int x = 1; x < dimX_; x++){
for(int y = 1; y < dimY_; y++){
// The coordinate in the global data array (not just in this rank's portion)
int globalx = myGridX_*dimX_ + x;
int globaly = myGridY_*dimY_ + y;
double distanceToCenter = sqrt((globalx-xcenter)*(globalx-xcenter)
+ (globaly-ycenter)*(globaly-ycenter));
if (distanceToCenter < radius) {
// ranges from 0 to 3pi/2
double rscaled = (distanceToCenter/radius) * 3.0 * 3.14159/2.0;
// Range won't exceed -700 to 700
double t = 700.0 * cos(rscaled);
myGridCurr_[LIN2(x,y,dimX_)] = myGridPrev_[LIN2(x,y,dimX_)] = t;
}
}
}
}
}
void doOneIteration() {
for (int x = 0; x < dimX_; ++x) {
for (int y = 0; y < dimY_; ++y) {
myGridNext_[LIN2(x,y,dimX_)] =
ks * (myGridCurr_[LIN2(x+1,y,dimX_)] + myGridCurr_[LIN2(x-1,y,dimX_)]
+ myGridCurr_[LIN2(x,y+1,dimX_)] + myGridCurr_[LIN2(x,y-1,dimX_)]
- myGridCurr_[LIN2(x,y,dimX_)] * 4)
- myGridPrev_[LIN2(x,y,dimX_)] + 2*myGridCurr_[LIN2(x,y,dimX_)];
}
}
}
void exchangeEdges() {
MPI_Request reqs[4];
MPI_Status stats[4];
int topRank = CYCLIN(myGridX_, myGridY_+1, numGridsX_, numGridsY_);
int leftRank = CYCLIN(myGridX_-1, myGridY_, numGridsX_, numGridsY_);
int rightRank = CYCLIN(myGridX_+1, myGridY_, numGridsX_, numGridsY_);
int bottomRank = CYCLIN(myGridX_, myGridY_-1, numGridsX_, numGridsY_);
/*************** Recv ***************/
// Top.
MPI_Irecv(&(myGridCurr_[LIN(1,0,dimX_+2)]), dimX_, MPI_DOUBLE, topRank, 0, MPI_COMM_WORLD, &reqs[0]);
// Bottom.
MPI_Irecv(&(myGridCurr_[LIN(1,dimY_+1,dimX_+2)]), dimX_, MPI_DOUBLE,
bottomRank, 0, MPI_COMM_WORLD, &reqs[1]);
// Left.
MPI_Irecv(leftEdgeIn_, dimY_, MPI_DOUBLE, leftRank, 0, MPI_COMM_WORLD, &reqs[2]);
// Right.
MPI_Irecv(rightEdgeIn_, dimY_, MPI_DOUBLE, rightRank, 0, MPI_COMM_WORLD, &reqs[3]);
/*************** Send ***************/
// Top.
MPI_Send(&(myGridCurr_[LIN2(0,0,dimX_)]), dimX_, MPI_DOUBLE, topRank, 0, MPI_COMM_WORLD);
// Bottom.
MPI_Send(&(myGridCurr_[LIN2(0,dimY_-1,dimX_)]), dimX_, MPI_DOUBLE, bottomRank, 0, MPI_COMM_WORLD);
// Left.
// A bit more annoying, since the data is not stored contiguously.
for (int i = 0; i < dimY_; ++i) leftEdgeOut_[i] = myGridCurr_[LIN2(0, i, dimX_)];
MPI_Send(leftEdgeOut_, dimY_, MPI_DOUBLE, leftRank, 0, MPI_COMM_WORLD);
// Right.
for (int i = 0; i < dimY_; ++i) rightEdgeOut_[i] = myGridCurr_[LIN2(dimX_-1, i, dimX_)];
MPI_Send(rightEdgeOut_, dimY_, MPI_DOUBLE, rightRank, 0, MPI_COMM_WORLD);
/*************** Update ***************/
// Wait for all messages to be sent/received.
MPI_Waitall(4, reqs, stats);
for (int y = 0; y < dimY_; ++y) {
myGridCurr_[LIN(0, y+1, dimX_+2)] = leftEdgeIn_[y];
myGridCurr_[LIN(dimX_+1, y+1, dimX_+2)] = rightEdgeIn_[y];
}
}
};
int main(int argc, char *argv[])
{
// Initialize MPI stuff.
int nprocs, myRank;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
// Seed the RNG.
int seed;
if (myRank == 0) seed = time(NULL);
MPI_Bcast(&seed, 1, MPI_INT, 0, MPI_COMM_WORLD);
srand(seed);
// Complain if we're missing arguments.
assert(argc >= 6);
// Get dimensionality information from the command line.
// FIXME?: Number of ranks cannot be prime.
int myDimX = atoi(argv[1]), myDimY = atoi(argv[2]);
int numGridsX = atoi(argv[3]), numGridsY = atoi(argv[4]);
int numInitPerturbations = atoi(argv[5]);
// Make sure those dimensions are right before moving on.
assert(numGridsX * numGridsY == nprocs);
Grid grid(myDimX, myDimY, numGridsX, numGridsY, numInitPerturbations);
grid.doIterations(100);
MPI_Finalize();
return 0;
}
|